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Abstract. We present a new method for adaptive polygonization of parametric surfaces. The method com-
bines recursive simplicial subdivision of the domain and point sampling along curves on the surface. We
avoid cracks in the polygonal mesh by determining the optimal sampling rate along the edges bétooell
subdividing it. The method is suitable for surfaces with low variations, such as bicubic patches, as well as
for surfaces with high variations, such as height fields.

1 Introduction

The polygonization of parametric surfaces is a classical
problem in computer graphics and geometric modeling
that has many practical applications. The problem is
computing a piecewise linear approximation for a con-
tinuous surface described by parametric functions.

A polygonal approximation is the simplest form of sur

choice in the implementation of a large number of alg
gorithms. Moreover, existing graphics hardware and li-
braries have special support for polygonal meshes, spe-
cially triangular meshes. Thus, despite the existence of
more sophisticated standard forms for surface descrip-
tion, such as NURBS, there is always a need to convert
surfaces to polygonal form.

In this paper, we describe a method that builds googdigure 1: Polygonal approximation of a surface from uni-

polygonal approximations while keeping the number oform decomposition of its domain into triangles.
polygons low.
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1.1 Methods for polygonal approximation A better alternative to uniform decompositioreidap-

The simplest polygonization method usmiform decom- tive decompositionin which the sampling rate varies
position The parameter domain of the surface is deconacross the parameter domain according to the complexity
posed into a regular rectangular grid and the surface &f the surface, as measured by the variation of its curva-
sampled at the nodes of this grid. The connectivity ofure. Adaptive decomposition methods ideally sample the
the grid provides the structure for a quadrilateral mestiomain finely in regions of high curvature and coarsely
approximating the surface. Frequently, however, the redn regions of low curvature, thus producing only the min-
angles in the grid are further subdivided diagonally intémum number of polygons required to approximate the
triangles, because triangular meshes are easier to procsggface within a prescribed accuracy. However, finding
(Figure 1). the best polygonal approximation with thexact mini-

The main drawback of uniform decomposition is that itmum number of polygons required for the given accuracy
requires high sampling rates to approximate complex suis probably a very difficuly problem (i.e., NP-hard), and
faces accurately. Uniform decomposition using very higiwve must instead rely on good heuristics.
sampling rates produces meshes with too many polygons.Adaptive methods must solve two fundamental prob-
Since it is difficult to choose an adequate mesh size, elems: how to perform optimal sampling, and how to
cept by trial and error, uniform decomposition typicallyensure global consistency. Optimal sampling guaran-
produces approximations that oversample regions of lotees a faithful and efficient geometric approximation, and
curvature and undersample regions of high curvature. is based on the adaptation criteria. Global consistency
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Figure 2: Quadtree domain decomposition.

guarantees the correct topology of the polygonal mesl
and depends on the method used for structuring samg
points. Adaptive polygonization algorithms can be clas
sified according to how they solve these two problems.

Figure 3: Surface cracks due to topological inconsistency

12 .Pl’EVIOUS Yvork ) . inthe quadtree decomposition shown in Figure 2 [2].
Previous algorithms for adaptive polygonal approxima-

tion of parametric surfaces perform sampling and subdi-

vision in a single step. Surface patches are recursivefymplicial subdivision: we use complete edge sampling
subdivided by splitting edges at their midpoints and crel® avoid cracks, and area scanning to guide the subdivi-
ating internal edges to connect these sample points, urfiiPn. This strategy allows better adaptation, trivially en-
the surface patches are flat within a tolerance. Figure3tires global consistency, and produces meshes with an
shows a typical quadtree decomposition of a rectangul@ptimal number of polygons. The basic algorithm is:
domain that can result from such subdivision schemes. ; [intialization] Start with a coarse uniform simplicial

The domain subdivision must be performed carefully, decomposition of the parameter domain. This can
and well integrated with the sampling, to guarantee the ¢ simply the subdivision of the domain along its
global topological consistency of the polygonal mesh, diagonal into two triangular cells.

and avoid the creation afacks which may appear when 2 1C , S le the ed ¢ all cel
adjacent cells are not subdivided to the same depth. In“ _[ urve ggneraﬂon] ample the edges ot all Ccells
in the initial decomposition adaptively to construct

this case, cracks show up in the surface where the piece- o L

wise approximation is not continuous (Figure 3). This 2" efficient polygonal approximation of the corre-

problem is caused by a topologically inconsistent domain sponding curves on the surface.

decomposition (Figure 2). 3. [Test for flatness] For each cell, test the correspond-
Global consistency and elimination of cracks can be  ing surface patch for flatness, based on the curvature

achieved in several ways: by moving inconsistent ver- ~ of its edge curves.

tices to flat edges, thereby guaranteeing continuity by im-4. [Cell subdivision] Subdivide each cell whose
posing edge coherence [1]; with hierarchical spatial data  patches are not flat by constructing internal edges,
structures, such as restricted quadtrees, over which fur- pased on the number of points on the external edge
ther triangulation is used to force consistency [2]; oreven  curves. Repeat the sampling in step 2 for each new
a posteriori [3]. internal edge.

