
Real-Time Shadow Generation Using BSP Trees and Stencil Buffers

HARLEN COSTA BATAGELO

ILAIM COSTA JÚNIOR

UNOESC – Universidade do Oeste de Santa Catarina
Campus de Videira

Rua Paese, 198, Bairro das Torres, 89560-000 Videira, SC, Brasil
{harlen, ilaim}@unoescvda.rct-sc.br

Abstract. This paper describes a real-time shadow generation algorithm for static polygonal environments illuminated
by movable point light sources. The algorithm combines a technique of volumetric shadow rendering using stencil
buffers with a Binary Space Partitioning (BSP) tree, and includes new easy-to-implement approaches to improvement
techniques used in shadow volume algorithms, such as silhouette detection to reduce the number of redundant
shadow polygons and the computation of capping polygons to handle cases where the shadow volumes are clipped
by the eye-view near clipping plane. Such hybrid approach solves important limitations on the original shadow
rendering algorithm, as well as achieves real-time frame rates when using modest size scenes (about 500 shadow
polygons), according to measurements performed on personal computers using current graphics hardware. Per-
phase timing results from the implementation are provided along the text and compared with those of the standard
algorithm.

1 Introduction
The calculation of shadows has been a classical problem in
3D computer graphics. The presence of shadows provides
to the viewer a better understanding of the spatial relationship
among the objects, increasing the reality sense and coherence
given by the image [23]. Unfortunately, there are difficulties
on creating real-time shadow generation techniques for
interactive applications, such as games and virtual reality,
due to the high computational costs involved, especially when
dealing with the current generation of personal computers.

Due to the recent popularization of 3D acceleration
cards with stenciling capabilities (i.e., stencil buffers support)
biased towards the personal computers market [1,2,18],
techniques of volumetric shadow rendering using stencil
buffers seem to be a feasible alternative to the real-time
shadow generation problem [12,14], and have started to be
used by a number of computer gaming industries [9,13]. On
the other hand, this approach comes out with some important
limitations, in special the fact that its efficiency is strongly
dependent on the complexity of the shadowing objects. To
minimize such problem, the number of shadow polygons must
be kept at a minimum. A common solution [7] involves casting
shadows only along the silhouette of the objects visible with
respect to the light source position. Unfortunately, current
approaches to these optimizations are either limited to convex
polyhedrons [5,8] or to a particular field of view [14]. Our
algorithm does not have these problems. We divide the
optimization process in two independent tasks: hidden surface
removal and silhouette edge identification. For each frame,
we build an incremental BSP tree that discard any hidden

shadow generator polygon through union boolean set
operations. The remaining visible polygons are processed by
a simplified approach to silhouette detection, thus producing
a nearly optimal shadow volume that represents the union of
all shadow volumes of the scene.

The standard shadow rendering algorithm also suffers
from parity errors of the stencil buffer that happen whenever
shadow volumes are clipped by the camera near plane, and
which result in inverted shadows on the final image.
Commonly the proposed solutions does not apply to the
general case [7,17] or has difficult implementations when
assuming the case of computing capping polygons to close
clipped shadow volumes. In this work we include a new
approach to this capping process, of easy implementation
but also very efficient.

According to measurements performed on personal
computers using current 3D graphics hardware, real-time
frame rates (10-60 Hz) can be obtained when using scenes
of modest size (up to about 500 shadow polygons per frame,
though this obviously depend on hardware capabilities). The
timing tests have also showed significant gains of efficiency
over the standard algorithm.

The rest of the paper is organized as follows. Section 2
contains a brief taxonomy about similar shadow generation
algorithms. The section 3 introduces the idea of BSP trees.
The definition of stencil buffers, as well as their applications
in shadow rendering, is given in section 4. The sections 5,6
and 7 describe the hybrid algorithm. The timing test results
and conclusions are given in the sections 8, 9 and 10.

2 Shadow Algorithms

The shadow generation approaches were first surveyed by
Franklin Crow [7], and after extended by Bergeron [3] and
Woo et al. [26].

The classified algorithms used in interactive applications
can be distinguished in three broad groups: projective shadow
s algorithms, shadow map algorithms and shadow volume
algorithms. We discuss briefly each one.

