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Abstract. We present a new method for adaptive polygonization of parametric surfaces. The method com-
bines recursive simplicial subdivision of the domain and point sampling along curves on the surface. We
avoid cracks in the polygonal mesh by determining the optimal sampling rate along the edges of a cellbefore
subdividing it. The method is suitable for surfaces with low variations, such as bicubic patches, as well as
for surfaces with high variations, such as height fields.

1 Introduction

The polygonization of parametric surfaces is a classical
problem in computer graphics and geometric modeling
that has many practical applications. The problem is
computing a piecewise linear approximation for a con-
tinuous surface described by parametric functions.

A polygonal approximation is the simplest form of sur-
face description and therefore is the representation of
choice in the implementation of a large number of al-
gorithms. Moreover, existing graphics hardware and li-
braries have special support for polygonal meshes, spe-
cially triangular meshes. Thus, despite the existence of
more sophisticated standard forms for surface descrip-
tion, such as NURBS, there is always a need to convert
surfaces to polygonal form.

In this paper, we describe a method that builds good
polygonal approximations while keeping the number of
polygons low.

1.1 Methods for polygonal approximation

The simplest polygonization method isuniform decom-
position: The parameter domain of the surface is decom-
posed into a regular rectangular grid and the surface is
sampled at the nodes of this grid. The connectivity of
the grid provides the structure for a quadrilateral mesh
approximating the surface. Frequently, however, the rect-
angles in the grid are further subdivided diagonally into
triangles, because triangular meshes are easier to process
(Figure 1).

The main drawback of uniform decomposition is that it
requires high sampling rates to approximate complex sur-
faces accurately. Uniform decomposition using very high
sampling rates produces meshes with too many polygons.
Since it is difficult to choose an adequate mesh size, ex-
cept by trial and error, uniform decomposition typically
produces approximations that oversample regions of low
curvature and undersample regions of high curvature.

Figure 1: Polygonal approximation of a surface from uni-
form decomposition of its domain into triangles.

A better alternative to uniform decomposition isadap-
tive decomposition, in which the sampling rate varies
across the parameter domain according to the complexity
of the surface, as measured by the variation of its curva-
ture. Adaptive decomposition methods ideally sample the
domain finely in regions of high curvature and coarsely
in regions of low curvature, thus producing only the min-
imum number of polygons required to approximate the
surface within a prescribed accuracy. However, finding
the bestpolygonal approximation with theexactmini-
mum number of polygons required for the given accuracy
is probably a very difficuly problem (i.e., NP-hard), and
we must instead rely on good heuristics.

Adaptive methods must solve two fundamental prob-
lems: how to perform optimal sampling, and how to
ensure global consistency. Optimal sampling guaran-
tees a faithful and efficient geometric approximation, and
is based on the adaptation criteria. Global consistency
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Figure 2: Quadtree domain decomposition.

guarantees the correct topology of the polygonal mesh,
and depends on the method used for structuring sample
points. Adaptive polygonization algorithms can be clas-
sified according to how they solve these two problems.

1.2 Previous work
Previous algorithms for adaptive polygonal approxima-
tion of parametric surfaces perform sampling and subdi-
vision in a single step. Surface patches are recursively
subdivided by splitting edges at their midpoints and cre-
ating internal edges to connect these sample points, until
the surface patches are flat within a tolerance. Figure 2
shows a typical quadtree decomposition of a rectangular
domain that can result from such subdivision schemes.

The domain subdivision must be performed carefully,
and well integrated with the sampling, to guarantee the
global topological consistency of the polygonal mesh,
and avoid the creation ofcracks, which may appear when
adjacent cells are not subdivided to the same depth. In
this case, cracks show up in the surface where the piece-
wise approximation is not continuous (Figure 3). This
problem is caused by a topologically inconsistent domain
decomposition (Figure 2).

Global consistency and elimination of cracks can be
achieved in several ways: by moving inconsistent ver-
tices to flat edges, thereby guaranteeing continuity by im-
posing edge coherence [1]; with hierarchical spatial data
structures, such as restricted quadtrees, over which fur-
ther triangulation is used to force consistency [2]; or even
a posteriori [3].

The main deficiency of these algorithms is in the con-
trol of the adaptation process: coupling sampling and
subdivision imposes restrictions on the structure of the
decomposition, often resulting in sub-optimal polygonal
meshes. Moreover, recursive subdivision is controlled by
flatness tests for surface patches that only exist for spe-
cial classes of surfaces [4-11] (but see [12] for a general
method).