The main def|<:|e_ncy of these. algontr_]ms S1n the con- g, [Recursion] Repeat steps 3 and 4 for each new cell.
trol of the adaptation process: coupling sampling and

subdivision imposes restrictions on the structure of the Unlike previous methods, edge sampling is completely
decomposition, often resulting in sub-optimal polygonatlone at each subdivision step, while creating new edges
meshes. Moreover, recursive subdivision is controlled bin step 4. Further subdivisions respect this sampling. This
flatness tests for surface patches that only exist for spis- the key factor for optimal sampling and global con-
cial classes of surfaces [4-11] (but see [12] for a generalstency. Because edge curves are generated first, in a

method). single operation, it is possible to find the minimum num-
. . ber of sample points that produces the desired approx-
2 Path-based adaptation algorithm imation. Moreover, global consistency is automatically

We now describe path-basedadaptive polygonization guaranteed, because edge curves are shared by adjacent
algorithm that combines adaptive curve sampling witltells. Thus, by construction, no cracks are possible.
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Figure 4: Stochastic search for critical points.

Figure 5: Four subdivision cases: three simple edges, two
The edges in the domain decomposition are straight lirdMple edges, one simple edge, no simple edge.
segments, but the corresponding curves on the surface are
not. The goal of the sampling in step 2 is to build a polygs o ¢ subdivision
onal approximation of these curves that is adapted to thei

geometry on the surface.
There are many methods for adaptive sampling of par

2.1 Curve generation

e L . . .
d{ell subdivision in step 4 is determined by an analysis
g_f the complexity of the external edge curves. sin-
metric curves [10, 13-16]. We have chosealtiple ran- ple edgdas composed of a single linear segment; it corre-
sponds to a flat curve segment on the surface. Cells are

dom probingan extension of single random probing [16], - - .
because it is easy to implement and has many degreessHPd'V'ded by splitting complex external edges at an in-

freedom to help achieve a good sampling. ternal point and joining them to either the opposite vertex

Adaptive sampling with multiple random probingin thg cell or to another splitting point. Th_ere are four .
works as follows: The curve is probed at a series of rarP-OSS'ble cases, depending the number of simple edges in

dom points on the edge, starting around the midpointwitﬁ cell (Figure 5):

a small deviation from it, and increasing the range of de- 1 {yree simple edgesRecursive subdivision termi-

viation at each subsequent random point. At each probe, paies and the procedure outputs one triangle, cor-
the curve is tested for flatness by checking whether the responding to a flat surface patch.

probe point lies close to the line segment defined by the
two edge extremes. If the edge passes all flathess testg,'
then the corresponding curve on the surface is considered
flat. Otherwise, the edge is split at the first probe point
that fails the flatness test, and the two parts are sample®. one simple edgeThe cell is divided into two sub-
recursively. We use depth-first search, recursing on the cells by generating a new internal edge from one
left half first, to generate sample points in the order that  complex edge to the opposite vertex.

they occur on the curve, and thus a correct polygonal ap-4. no simple edgeThe cell is divided into four subcells

proximatioln. by generating new internal edges between each pair
By varying the center and range of random pertur- ¢ adjacent complex edges.

bation for probing, we not only avoid aliasing but also

choose a “good” point for splitting the edge, because, ifithe test for flatness in step 3 is simply deciding which of
effect, we are performing a stochastic search to find thtbese four cases apply to a cell; the corresponding patch
point on the curve that lies fartherst away from the linés considered flat only in case 1.

segment connecting the edge endpoints. Therefore, thereVhen new internal edges are to be created in cases 2,
is a high probability of splitting the edge at the point of3, and 4, we perform an exhaustive search and choose
highest curvature on that segment of the curve (Figure 4he edge that can be sampled with the least number of
Such a subdivision scheme is specially important in thpoints. (It is in this sense that our method is an opti-
early stages of the subdivision, when the edges are lomgzation method.) This local area scanning is the key
and the surface can oscillate significantly from one exXactor for global optimal sampling. The motivation here
treme to the other. The whole procedure can be regardietto find the best subdivision of each patch, both in terms
as a heuristic for finding the critical points of the curvepf the accuracy of the approximation and in terms of the
e.g., the points of maximum local curvature. number of polygons needed. In cases 2 and 3, we seek

two simple edgesThe cell is divided into two sub-
cells by generating a new internal edge from the
complex edge to the opposite vertex.