2.1 Projective Shadows

Projective shadow techniques are object-space precision
algorithms that use projection transforms to simulate shadows
in polygonal scenes. The algorithm works by projecting every
polygon of the scene onto the plane of the other polygons,
using an orthographic or perspective projection matrix to
simulate, respectively, directional or point light sources. Each
projected polygon is clipped by the target surface, thus
producing a new polygon that can be rendered with the
shadow color. The same principle applies to area light sources,
where the shadows are given by discontinuity meshes. In the
most fundamental level, the entire scene can be just
compressed and projected on a ground plane, then rendered
as a separate primitive with the shadow color [4].

To achieve real-time frame rates it is difficult to use
projection shadows algorithms to shadow onto anything other
than flat surfaces. Ideally, it is necessary graphic hardwares
with capabilities to clip each projected polygon to the
boundary of the target polygons, which is a process subjected
to numerical robustness problems. Such hardware is also not
common on PC computers.

2.2 Shadow Volumes

Shadow volume algorithms use polygonal volumes to
represent enclosed shadow regions in the scene.

A shadow volume is a polyhedron formed by semi-
infinite quadrilaterals named shadow polygons, which are
projected for each edge of each shadow generator polygon.
The two finite vertices of a shadow polygon correspond to
the edge endpoints of the shadow generator polygon; the
two infinite vertices point at the direction of the projected
shadow, being limited by the view volume boundary in
homogeneous coordinates. Figure 1 illustrates a shadow
volume in 3D, as seen by the position of the camera.

The shadow polygons are defined so that their normals
point outward its shadow volume (or inward, since all other
shadow polygons follow the same rule). The regions in
shadow can be determined by counting the number of front
and back facing shadow polygons as seen by the camera
position. For instance, if a ray from outside the shadow

volumes to a point on a surface intercepts a different number
of front facing or back facing shadow polygons, the point is
in shadow.

In general, the efficiency of shadow volume algorithms
is strongly dependent on the complexity of the shadowing
objects. Ideally, the shadow volume should be generated only
from the vertices along the silhouette of visible objects, as
seen from the light source. The adjacent (non-silhouette)
edges can be discarded since the shadow polygons generated
from them will be coincident and will have opposed
orientation, thus canceling the shadow polygon counting.

Shadow volumes can be used in conjunction with a
number of algorithms, such as scanline, depth buffers
algorithms [5] and BSP Trees [6,21]. In the pixel planes
architecture [10], shadow volumes do not need explicit
calculations of their shadow polygons. In addtion, the
performance is not affected by the size of the shadows as
commonly occurs, including our algorithm. Fortunately, this
dependency is not significant by means of the fast fill rate
provided by the current generation of graphic hardware.

2.3 Shadow Maps

Introduced by Williams [25], shadow map algorithms work
at image-space precision, thus not being limited to polygonal
models as occurs with projective and shadow volume
algorithms. Its performance is stable, in a sense that it does
not depend directly on the complexity of the shadowing
objects. Moreover, it can be easily adapted to achieve soft
shadows, simulating penumbra.

Shadow map algorithms work by updating depth buffers
of the scene rendered from the point of view of the light
sources. These depth buffers are actually the shadow maps,

Light

Figure 1: Shadow volume.

and determine which pixels are in shadow by comparing if
its values are smaller than the corresponding depth values
of the pixels rendered from the point of view of the camera.

Shadow map algorithms can be stored as texture maps
when using hardware with support to texture mapping and
texture mapping comparison [20]. Using a texture coordinate
transformation matrix, the shadow maps are mapped onto
the original scene as viewed from the camera, then comparing
its texels with the depth values of the corresponding scene
pixels. The alpha value of each pixel is changed according to
the result of the comparison.

Since shadow maps are essentially depth buffers, the
quality of the shadows becomes directly proportional to the
resolution of the map. Preciseness is also important to avoid
aliasing artifacts and self-shadowing. In addition, in case of
hardware implementations, texture management schemes
should be used to prevent cache slowdown when using many
maps.

