
Anais do IX SIBGRAPI (1996) 281-288

An Architecture for Concurrent Reactive Agents in Real-Time Animation

MÔNICA COSTA

BRUNO FEIJÓ

ICAD - Laboratório de CAD Inteligente
Departamento de Informática, PUC-Rio

Rua Marquês de São Vicente, 225
22453-900 Rio de Janeiro, RJ, Brasil

{monica,bruno}@icad.puc-rio.br

Abstract. This paper proposes an architecture for real-time behavioral animation based on parallel
interactions between simple recursive reactive agents and allowing for integration with external articulated
figure software. An animated sequence of a navigation scene where two actors play different roles is
generated by a prototype.

Keywords: Behavioral Animation, Real-Time Animation, Reactive Agents, Parallel Programming

1 Introduction

In behavioral animation, actors perform complex tasks
and are able to react to external stimuli and events,
according to its own beliefs, intentions, humor, fears
and feelings. Behavioral animation can be used in a
number of cases, such as virtual prototyping in
engineering design; hazard simulation; internet virtual
meetings; and entertainment industry applications.
Agent technology has emerged as a promising approach
to behavioral animation [Bates (1994)][Terzopoulos et
al. (1994)] [Tosa (1993)]. Costa et al. (1995) propose a
model of simple recursive reactive agents for behavioral
animation systems.

The performance of behavioral agents should
happen in a rich and complex interactive 3D virtual
world and, above all, in real-time. Creatures interacting
with their environment in real-time have been emerging
as one of the new trends in computer graphics.
Wilhelms and Skinner’s (1990) system is an interesting
example of interactive behavioral animation control.
Granieri et al. (1995) present implementation issues for
real-time visual simulation of multiple animated
synthetic human figures. Badler et al. (1993) and Badler
(1995) present the state-of-the-art in simulating humans
and explore several issues in real-time animation. High
performance multiprocessing toolkits are becoming
popular for real-time 3D graphics, such as IRIS
Performer [Rohlf and Helman (1994)]. Furthermore,
general-purpose parallel programming systems have
been used in computer graphics, such as PVM [Geist et
al. (1994)] adopted in this work. The present paper
follows those trends and proposes an architecture for
real-time behavioral animation based on parallel

interactions between reactive agents and allowing for
integration with external articulated figure software.

2 Actors as Reactive Agents

In a previous work [Costa et al. (1995)], the authors
presented actors in behavioral animation as reactive
agents with the structure shown in Fig.1. Following that
proposal, agents are driven by motors which are
themselves agents with the same structure. The elements
of this structure are drawn on general principles of
cognition [Stillings et al. (1987)].

SENSORY

CENTRE

COGNITION CENTRE

BODY

LTM

MOTOR MOTOR MOTOR

Fig.1 The agent structure

The Sensory Centre has two kinds of basic
functions: (1) functions to send and receive messages;
(2) sensory perception functions. An agent is activated
by a message sent by its parent-agent. Most of the time,

M. COSTA E B. FEIJÓ

Anais do IX SIBGRAPI, outubro de 1996

282

this message is passed to the agents’ motors by the
cognition centre, in order to distribute tasks. A motor
always reports success or failure to the agent that called
it. The other kind of basic function, i.e. the sensory
perception function, detects events in the virtual
environment associated to vision, hearing and touch. As
far as vision is concerned, stereoscopic capacity is not
required because the distances between objects can be
calculated straightforwardly. Also no pattern
recognition is required because the list of the objects is
available to the character. These two latter assumptions
highlight the differences between behavioral animation
and other simulation areas such as artificial life. In
behavioral animation there is no extra bonus in
simulating cognitive processes of vision and,
consequently, visual information is structured in
advance.

In accordance to the cognitive science, the LTM
(Large Term Memory) of an agent is a window to a vast
declarative memory area with facts specified by the
animator and facts perceived by the character during its
existence in the virtual environment. Sometimes there
are facts that are common to more than one agent. Only
an especial agent called the Universal Agent has the
consciousness of the entire factual data base.