2 Path-based adaptation algorithm
We now describe apath-basedadaptive polygonization
algorithm that combines adaptive curve sampling with

Figure 3: Surface cracks due to topological inconsistency
in the quadtree decomposition shown in Figure 2 [2].

simplicial subdivision: we use complete edge sampling
to avoid cracks, and area scanning to guide the subdivi-
sion. This strategy allows better adaptation, trivially en-
sures global consistency, and produces meshes with an
optimal number of polygons. The basic algorithm is:

1. [Initialization] Start with a coarse uniform simplicial
decomposition of the parameter domain. This can
be simply the subdivision of the domain along its
diagonal into two triangular cells.

2. [Curve generation] Sample the edges of all cells
in the initial decomposition adaptively to construct
an efficient polygonal approximation of the corre-
sponding curves on the surface.

3. [Test for flatness] For each cell, test the correspond-
ing surface patch for flatness, based on the curvature
of its edge curves.

4. [Cell subdivision] Subdivide each cell whose
patches are not flat by constructing internal edges,
based on the number of points on the external edge
curves. Repeat the sampling in step 2 for each new
internal edge.

5. [Recursion] Repeat steps 3 and 4 for each new cell.

Unlike previous methods, edge sampling is completely
done at each subdivision step, while creating new edges
in step 4. Further subdivisions respect this sampling. This
is the key factor for optimal sampling and global con-
sistency. Because edge curves are generated first, in a
single operation, it is possible to find the minimum num-
ber of sample points that produces the desired approx-
imation. Moreover, global consistency is automatically
guaranteed, because edge curves are shared by adjacent
cells. Thus, by construction, no cracks are possible.
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Figure 4: Stochastic search for critical points.

2.1 Curve generation

The edges in the domain decomposition are straight line
segments, but the corresponding curves on the surface are
not. The goal of the sampling in step 2 is to build a polyg-
onal approximation of these curves that is adapted to their
geometry on the surface.

There are many methods for adaptive sampling of para-
metric curves [10, 13-16]. We have chosenmultiple ran-
dom probing, an extension of single random probing [16],
because it is easy to implement and has many degrees of
freedom to help achieve a good sampling.

Adaptive sampling with multiple random probing
works as follows: The curve is probed at a series of ran-
dom points on the edge, starting around the midpoint with
a small deviation from it, and increasing the range of de-
viation at each subsequent random point. At each probe,
the curve is tested for flatness by checking whether the
probe point lies close to the line segment defined by the
two edge extremes. If the edge passes all flatness tests,
then the corresponding curve on the surface is considered
flat. Otherwise, the edge is split at the first probe point
that fails the flatness test, and the two parts are sampled
recursively. We use depth-first search, recursing on the
left half first, to generate sample points in the order that
they occur on the curve, and thus a correct polygonal ap-
proximation.

By varying the center and range of random pertur-
bation for probing, we not only avoid aliasing but also
choose a “good” point for splitting the edge, because, in
effect, we are performing a stochastic search to find the
point on the curve that lies fartherst away from the line
segment connecting the edge endpoints. Therefore, there
is a high probability of splitting the edge at the point of
highest curvature on that segment of the curve (Figure 4).
Such a subdivision scheme is specially important in the
early stages of the subdivision, when the edges are long
and the surface can oscillate significantly from one ex-
treme to the other. The whole procedure can be regarded
as a heuristic for finding the critical points of the curve,
e.g., the points of maximum local curvature.

Figure 5: Four subdivision cases: three simple edges, two
simple edges, one simple edge, no simple edge.

2.2 Cell subdivision

Cell subdivision in step 4 is determined by an analysis
of the complexity of the external edge curves. Asim-
ple edgeis composed of a single linear segment; it corre-
sponds to a flat curve segment on the surface. Cells are
subdivided by splitting complex external edges at an in-
ternal point and joining them to either the opposite vertex
in the cell or to another splitting point. There are four
possible cases, depending the number of simple edges in
a cell (Figure 5):

1. three simple edges: Recursive subdivision termi-
nates and the procedure outputs one triangle, cor-
responding to a flat surface patch.

2. two simple edges: The cell is divided into two sub-
cells by generating a new internal edge from the
complex edge to the opposite vertex.

3. one simple edge: The cell is divided into two sub-
cells by generating a new internal edge from one
complex edge to the opposite vertex.

4. no simple edge: The cell is divided into four subcells
by generating new internal edges between each pair
of adjacent complex edges.

The test for flatness in step 3 is simply deciding which of
these four cases apply to a cell; the corresponding patch
is considered flat only in case 1.

When new internal edges are to be created in cases 2,
3, and 4, we perform an exhaustive search and choose
the edge that can be sampled with the least number of
points. (It is in this sense that our method is an opti-
mization method.) This local area scanning is the key
factor for global optimal sampling. The motivation here
is to find the best subdivision of each patch, both in terms
of the accuracy of the approximation and in terms of the
number of polygons needed. In cases 2 and 3, we seek
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the curves of lowest curvature inside the patch. In case 4,
we seek a triplet of curves with total minimum curvature
that fit well inside the patch.