3 BSP Trees

The BSP (Binary Space Partitioning) tree algorithm provides
an elegant and efficient way to determine the visibility order
of static groups of polygons with respect to an arbitrary
viewpoint. It was introduced by Fuchs, Kedem and Naylor
[11], based on Schumacker’s work [19], and represent spatial
relationships through recursive partitionings of n-dimensional
spaces by hyperplanes. The tree is often built at an intensive
pre-processing stage, choosing a polygon – in the 3D case –
to act as the tree’s root and partition the space in two sets.
The remaining polygons are classified with respect to the
normal of this root polygon, and stored as “front” or “back”
set ramifications of this node. Polygons lying on both sides
are split by the root and have their pieces assigned to the
corresponding sets. Each set chooses a new partition plane,
which becomes the children of the root. The half-spaces are
divided in the same way, recursively, until each set contains
no more polygons. The resulting structure, in binary tree form,
can be traversed in a special in-order manner, establishing in
linear time the back-to-front (or vice-versa) order of facing
polygons as seen from any viewpoint.

Thibault and Naylor [22] showed that a BSP tree could
be used to represent an arbitrary polyhedral solid. In their
work, each interior node contains a polyhedron’s plane which
embeds the set of polygons stored at this node. At the leaves
are “in” and “out” cells indicating interior or exterior regions
of the solid. Based on this principle, they show how to
represent complex solids based on boolean set operations
performed on other BSP trees and boundary representations
of solids.

Relying on the work of Thibault and Naylor, Chin and

Feiner [6] introduced a new algorithm, called SVBSP
(shadow volume BSP) tree, which efficiently represents union
of shadow volumes produced by traversing the original BSP
tree from each light source position in a front-to-back order.
The shadow planes of each shadow generator polygon are
filtered down the tree, which initially contains a single “out”
cell. At the leaves, the “in” and “out” cells indicate shadowed
or lit regions, so shadow polygons contained in “in” regions
could be discarded. On the contrary, the tree is enlarged by
the “lit” polygons. As in the original BSP tree algorithm,
shadow polygons with parts contained in “out” and “in”
regions are split by the current shadow plane, but the
shadowed fragments are discarded. After processing all
shadow volumes, the tree represents a complex volume
formed by the union of every shadow volume created from
shadow generator polygons.

4 Stencil Buffers

A stencil buffer is an extra plane of bits in the frame buffer,
used to enable or disable drawing to the rendering surface
on a per-pixel basis. In an analogy to the stencil paper, the
stencil buffer can be used to mask off regions of the color
buffer so that it is not displayed.

The primitives are applied to the stencil buffer as we
normally draw onto the color buffer, but instead of storing
RGBA values, it stores only integer values within the range
of 0 to 2n-1 (inclusive), where n is the number of stencil bits.
These values are assigned with respect to simple arithmetic
operations, which are executed after passing through the
evaluation of a condition between the current value of the
stencil buffer pixel and a reference value defined by the user.
Table 1 shows the main operations and conditions used.

The stencil buffer test is always executed before the
depth buffer test, so it can be used to affect only the visible
parts of the rendered scene. In fact, current hardware
implementations store the stencil buffer and the z-buffer in
the same memory chunk, thus yielding no extra penalty for

Table 1: Stencil buffer operations and
comparison functions (available under OpenGL
and Direct3D).

Comparison Functions (same as a depth buffer):

<; ≤; >; ≥; =; ≠; always; never.

Operations to be applied to the current stencil value:

Set to zero; replace by reference value; increment;
decrement; bitwise invert; keep.

stencil test when already using depth test. The complete
stencil test executed for each pixel is showed below in
pseudo-code:

where ref is the reference value, stencil is the current value
of the stencil pixel and mask/write_mask are bit masks used
to bitwise “AND” the reference value and the stencil buffer
value before the evaluation of the condition, or to bitwise
“AND” the current stencil value before the execution of the
defined operation. Such operation depends on the test result,
that can be: stencil test failed, stencil test passed and depth
buffer failed, stencil test passed and depth buffer passed. All
variables, except the current value of the stencil pixel, are
defined by the user.

When the stencil buffer is ready, it can be used to mask
off the drawing onto the rendering surface. For instance,
allowing draw pixels only if the corresponding stencil buffer
pixels are equal to a given value.

4.1 Volumetric Shadow Rendering

Stencil buffers can be used in conjunction with depth buffers
in order to maintain the shadow counting/parity in image-
space, marking the transition between front and back facing
shadow polygons visible from the camera viewpoint [12,14].