The facts in the LTM are inert structures that
should be operated by processes in the Cognition
Centre. Processes are procedural knowledge of two
types: controlled and automatic procedures (Fig.2).
Controlled procedures require conscious attention like
an interpreter. Automatic procedures are like compiled
programs automatically triggered by events or goals.
The Logical Procedures in Fig.2 are sentences in
mathematical logic. They are used in situations where
deductive thought is required in specific domains.
General path-planning with low degree of details is
usually done by logical procedures.

Controlled Procedures Automatic Procedures

Logical
Procedures

Learned
Procedures

Behavioral
Functions

PROCESSES

Emotion
Generator

Fig.2 Processes in the Cognition Centre

Learned Procedures represent reactive plans
encoded as compiled programs. These plans are
continuously revised and, consequently, can adapt
themselves to unexpected events that may occur in the
environment. The name Learned Procedure comes from

the fact that these procedures represent learned skills
with no need for conscious attention.

Behavioral functions are primitive forms of
automatic procedures defined by a single expression.
They are used by agents that should react in a stimulus-
response basis. Sometimes simple creatures are defined
by a single agent and just one behavioral function, such
as a very small insect flying around a lamp.

The emotion generator operates on the LTM to
generate emotional states from primitive emotional
propositions.

The Body contains information about the physical
structure of the character to which the agent belongs.
Only the agents in the very low end of the hierarchy tree
contain this sort of information.

Usually an agent has certain parts always empty.
Decoration objects, for instance, usually have only
bodies and no cognition or sensory centres. The agent
controlling the human gait may have a sensory centre
(to receive stimulus), a cognition centre with just one
behavioral function (to perform the gait), a small LTM
and a body.

In the proposed model, every visible object, from
decoration artifacts to living characters, is an agent with
the recursive structure shown in Fig.1. In this paper, the
authors refer to actors as the topmost agents
representing living characters which are directly under
the Universal Agent's supervision.

3 A Concurrent Reactive Agent Architecture

The starting point for the proposed real-time
architecture is to organize it in terms of two views
connected by a generic interface layer, as shown in
Fig.3.

Animation Bus

Motion View

Behavioral View

Rendering
clock

Fig.3 Views

The behavioral view defines the actors and is
implemented by an agent tree where each node has the

AN ARCHITECTURE FOR CONCURRENT REACTIVE AGENTS IN REAL-TIME ANIMATION

Anais do IX SIBGRAPI, outubro de 1996

283

structure shown in Fig.1 and represents a concurrent
process (Fig.4). The leaves of the tree in Fig.4 are the
lowest level motors which should activate motion
processes in the motion view. The motion view in the
proposed concurrent reactive agent architecture of Fig.4
is composed of a real-time articulated figure application.
Each motor in the lowest level of the agent tree sends a
set of basic parameters {pi} to the animation bus which
should convert them into a synchronized sequence of
basic manipulations for the articulated figure
application. Therefore, the animation bus is an interface
layer that controls the application in the motion view
and sets up the motion clock used to synchronize
detailed movements. As a collection of functions and
interface toolkits, the animation bus is supposed to meet
portability requirements.

Also, Fig.4 shows an example where two
concurrent low-level agents send basic parameters to the
animation bus concerning motion units for the right foot
and the left arm. Suppose that the first motion starts at tb
= 0.4 s and the latter at tb = 0.8 s. These motion units
cannot be visualized in the same moment the concurrent
agents liberate them to the animation bus. Before being
visualized, they must be converted into more complex
detailed movements (e.g. raising the right foot causes
leg movements and changes balance). Furthermore, the
proper instructions to the articulated figure application
must wait for the next clock tick in the animation bus.
Suppose that the clock tick is T = 1 s. In this case, time
tm is shifted by T in the motion view. Therefore, T is a
natural delay in the response time of the proposed
system.

The behavioral view has an important property
called granularity which determines the degree of detail

for the interactions between agents. Fig.5 illustrates a
coarse granularity for the behavioral view, where actors
are represented spatially by their bounding boxes and
the only motion parameters sent to the animation bus
are {time interval, translation vector, rotation vector}.
These parameters are sent to the motion view, where
detailed anthropometry-based movements and a realistic
rendering are calculated and exhibited. This coarse
granularity might be adequate for an evacuation
simulation in an off-shore oil platform in fire, where no
precise interactions between body segments are required
for a realistic animation.