A complete analysis of special cell subdivision meth-
ods for Bézier surfaces can be found in [7].

3 Examples
We now show four examples of the method in action. For
each example, we show the parameter domain decompo-
sition and a three-dimensional image of the correspond-
ing polygonal approximation, rendered with Gouraud
shading. In all four cases, the algorithm starts with the
simplest simplicial decomposition: a rectangular domain
divided along its diagonal into two triangles.

Figure 6 shows the cylinder given by:

x = cosu; y = sinu; z = v

u 2 [0; 3:12]; v 2 [0; 1]:

Note how the polygonization is built along lines that are
parallel to the main axis of the cylinder. These lines cor-
respond to paths of minimum curvature on the surface,
which are straight line segments in this case. The other
lines—the boundaries and the main diagonal—are part of
the initial coarse triangulation.

Figure 7 shows the “saddle” given by:

x = u; y = v; z = (uv)3

u 2 [0; 1]; v 2 [0; 1]:

Note how the polygonization adapts to the geometry of
surface. The flat center is covered by only a few trian-
gles. The curved sides form a ruled structure in which
the triangles are aligned transversally to the steepest di-
rections.

Figure 8 shows the “mountain” given by:

x = u; y = v; z = (sinu sin v)4

u 2 [1:5; 2:7]; v 2 [0:75; 1:65]:

Here we can see that the polygonization follows contour
lines of the surface as in a topography map. These curves
are level sets parallel to the basexy-plane. Besides their
importance in geometric approximation, contour lines are
perceptually insightful because they depict the surface’s
height variations.

Figure 9 shows the “needles” given by:

x = u; y = v; z = 0:8 sinu sin v

u 2 [1:33; 11:33]; v 2 [10:25; 21:25]:

This surface has both high frequency detail and sharp
variations. Even though the algorithm started with just
two triangles covering the entire parametric domain, it
was able to capture all important features in the surface.
Moreover, the polygons are uniformly distributed around
those features.

4 Discussion

The method is a heuristic optimization process that tries
to minimize the number of triangular faces necessary to
approximate a surface within a given tolerance. This
global optimization is achieved by a combination of
domain decomposition and local search; it also has a
stochastic component, due to edge sampling by random
probing. The method gives not only a good geometric
approximation (sampling), but also a good polygonal de-
composition (structuring).

As can be seen in the examples, specially in the
cylinder example, the polygonal approximations are built
“around” the lines of principal curvature [17]. The lines
of minimal principal curvature are the union of the low
curvature curves selected for cell subdivision.

In the case of height field surfaces, such as the “moun-
tain”, the adaptation tracks down the level sets (i.e.,
curves of same height), which are locally orthogonal to
the terrain gradient.

5 Conclusion

We have presented a new, general method for adaptive
polygonization of parametric surfaces. The method com-
bines recursive simplicial subdivision of the domain with
point sampling along curves on the surface. We avoid
cracks in the polygonal mesh by determining the optimal
sampling rate along the edges of a cell before subdivid-
ing it. The method is suitable for surfaces with low varia-
tions, such as bicubic patches, as well as for surfaces with
high variations, such as height fields.

The method described here is also suitable for comput-
ing trimmed surfaces: First, sample the trimming curves
as described in Section 2.1. Then, start the adaptation
process from a triangulation of the trimmed domain that
respects this sampling.

One drawback of the method is that currently it is slow,
due to the exhaustive search for curves of low curvature
inside each patch. A dynamical programming approach
could probably be used to avoid recomputing candidates
edges in later subdivisions, resulting in increased overall
speed.

On the other hand, the cost of the method as de-
scribed here may be appropriate for applications that do
not change the geometry of the surface, such as high-
quality rendering, specially if multi-resolution models are
used. Note that multi-resolution models are obtained with
no additional cost, simply by keeping the polygonal ap-
proximations corresponding to all intermediate decompo-
sitions, and using one that is suitable for a given rendering
scale.

We plan to perform an experimental comparision of the
performance of this method with previous methods [11,
18, 19].
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Figure 6: Domain decomposition (left) and polygonal approximation (right) for the cylinder given by(cosu; sinu; v);

whereu 2 [0; 3:12] andv 2 [0; 1].

Figure 7: Domain decomposition (left) and polygonal approximation (right) for the saddle given by(u; v; (uv)3);

whereu 2 [0; 1] andv 2 [0; 1].
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Figure 8: Domain decomposition (left) and polygonal approximation (right) for the mountain given by
(u; v; (sinu sin v)4); whereu 2 [1:5; 2:7] andv 2 [0:75; 1:65].

Figure 9: Domain decomposition (left) and polygonal approximation (right) for the needles given by
(u; v; 0:8 sinu sin v); whereu 2 [1:33; 11:33] andv 2 [10:25; 21:25].
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