Firstly, the original scene – without shadows – is
rendered onto the color buffer, using the depth buffer for
testing and writing. The shadow polygons are rendered onto
the stencil buffer, this time not writing to the depth buffer,
but still using the depth test. The pixels that pass the depth
test modify the shadow counter for that pixels, increment
ing these values if the current shadow polygon is facing the
camera and decrementing otherwise. Consequently, at the
final of this process the regions of the stencil buffer with
non-zero pixels will correspond to shadowed pixels on the
original image. This is sufficient to use the stencil buffer as a
mask over the rendering surface and dark the appropriate
pixels.

The complete algorithm is summarized in the following
steps:

1. Enable the depth buffer for testing and writing.

2. Render the original scene onto the color buffer.
3. Clear the stencil buffer and disable the depth buffer for

writing.
4. Draw onto the stencil buffer the shadow polygons that

are facing the viewer, using the increment stencil
operation.

5. Draw onto the stencil buffer the shadow polygons that
are facing away the viewer, using the decrement stencil
operation.

6. Dark the pixels of the color buffer using the stencil buffer
to mask off regions that correspond to zero stencil buffer
pixels.

Since this algorithm is based on shadow volumes, its
efficiency depends directly on the complexity of the shadow
casting objects, although the target geometry does not affect
performance. Thus, this algorithm is best used when the
shadow casting objects are simple but the shadowed objects
are complex, possibly non-polygonal.

Under OpenGL, the default decrement and increment
operation saturates the stencil buffer values to a minimum of
zero and a maximum of 2n-1. To avoid shadow counting
underflow, the front facing shadow polygons must be
rendered before the back facing shadow polygons. In the
special case of 1-bit stencil buffers, shadow volumes must be
rendered in a front-to-back order (Direct3D can avoid this
problem since it includes options to wrap values to 0 and 2n-
1). On the other hand, shadows may be still rendered
incorrectly, as can be noticed in certain pathological cases of
overlapped shadow volumes, even using stencil buffers with
more than 1-bit. A common solution is to choose a “non-
shadow” value different from the standard “zero”, preferable
in the middle of the stencil values range (e.g., 2n-1). The
algorithm is modified to initialize and test for this value instead
of zero.

4.2 Shadow Rendering Modes

Once the stencil buffer is ready, all pixels on the color buffer
that have corresponding stencil values greater than zero
should be modified by the shadow color. This stage can be
done by applying a large polygon that covers the entire
viewport, using the stencil buffer as mask. A black polygon
is enough when using a zero ambient light term and only one
light source. Otherwise, translucent polygons with the
ambient color should be used. Translucency can also be used
to make composite shadows when using more than one light
source. However, the translucency level (alpha component
in a RGBA surface) is chosen empirically, which can result
in inconsistent illumination. This can be noticed, for example,
if an object that reflects specular light is in shadow. A common
solution consists in simply maintain a low specular term [5]

If (ref AND mask) condition (stencil AND mask)
If depth test passes

Op1(stencil AND write_mask);
Else

Op2(stencil AND write_mask);
Else

Op3(stencil AND write_mask);

or render the specular part separately [16]. This last one,
using alpha blending to combine the shadows produced by
each light source, can be done as follows:

1. Render the original scene onto the color buffer using
only ambient illumination and update the depth buffer.

2. For each light source:
• Render the shadow volumes generated from the

current light source as described by the standard
algorithm (section 4.1, passes 3--5).

• Enable alpha blending with source and destination
blend factors to one:one (addition mode).

• To update only the visible pixels, set the depth test
comparison function to “equal” and render onto the
color buffer the original scene illuminated only by
the current light source where the stencil values are
zero.

5 Hybrid Algorithm

Our hybrid algorithm combines the techniques described in
sections 3 and 4. To remove hidden shadow generator
polygons, we build, for each frame, an incremental SVBSP
tree as described lately, but with some differences. To improve
efficiency, we do not attempt to keep a perfect CSG union of
shadow volumes, which commonly needs to remove nodes
already added to the tree. We also do not clip the original
shadow polygons with fragments in shadowed regions, since
we noticed that this process, done in software, is slower than
the equivalent polygon rendering cost by hardware.
Moreover, such polygons can be lately removed efficiently
with our silhouette detection algorithm.

The complete hybrid algorithm is summarized in the
following steps:

Pre-processing:

• Build the BSP tree of the scene.