According to the adopted model for reactive
agents, any agent in the agent tree can have any reactive
sense in its sensory centre. In the implemented
prototype, agents with vision in their sensory centre are

organized in terms of sense groups. Because more than
one agent within the same actor can have vision
capacity, the authors follow the strategy of notifying the
topmost agents firstly. Fig.6 illustrates a virtual
environment where two actors and two vision groups
respond constantly to visual stimuli. In this case, when
an agent decides to use the visual stimulus it asks for
additional information (e.g. size, color, …).

The reactive capacity is the minimum time step
that allows all the actors to be aware of the virtual
environment in which they are immersed. A slow
machine running a very complex behavioral view with
very fast objects can produce large gaps in the
continuity of movements and, worse than that, the actors
can miss events entirely. The reactive capacity of a
system based on the architecture proposed in this paper
depends on the sense functions in the sensory centre of
the agents and on the decision-making algorithms that

Animation Bus

Articulated Figure Application MOTION
VIEW

{pi} {pi} {pi} {pi}

BEHAVIORAL
VIEW

...

Universal Agent

...Actor 0 Actor 1

...

clock

ta

0 tb

0

T 2T

right foot

left arm

tm0

right foot

left arm

right foot left foot

Fig.4 The Concurrent Reactive Agent Architecture and the time axis for different views

M. COSTA E B. FEIJÓ

Anais do IX SIBGRAPI, outubro de 1996

284

provide proper reactions to the external stimuli. The
code for vision has a permanent loop where position
information is asked for all actors other than the actor
who owns the vision process. For each one of those
actors, it is necessary to let each agent in the sense
group to decide whether or not the visual stimulus will
be used and to react properly if needed. The present
paper has not investigated on the possibility of having a
mathematical expression for the reactive capacity.

{pi} = time interval;
translation vector;
rotation vector

{pi}

BEHAVIORAL
VIEW

MOTION
VIEW

Anthropometry-based movements

Fig.5 Example of a coarse granularity in the behavioral
view

Actor 0

id 0

id 1

Vision

not_used

used

vision_0

same source code but different processes

Actor 1

id 0

Vision

vision_1

id 2

id 1

Fig.6 Sense Groups

4 PVM

In order to implement the concurrent nature of the
proposed architecture, the authors use the Parallel
Virtual Machine (PVM) system [Geist et al. (1994)].
PVM is a portable message-passing programming
system which allows programmers to exploit distributed
computing across a wide variety of computer types,
including workstations, multiprocessors and PCs.

A task in PVM is defined as a unit of computation
analogous to a UNIX process. The ability of PVM
functions to automatically start up new tasks on the

virtual machine (see pvm_spawn in the example below),
provides a natural means for initiating new actors when
required and building the agent tree where each agent is
a different task.

PVM also supplies functions that allow the tasks to
communicate and synchronize with each other. This
feature is of fundamental relevance in the
implementation of the concurrent reactive agent
architecture, provided that the intelligence exhibited by
the agents is mainly a result from their interactions
within the virtual environment. Examples of these
functions are pvm_send, pvm_recv, pvm_nrecv, and
some others depicted in Fig.8. In particular, the non-
blocking character of pvm_nrecv lets the agents with
sensory perception functions to continuously test for the
arrival of messages from these functions without
interrupting execution and, therefore, granting for
reactivity.

Another important set of PVM functions is formed
by the dynamic process group functions (e.g.
pvm_joingroup, pvm_lvgroup, pvm_gettid, pvm_gsize,
...). Any PVM task can join or leave any group at any
time. Groups are identified by a string of characters and
each task in a group has a unique instance number
which runs from 0 to the number of members in the
group minus 1. The ability of dealing with dynamic
process groups yields to the implementation of sense
groups. In the case of vision, each actor has its own
vision process and an associated vision group. Agents
with vision within the same actor share the same vision
process and are members of the vision group associated
with that actor (see Fig.6). Each time the vision process
detects any other agent in the field of view of the actor,
the agents in the associated vision group are notified by
a message until an agent decides to use the visual
stimulus.