Anais do IX SIBGRAPI, outubro de 1996



130 L. VELHO, L. H. DE FIGUEIREDO

the curves of lowest curvature inside the patch. In case 4, Discussion
we seek a triplet of curves with total minimum curvaturerhe method is a heuristic optimization process that tries

that fit well inside the patch. o to minimize the number of triangular faces necessary to
A complete analysis of special cell subdivision methypproximate a surface within a given tolerance. This
ods for Bezier surfaces can be found in [7]. global optimization is achieved by a combination of

domain decomposition and local search; it also has a

3 Examples . .
] . stochastic component, due to edge sampling by random
We now show four examples of the method in action. F%robing. The method gives not only a good geometric

each example, we show the parameter domain decomp@sproximation (sampling), but also a good polygonal de-
sition and a three-dimensional image of the correspon@bmposition (structuring).

ing polygonal approximation, rende_red with Go_uraud As can be seen in the examples, specially in the
shading. In all four cases, the algorithm starts with th%ylinderexample, the polygonal approximations are built
simplest simplicial decomposition: a rectangular domaifaroung” the lines of principal curvature [17]. The lines
divided along its diagonal into two triangles. of minimal principal curvature are the union of the low

Figure 6 shows the cylinder given by: curvature curves selected for cell subdivision.

In the case of height field surfaces, such as the “moun-
tain”, the adaptation tracks down the level sets (i.e.,
curves of same height), which are locally orthogonal to
Note how the polygonization is built along lines that aré¢he terrain gradient.
parallel to the main axis of the cylinder. These lines cor-
respond to paths of minimum curvature on the surfac® Conclusion

v_vhich are straight I_ine segments _in tr_lis case. The oth§{e have presented a new, general method for adaptive
lines—the boundaries and the main diagonal—are part gb|ygonization of parametric surfaces. The method com-
the initial coarse triangulation. bines recursive simplicial subdivision of the domain with
Figure 7 shows the “saddle” given by: point sampling along curves on the surface. We avoid
r=u, y=v, z=(uv) cracks_ in the polygonal mesh by determining the opti_m_al
sampling rate along the edges of a cell before subdivid-
u€[0,1], wel0,1]. ing it. The method is suitable for surfaces with low varia-
Note how the polygonization adapts to the geometry dfons, such as bicubic patches, as well as for surfaces with
surface. The flat center is covered by only a few trianhigh variations, such as height fields.
gles. The curved sides form a ruled structure in which The method described here is also suitable for comput-
the triangles are aligned transversally to the steepest dig timmed surfaces: First, sample the trimming curves

T =cosu, Y =sinu, 2z=v
uw e [0,3.12], wvel0,1].

rections. as described in Section 2.1. Then, start the adaptation
Figure 8 shows the “mountain” given by: process from a triangulation of the trimmed domain that
) o respects this sampling.
r=u, y=v, z=(sinusinv) One drawback of the method is that currently it is slow,
u€[1.5,2.7], v€][0.75,1.65]. due to the exhaustive search for curves of low curvature

H that th | ization foll N inside each patch. A dynamical programming approach
ere we can see that the polygonization T6flows contoyl,, , probably be used to avoid recomputing candidates

lines of the surface as in a topography map. These quvgages in later subdivisions, resulting in increased overall
are level sets parallel to the basg-plane. Besides their

importance in geometric approximation, contour lines are

I : . On the other hand, the cost of the method as de-
perceptually insightful because they depict the Surface&ribed here may be appropriate for applications that do
height variations.

! y .o ) not change the geometry of the surface, such as high-
Figure 9 shows the “needles” given by: quality rendering, specially if multi-resolution models are
r=u, y=v, z=0.8sinusinv used. Note that multi-resolution models are obtained with
we[1.33,11.33], v e [10.25,21.23]. no a_ddltlpnal cost, S|mply by keeplng the polygonal ap-
proximations corresponding to all intermediate decompo-
This surface has both high frequency detail and shamitions, and using one that is suitable for a given rendering
variations. Even though the algorithm started with jusscale.
two triangles covering the entire parametric domain, it We plan to perform an experimental comparision of the
was able to capture all important features in the surfacperformance of this method with previous methods [11,
Moreover, the polygons are uniformly distributed around 8, 19].
those features.