For each frame:

1. Determine shadow casters: Traverse the tree with respect
to the position of the light source, obtaining the set of
visible polygons in a front-to-back order. This is
necessary to build the SVBSP tree later.

2. Create shadow volumes: Generate a shadow volume for
each shadow casting polygon.

3. Build SVBSP tree: Create the SVBSP tree and add each
shadow volume generated from a shadow casting
polygon in a front-to-back order. If an entire shadow
volume is under an “in” cell, it is not added to the tree
and its shadow casting polygon is discarded.

4. Identify silhouette edges: From the set of visible shadow
casting polygons contained in the SVBSP tree, identify
which edges are not shared by two polygons of same
orientation. These are stated as silhouette edges.

5. Render shadows: Use the technique described in the
standard algorithm (section 4.1, steps 1--5) to render
onto the stencil buffer only the shadow polygons
generated from silhouette edges.

6. Clip shadow volumes: Clip each shadow volume and its
corresponding shadow casting surface with respect to
the near clipping plane from the viewing frustum. This
includes shadow volumes formed by non-silhouette
edges.

7. Cap shadow volumes: For each clipped shadow volume,
sort the vertices generated from the clipping stage in a
polar order, then build a cap polygon. Draw them onto
the stencil buffer as a usual shadow polygon that faces
away the camera.

8. Dark the appropriate pixels: Dark the pixels of the color
buffer that correspond to non-zero stencil buffer pixels
(section 4.1, step 6).

The algorithm restricts the representation of the scene
polygons as indices from an array of vertices. This is necessary
to preserve the primitive adjacency information, used by the
silhouette detection algorithm. Fortunately, that is the
standard scene format used by most 3D modeler programs
(e.g., 3D-Studio, LightWave 3D). Another disadvantage,
inherited from the BSP tree, is its limitation to static scenes.
Dynamic objects can be handled as set of polygons that are
not part of the BSP tree and possibly not taken in account by
the SVBSP tree.

In applications where the viewing frustum never clips
away the shadow volumes by its near plane (in general,
applications with isometric/third person perspectives), there
is no need of the capping stage. Therefore, steps 6 and 7
previously described can be discarded.

Multiple light sources are handled in a similar with the
standard algorithm. An alternative is to use accumulation
buffers (available under OpenGL) instead translucency, in
order to achieve accurate color precision. Our algorithm
adapted to this method is described as follows:

For each frame:

1. Render the scene without shadows onto the color buffer
using only ambient illumination and load it into the
accumulation buffer.

2. For each light source:
• Enable depth buffer for testing and writing.
• Render onto the color buffer the scene without

shadows and illuminated only by the current light
source.

• Determine shadow casters.
• Create shadow volumes.
• Build SVBSP tree.
• Identify silhouette edges.
• Use the standard algorithm (section 4.1, passes 3--

5) to render onto the stencil buffer only the shadow
polygons generated from silhouette edges, with
respect to the current light source.

• Clip shadow volumes.
• Cap shadow volumes.
• Dark the appropriate pixels.
• Accumulate the color buffer onto the accumulation

buffer.
3. Turn back the accumulation buffer to the color buffer

(no scaling is needed).

Accumulation buffers can also be used to simulate anti-
aliased or soft shadows. This can be done by rendering the
shadow volumes multiple times onto the accumulation buffer,
each one with a light source positioned in a difference place
along the surface of the area light source. Unfortunately, to
obtain good results it is necessary to jitter a great number of
point light sources, which cause considerable slowdown on
the algorithm.

6 Silhouette Detection

With respect to the set of polygons that are facing the light
source (i.e., the shadow casting surfaces), we define by
silhouette the edges of these polygons that are not shared by
other polygon of identical orientation.

Our silhouette detection approach works only on the
topology of polygons meshes, based on similar structures
used in graph adjacency algorithms such as adjacency matrixes
and edge lists. It works incrementally, storing the indices of
the edge endpoints of each polygon in lists that describe the
connected vertices according to the orientation of the current
polygon.

The algorithm requires, as input, a set of polygons
represented as indexes from an array of vertices. As output,
returns an array of lists containing the identified edges. Each
list will contains the indexes that, altogether with the index
corresponding to the number of the list, form the silhouette
edges. Figure 2 contains the pseudo-code of the described
algorithm. Figure 3 illustrates an example.