5 Example of Reactive Navigation

A reactive navigation example, where two actors play
different roles in the scene, can be implemented with the
agent hierarchy defined in Fig.7. The agents in the agent
tree are essentially the same presented in a previous
work by the authors [Costa et al. (1995)]. The two
actors are capable of moving themselves in a building.
Having in “mind” a destination room, they can generate
a high-level navigation plan (with no details) based on
mathematical logic (agent go_to). The agent
follow_path follows a planned path, changing it in
order to avoid obstacles. The agent face points the
character to a new direction in order to avoid a collision.
The agent move takes the character to a certain position
along a straight line. This agent has a vision function in

AN ARCHITECTURE FOR CONCURRENT REACTIVE AGENTS IN REAL-TIME ANIMATION

Anais do IX SIBGRAPI, outubro de 1996

285

its sensory centre in order to detect obstacles. Once it
detects an obstacle in the environment, it informs its
parent agent (follow_path) who decides whether or not
it will continue in the same direction . The agents turn
and step perform small rotation and translation
movements. Learned procedures determine the size of
these basic movements. In the example implemented by
the authors, the size of the basic movements is constant
and arbitrary.

Universal Agent

Actor 0

follow_path

go_to

face

turn

move

step

VISION

Actor 1

follow_path

go_to

VISION

face

turn

move

step

Fig.7 An agent hierarchy for two actors playing in a
navigation scene

In the prototype developed by the authors, the
actors are identified by a vector named actors[n] which
contains all the data related to them. Actually, this is the
LTM of the Universal Agent and, whenever an agent in
the tree needs to read or modify some information in its
own LTM, the process that represents that agent sends
the appropriate message to the Universal Agent. In this
manner, all the data are maintained centralized and
consistent.

The actor data are very simple, such as name,
radius of a bounding cylinder, position from and to
(fpos and tpos), direction from and to (fdir and tdir),
number of descendant agents with vision (nvision)
amongst others. The types of messages are classified as
DATA, QUERY, UPDATE, SENSE_USED,
SENSE_NOT_USED and others. Each message
corresponds to an integer number.

Each concurrent reactive agent in the hierarchy of
Fig.7 has a similar structure in terms of implementation.
Fig.8 illustrates the concurrent mechanism for the agent
face.

void main(void)
{
 my_tid = pvm_mytid() /*get process id of the agent*/
 parent_id = pvm_parent(); /*get process id of its parent*/

 pvm_recv(parent_tid,DATA); /*receive data from its parent*/

 pvm_upkint(&actor_id,1,1); /*unpack data*/
 pvm_upkint(&ua_tid,1,);

 /*face starts its motor: agent turn */
 if ((ntask = pvm_spawn(“turn”, …,&turn_tid)) <= 0)
 {
 warn parent about the failure
 pvm_exit();
 exit(1);
 }
 pvm_initsend(…); /*open for sending*/

 pvm_pkint(&actor_id,1,1); /*pack data*/
 pvm_pkint(&ua_tid,1,1);

 pvm_send(turn_tid,DATA); /*send data*/

 /*loop while receiving messages from its parent*/
 while(buf_id = pvm_recv(parent_tid,-1))
 {
 pvm_bufinfo(buf_id,NULL,&msg_tag,NULL);
 if(msg_tag == ACT)
 {
 if(Face() == 1) /*Face is a learned procedure*/
 {
 pvm_initsend(…); /*open for sending*/
 pvm_send(parent_tid, SUCCESS);
 } else; /* Face is always expected to succeed*/
 }
 else if (msg_tag == TERMINATE)
 {
 stop motor turn and exit
 }
 }
}

/*Learned Procedures*/

int Face(void)
{
 get data fdir and tdir
 calculate the rotation step (turn-ang) to be sent to the agent turn
 while(turns are needed)
 {
 pvm_initsend(…);
 pvm_send(turn_tid,ACT); /*ask turn to act*/
 buf_id = pvm_recv(turn_tid,-1); /*receive message from turn */
 pvm_bufinfo(buf_id,NULL,&msg_tag,NULL);
 if(msg_tag == SUCCESS)
 {
 calculate new fdir
 pack fdir
 pvm_send(ua_tid,UPDATE); /*tell the UA to update fdir*/
 }
 else; /*turn is always expected to succeed*/
 }
 return(1);
}

Fig.8 The Concurrent Agent face

The articulated figure application used in the
prototype is the software Jack [Badler et al. (1993)]. In
the example, the basic information of translation and

M. COSTA E B. FEIJÓ

Anais do IX SIBGRAPI, outubro de 1996

286

rotation movements are converted into very simple
manipulations of the end effectors of the Jack human
figure. Those manipulations are a couple of feet
translations and pelvis rotations for each step. A typical
command generated by the animation bus is as follows:

create_foot_motion (right,t1,t2,distance,height,...)

where the right foot is asked to move by a certain
distance starting in t1 and finishing at t2, reaching a
given maximum height. The animation bus also
schedules functions to stop and start Jack’s motion
system according to the clock.