Anais do IX SIBGRAPI, outubro de 1996



OPTIMAL ADAPTIVE POLYGONAL APPROXIMATION OF PARAMETRIC SURFACES 131

Acknowledgement3he figures in Section 3 were gener-[11] J. W. Peterson. Tessellation of NURB surfaces. In
ated with Geomview [20]. The authors are partially sup- P. Heckbert, editoiGraphics Gems |Vpages 286—
ported by research grants from the Brazilian Council for ~ 320. Academic Press, 1994.

Scientific and Technological Development (CNPq). The

second author received financial support from the UniveF2]
sity of Waterloo for presenting preliminary results of this
research at the Fourth SIAM Conference on Geometric
Design, in November 1995. [13]

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

(10]

2] S. P. Mudur and P. A. Koparkar. Interval methods
for processing geometric objecttEEE Computer
Graphics and Application#(2):7-17, 1984.

U. Ramer. An iterative procedure for the polygonal
approximation of plane curve€omputer Graphics

and Image Processing:244-256, 1972.
J. H. Clark. A fast algorithm for rendering paramet-

ric surfaces. In K. I. Joy, C. W. Grant, N. L. Max, [14] M. Crampin, R. Guifo Guifo, and G. A. Read. Lin-

and L. Hatfield, editorsTutorial: Computer Graph- ear approximation of curves with bounded curvature
ics: Image Synthesipages 88—-93. Computer Soci- and a data reduction algorithmComputer Aided
ety Press, 1988. Design 17(6):257-261, 1985.

B. Von Herzen and A. H. Barr. Accurate triangu-[15] R. E. Chandler. A recursive technique for render-
lations of deformed, intersecting surfaces.Qom- ing parametric curves.Computers and Graphics
puter Graphics (SIGGRAPH '87 Proceeding®)l- 14(3/4):477-479, 1990.

21 103-110, July 1987.
ume 2, pages July 198 [16] L. H. de Figueiredo. Adaptive sampling of para-

M. Tamminen and F. W. Jansen. An integrity filter metric curves. In A. Paeth, editdgraphics Gems
for recursive subdivision meshe€£omputers and V, pages 173-178. Academic Press, 1995.

Graphics 9(4):351-363, 1985. ) )
[17] M. do Carmo.Differential Geometry of Curves and

J.Lane and L. Carpenter. A generalized scanlineal-  SurfacesPrentice Hall, 1976.

gorithm for the computer display of parametrically ) o
defined surfaces.Computer Graphics and Image [18] V. Vlassopoulos.  Adaptive polygonalization of
Processing11:290-297, 1979. parametric surfaces. The Visual Computer

6(5):291-8, 1990.
J. Lane and R. Riesenfeld. A theoretical devel- ) ) _ )
opment for the computer generation and displa{/19] S. Z. Li Adgptlve sa_mplmg and mesh generation.
of piecewise polynomial surfacedEEE Transac- Computer Aided Desigr27(3):235-240, 1995.

tions on Pattern Analysis and Machine Intelligence[zo] Software written at the Geom-

2(1):35-46, 1980. etry Center, University of Minnesota. Available at

P. A. Koparkar and S. P. Mudur. Computa-  http://www.geom.umn.edu/software/
tional techniques for processing parametric sur-

faces.Computer Vision, Graphics, and Image Pro-

cessing28(3):303—-322, 1984.

D. Filip. Adaptive subdivision algorithms for a
set of Bdzier triangles. Computer Aided Design
18(2):74-78, 1986.

R. D. Clay and H. P. Moreton. Efficient adaptive
subdivision of Bzier surfaces. In D. A. Duce and
P. Jancene, editor§urographics '88 pages 357—
371. North-Holland, September 1988.

D. R. Forsey and R. V. Klassen. An adaptive subdi-
vision algorithm for crack prevention in the display
of parametric surfaces. Rroceedings of Graphics
Interface '9Q pages 1-8, May 1990.

M. Kosters. Curvature-dependent parametrization
of curves and surfacesComputer Aided Design
23(8):569-578, 1991.

Anais do IX SIBGRAPI, outubro de 1996



132 L. VELHO, L. H. DE FIGUEIREDO

Figure 6: Domain decomposition (left) and polygonal approximation (right) for the cylinder givemy, sin u, v),
whereu € [0, 3.12] andv € [0, 1].

Figure 7: Domain decomposition (left) and polygonal approximation (right) for the saddle given by(uv)?),
whereu € [0, 1] andv € [0, 1].
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Figure 8: Domain decomposition (left) and polygonal approximation (right) for the mountain given by
(u, v, (sinusinv)?*), whereu € [1.5,2.7) andv € [0.75,1.65].

Figure 9: Domain decomposition (left) and polygonal approximation (right) for the needles given by
(u,v,0.8sinusinv), whereu € [1.33,11.33] andv € [10.25,21.25].
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