An important drawback of our algorithm is that the
index-based polygon representation also considers as
silhouette those edges formed by T-vertices. Such problem
can be significant, since this kind of edge frequently arises

during the BSP tree construction when the original polygons
are split by partition planes. Fortunately, this can be corrected
still during the pre-processing stage.

6.1 Efficiency

The time and space complexity of the described silhouette
detection algorithm is bounded above by O(n2), for n input
polygons of n vertices. In most cases, the time complexity is
O(n) for n polygons.

Find_Silhouette(polygon set P, list set L)
{

for each polygon p of P
for each side n of p
{

i = first vertex of n
j = second vertex of n
if L[j] contains i

delete i from L[j]
else

add j to L[i]
}

returns L
}

Figure 2: Pseudo-code of the silhouette
detection algorithm.

Figure 3: Silhouette edge identification
example. The grayed cells contain the indexes
of the vertices that form non-silhouette edges.

A B

C

0

12

3

45

Input polygons (clockwise order):
A=0,3,5,2 B=0,1,4,3 C=4,1,2,5

Vertex Elements
0 3 1
1 4 2
2 0
3 5
4 3
5 2 4

Output:

There is a trade-off between efficiency and memory
consuming. Since each list is constructed incrementally, it is
not initially known the number of elements required by each
one. Linked lists are not recommended, since the efficiency
should decays due to the high number of dynamic memory
accesses. Static lists does not have this problem, though it is
necessary to pre-allocate n elements for each list, which
increases the space complexity to O(n3), assuming n polygons
of n vertices. We suggest the pre-allocation of a low number
of cells on each static list that correspond to the maximum
expected number of edges sharing a single vertex.

7 Capping

Since shadow volumes are polygonal objects added to the
scene and hence pass through the geometry pipeline, it is
common that some parts of them are clipped away by the
camera’s viewing frustum. This clipping stage can discard
fragments of shadow volumes that contains important shadow
counting information, thus producing shadow counting/parity
loses on the stencil buffer that turns in grossly inverted
shadows on the final image. The standard solution [7,17] of
inverting the parity globally whenever the viewpoint is into a
shadow volume does not work in the general case. In most
cases these parity loses happens locally (i.e., only in some
portions of the viewport), even if the viewpoint is not actually
in shadow. In general, the inversion happens whenever there
are shadow volumes lying partly or wholly in front of the
camera’s near clipping plane. Another solution resides in
computing capping polygons to close the shadow volume of
the scene. A cap polygon is a polygon created from the
intersection of a shadow volume with a frustum plane. They
are handled as any other shadow polygons, with the normal
pointing outside the shadow volume. This capping process
may be very difficulty, since the shadow volume of the scene
is often a complex polyhedron, concave and with holes.

Our easy-implementation approach to capping consists
simply in clipping every shadow volume with respect to the
eye-view near plane, without any silhouette optimization, i.e.,
also including shadow volumes formed by shadow polygons
generated from non-silhouette edges. This process is easily
done converting the plane equation of the near plane to world
coordinates, then clipping each volume separately. The
generated vertices of each volume are sorted in a polar order
and turned into a cap polygon. When the standard algorithm
have finished the shadow volume rendering, the cap polygons
are rendered as separate shadow polygons that are facing
the camera, thus correcting the parity inversion either locally
or globally.

8 Implementation

The algorithm was implemented in C++ using the Direct3D
6 API. The timing tests were performed using a PC Pentium
Celeron 466Mhz, equipped with a 3D acceleration card
(chipset Riva TNT). Figures 4--8 show the five scenes tested.
The two scenes of tetrahedrons (figure 6 and 7) are actually
the same, but with the “base polygon” positioned in a different
vertical coordinate. All scenes were rendered with a
resolution of 640x480 pixels, 32 bits of RGBA colors,
Gouraud shading and a stencil buffer of 8-bits.

Figure 4: Sphere – 256 polygons

Figure 5: Solids – 96 polygons

Figure 6: Tetrahedron #1 – 752 polygons

The timing tests were computed over ten executions of
each scene, each execution with a single point light source
positioned in a distinct place.

The BSP tree pre-processor was configured to achieve
the less possible number of polygon splits, though we
observed that different configurations did not influence
considerably the efficiency of the shadow generation.