Fig.9, Fig.10, and Fig.11 show two Jack human
figures avoiding one another and walking to their
respective destination rooms in the house.

The prototype is implemented in C in an Indigo2
machine.

6 Conclusions

This paper presents a concurrent reactive agent
architecture for real-time animation based on emergent
computation - i.e. behavior resulting from
communication of independent components. A
prototype is built and a number of positive conclusions
emerges.

A parallel system can pose problems if there is no
central control. However, this is not the case, because
the Universal Agent plays the role of a monitor and
helps controlling the system. The organization of the
architecture in terms of the behavioral view and the
motion view, connected by an animation bus, proved to
be flexible and adequate. Indeed, sometimes a simple
behavioral view (with a coarse granularity) can cope
with a variety of situations and the burden of generating
secondary detailed movements can be transferred to an
external application.

PVM revealed itself as a robust, rich and adaptive
programming paradigm. The concurrent mechanism is
easily implemented, specially because manipulation of
dynamic groups is a straightforward task.

There is a number of open issues. The architecture
requires an agent language or a formalism to help
establishing properties, creating reuse objects and
calculating reactive capacity. Some theoretical
approaches to behavioral animation systems are very
promising, such as the Parallel Transition Networks by
Granieri et al. (1995). However, most of these systems
are not parallel in all levels. Finally, the animation bus

is only tested as an ad-hoc module and a lot of efforts
should be put into the implementation of this concept.

Fig.9

Fig.10

Fig.11

Acknowledgments

The authors would like to thank the CNPq for the
financial support and Hélio Magalhães for the technical
support in the generation of the images. Also thanks are
due to the reviewers for their valuable comments.

References

N. I. Badler et al., Simulating humans: computer
graphics, animation, and control, Oxford University
Press (1993).

AN ARCHITECTURE FOR CONCURRENT REACTIVE AGENTS IN REAL-TIME ANIMATION

Anais do IX SIBGRAPI, outubro de 1996

287

N. Badler, “Interactive humans: from behaviors to
agents”, Dynamic Behaviors for Real-Time Synthetic
Humans, Course 11 Notes of SIGGRAPH’95 (1995).

J. Bates, “The role of emotion in believable characters”,
Communications of the ACM 37(7) (1994).

M. Costa et al., “Reactive agents in behavioral
animation”, Proceedings of SIBGRAPI’95 (1995), 159--
165.

A. Geist et al., PVM 3 Users’s Guide and Reference
Manual, ORNL/TM-12187 (1994).

J. P. Granieri et al., “Behavioral control for real-time
simulated human agents”, Proceedings of 1995
Symposium on Interactive 3D Graphics (1995), 173--
180.

J. Rohlf and J. Helman, “IRIS Performer: a high
performance multiprocessing toolkit for real-time 3D
graphics”, Proceedings of SIGGRAPH’94 (1994), 381--
395.

N. A. Stillings et al., Cognitive Science: an
Introduction, MIT Press (1987).

D. Terzopoulos et al., “Artificial fishes with
autonomous locomotion, perception, behavior and
learning, in a physical world”, Proceedings of the
Artificial Life IV Workshop, P. Maes and R. Brooks
(eds.), MIT Press (1994).

N. Tosa, “Neurobaby”, Visual Proceedings of
SIGGRAPH’93, Tomorrow’s Realities, ACM
SIGGRAPH (1993), 212--213.

J. Wilhelms and R. Skinner, “A “Notion” for interactive
behavioral animation control”, IEEE Computer
Graphics and Applications (1990), 14--22.

M. COSTA E B. FEIJÓ

Anais do IX SIBGRAPI, outubro de 1996

288