9 Results

Per-phase timing results from the hybrid algorithm are given
in table 2. Timing results from the standard shadow volume
algorithm (as described in section 4.1), are given in table 3.
All units are milliseconds, except FPS.

Figure 9 helps to visualize the gain of efficiency
provided by the hybrid algorithm. Unit are frames per second,
limited to a 60Hz refresh rate.

Figure 10 shows the reduction of the number of shadow
polygons provided by the SVBSP tree in conjunction with
the silhouette detection algorithm. Finally, figure 11 shows
the shadow rendering time against the cost of the SVBSP
construction (both in milliseconds).

Figure 7: Tetrahedron #2 – 752 polygons

Figure 8: Cubes – 1502 polygons

Sphere Solids Tetra #1 Tetra #2 Cubes
A 1,75 0,40 3,40 3,25 6,30
B 0,10 > 0,00 0,30 0,30 1,20
C 0,35 0,15 2,05 1,35 3,90
D 2,40 0,55 8,50 2,15 16,70
E 0,40 0,35 0,70 0,35 1,10
F 0,15 0,05 0,75 0,15 1,70
G 0,60 0,75 12,75 2,20 18,00

Total 5,75 2,25 28,45 9,75 48,90
FPS 55,1 57,7 14,9 34,8 9,9

Phase Description
A Eye-view rendering
B Front-to-back sorting of shadow casting surfaces
C Shadow volume generation
D SVBSP construction
E Silhouette detection
F Shadow volume clipping and capping
G Shadow rendering

Table 2: Per-phase timing results from the
hybrid algorithm.

Sphere Solids Tetra #1 Tetra #2 Cubes
A 1,75 0,60 5,30 5,40 10,35
B 0,05 > 0,00 0,25 0,20 0,60
C 0,65 0,30 3,10 3,15 6,55
D 6,15 3,20 43,85 48,80 148,50

Total 8,60 4,10 52,50 57,55 166,00
FPS 23,9 34,3 9,8 8,8 5,5

Phase Description
A Eye-view rendering
B Shadow casting surfaces determination
C Shadow volume generation
D Shadow rendering

Table 3: Per-phase timing results from the
standard algorithm.

Frames Per Second

0

10

20

30

40

50

60

sphere solids tet#1 tet#2 cubes

Hybrid algorithm Standard algorithm

Figure 9: Visualization of FPS measurements in
table 2 and 3.

We can notice the benefit of the use of SVBSP trees
when comparing the results of the scenes of tetrahedrons
(figure 6 and 7) with the results of the standard algorithm.
On the other hand, the scene containing the cubes formation
(figure 8) does not benefits from the SVBSP tree, and has
its performance decreased. In fact, it is desirable to use the
SVBSP tree only is scenes or objects where shadow volumes
are potentially ocluded by other volumes, so the cost of tree
construction does not affect efficiency substantially.

10 Conclusion

We have presented a hybrid algorithm of real-time shadow
generation, based on a technique of shadow volume rendering

using stencil buffers and benefiting from BSP trees to perform
hidden surface removal through boolean set operations.

As observed in experimental tests, the SVBSP tree
predominantly improves performance on scenes with
potentially many hidden shadow volumes. Otherwise, it
should not be used. Since the shadow rendering is the most
time consuming task, optimizations should be aimed to
reduce the number of shadow polygons. We suggest the use
of LOD (level-of-detail) management algorithms for
complex scenes, which could also reduce the cost of the
SVBSP tree construction. The algorithm can also be extended
to handle large scenes by using portals [15] or cells algorithms
in conjunction with BSP trees.

Acknowledgements

We gratefully acknowledge Kade Criddle, who promptly
provided us resources for performing the timing tests, and
the SIBGRAPI referees for their helpful comments and
sugestions.

References

[1] 3dfx Interactive, Inc., http://www.3dfx.com.
[2] ATI Technologies Inc., http://www.atitech.com.
[3] Bergeron, P. (1986) “A General Version of Crow’s

Shadow Volumes”, IEEE CG&A, 6(9), 17-28.
[4] Blinn, J. (1988) “Me and My (fake) Shadow”, IEEE

CG&A, 8(1), 82-86.
[5] Brotman, L.S., Badler N.I. (1984) “Generating Soft

Shadow with a Depth Buffer Algorithm”, IEEE CG&A,
4(10), 5-12.

[6] Chin, N., Feiner, S. (1989) “Near Real-Time Shadow
Generation Using BSP Trees”, Computer Graphics
23(3), 99-106.

[7] Crow, F. (1977) “Shadow Algorithms for Computer
Graphics”, Computer Graphics 11(2) 242-247.

[8] DirectX 6.1 SDK (1999) “Shadow Volume Sample”.
Microsoft Corp., http://www.microsoft.com/DirectX

[9] Epic Games Inc., http://www.epicgames.com.
[10] Fuchs, H., Goldfeather, J., Hultquist, J., Spach, S.,

Austin, J., Brooks, F., Jr., Eyles, J., Poulton, J. (1985)
“Fast Spheres, Shadows, Textures, Transparencies, and
Image Enhancements in Pixel-Planes.”, In Proc.
SIGGRAPH, 19(7), 111-120.

[11] Fuchs, H., Kedem, Z.M., and Naylor, B.F. (1980) “On
Visible Surface Generation by A Priori Tree Structures”,
Computer Graphics 14(3), 124-133.

[12] Heidmann, T. (1991) “Real Shadows Real Time”, Iris
Universe, 18, 28-31, Silicon Graphics Inc.

[13] Id Software Inc., http://www.idsoftware.com.
[14] Kilgard, M. (1997) “OpenGL-based Real-Time

Shadows”, Silicon Graphics Inc., (http://reality.sgi.com/

Shadow Polygons Per Frame

0

500

1000

1500

2000

2500

sphere solids tet#1 tet#2 cubes

Hybrid algorithm Standard algorithm

Figure 10: Average number of shadow
polygons produced in each frame.

Shadow Polygons

Shadow Rendering x SVBSP Tree Cost

0
2
4
6
8

10
12
14
16
18
20

sphere solids tet#1 tet#2 cubes

Shadow rendering SVBSP tree cost

Figure 11: Shadow rendering time against
SVBSP tree construction time (ms).

mjk_asd/tips/rts/).
[15] Luebke, D. and Georges, C. (1995) “Portals and mirrors:

Simple, fast evaluation of potentially visible sets”, ACM
Interactive 3D Graphics Conference, Monterey, CA.

[16] McCool, M.D., (1998) “Shadow Volume
Reconstruction”, University of Waterloo, http://
www.cgl.uwaterloo.ca/~mmccool/.

[17] McReynolds, T., Blythe, D., (1998) “Advanced Graphics
Programming Techniques Using OpenGL”,
SIGGRAPH’98 Course.

[18] NVIDIA Corporation., http://www.nvidia.com.
[19] Schumacker, R., Brand, B., Gilliland, M., Sharp, W.

(1969) “Study for Applying Computer-Generated
Images to Visual Simulation”, Technical Report
AFHRL-TR-69-14, NTIS AD700375, U.S. Air Force
Human Resources Lab., Air Force Systems Command,
Brooks AFB, TX.

[20] Segal, M., Korobkin, C., Van Widenfelt, R., Foran, J.,
Haeberli, P. (1992) “Fast Shadows and Lightning Effects
Using Texture Mapping”. In Proc. SIGGRAPH, 26(7),
249-252.

[21] Slater, M. (1992) “A Comparison of Three Shadow
Volume Algorithms”, The Visual Computer, 1, 25-38.

[22] Thibault, W.C., Naylor, B.G. (1987) “Set Operations
on Polyhedra Using Binary Space Partitioning Trees”,
Computer Graphics, 21(4), 153-162.

[23] Wanger, L. (1992) “The Effect of Shadow Quality on
the Perception of Spatial Relationships in Computer
Generated Imagery”, In SIGGRAPH Symposium on
Interactive 3D Graphics, 39-42.

[24] Whitted, T. (1980) “An Improved Illumination Model
for Shaded Display”, CACM, 23(6), 343-349.

[25] Williams, L. (1978) “Casting Curved Shadows on
Curved Surfaces”, Computer Graphics, 12(8), 270-274.

[26] Woo, A., Poulin, P., Fourier, A. (1990) “A Survey of
Shadow Algorithms”, IEEE CG&A, 10(6), 13-31.

