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Abstract. Some estimators for the spectral density of the return in Synthetic Aperture Radar (SAR)
images are studied using Monte Carlo experiences. The spectral density is an important quantifier of the
texture that, in turn, can be related to biophysical magnitudes and it can be used to establish the kind
of target being observed. These images are contaminated by a particular kind of noise, called speckle,
that departs from the classical hypothesis of obeying the Gaussian law and of entering the signal in
an additive manner requiring, thus, a careful treatment. The departure from the Gaussian law will be
modeled here by means of the K distribution. This law arises from certain (very realistic) hypothesis for
the relationship between signal and noise. The empirical observation of structured data is modeled by the
use of spatial correlation. There are two approaches to the problem of the presence of speckle noise, one
being the use of techniques for its reduction (usually specially devised filters) and the other the proposal
of methodologies that take its presence into account. These approaches will be compared here, to the
problem of estimating the spatial correlation structure of the ground truth. The performance of these
estimators will be assessed using Monte Carlo experiences, since the problem is analytically intractable.

1 Introduction

An imaging radar is a system for earth observation
based on an emitting and receiving device that oper-
ates in the range of microwaves. The system sends a
pulse of electromagnetic energy, the targets reacts to
this stimulus and, eventually, part of this energy is re-
turned to the system. This return signal, if available,
is processed on order to infer about the properties of
the target.

Imaging radar systems constitute a major advance
in remote sensing, since they allow the obtainment of
dielectric properties of targets independently of the
availability of natural illumination (they carry their
own source of energy) and of the weather conditions
(microwaves are unaffected, to a great extent, by clouds,
fog, rain, smog etc.). Besides these desirable proper-
ties, the frequency of the signal employed is able to
penetrate canopy and other masses.

The term synthetic refers to the fact that larger
antennas and, thus, greater resolutions, are obtained
with processing techniques. These characteristics allow
the use of synthetic aperture radar (SAR) systems for
continuous earth monitoring.

The statistical properties here presented are com-
mon to every image generated with coherent illumi-
nation, as is the case of ultrasound, laser and sonar.

The relevant information present in these images is
concentrated in the mean cross section. 'This quan-
tity is sensitive to many parameters that characterize
the target, as dielectric constant and surface rough-
ness, among other. Each individual cell in the image
(pixel) has this information, but it is corrupted by the
speckle noise, which is due to interference phenomena
in the reflected signal.

The purpose of this work is the assessment of the
effect of speckle noise in the ability to infer the prop-
erties of the targets, more specifically, to estimate the
spatial correlation structure through the estimation of
the spectrum. The spatial correlation of the image
data is a very important feature, since it allows the dis-
crimination among different types of targets, and it is
required for some noise reduction techniques (see [5]).

In this paper we shall test in a controlled clut-
ter environment the performance of some cross section
power spectrum estimators, which have been already
presented in [1]. This estimators are based on classical
estimates of the return and noise spectrum, like sam-
ple periodogram and smoothed sample periodogram,
so we shall study the performance of these estimates
based on the performance of the other estimates in-
volved in making them. An accurate evaluation of the
error in the estimation is analytically too difficult to be
performed in the general case. Accordingly, we present



a comparison among four estimators based on simula-
tion.

2 The Multiplicative Model for SAR Images

The model for SAR images here presented is the one
studied in [6, 9].

Consider (sq,s2) € Z?, a two-dimensional vector
representing the position (azimuth and range) in the
discrete domain. When an electromagnetic wave is sent
towards the position (sy, $2), the physical properties
of the target cause changes in the phase of the sig-
nal ¢(sq, s2) and in its amplitude A(sq, s2). The SAR
system observes in every coordinate the pair of values
(Acos(¢), Asin(¢)), weighted by its point spread func-
tion. This complex number has information about the
mean cross section o, masked by the speckle noise.

The parameter o may be constant across the tar-
get (as is the case in many crops and grass areas), or it
may fluctuate (as in forests). This pixel-to-pixel vari-
ation defines the concept of texture for SAR images.
A possible way to characterize this information is con-
sidering the values of o as the outcome of a stochastic
process. The usual texture measures in this context
are the density and some higher order moments of the
process.

Let us now define the process S : 3 — sz7 that
represents the complex reflectivity in every resolution
cell, i.e., each outcome {S(w)}z2 of the process denotes
the possible amplitude and phase fluctuations caused
by the aforementioned interference phenomena.

The relationship between data and noise is, for
SAR images (see [8]), multiplicative and, thus, can be
stated as S = XY, where X : 2 — RZ represents the
amplitude of the returned signal (given by X = 1/0),
and the complex process ¥ :  — CZ® models the
speckle noise. Independence can be assumed between
X and Y. Additional hypothesis are

1. The processes X and Y are statistically stationary,
at least to the second order.

2. The process Y is a white noise.

For the validity of the first hypothesis it is essential
to have F(o,) = a for every s € Z?, i.e., the expected
value of the mean backscatter is assumed constant.

3 Intensity multilook format

A very convenient real process, namely Z = |S |2 can
be constructed from the complex reflectivity S. There-
fore, Y7 = |Y|? will denote the intensity speckle, and
using the multiplicative model one has 7 = oY7.

The complex format has more information than
the intensity one [2, 9], but these format is available
for a limited number of sensors.

A simple method for speckle noise reduction is the
multilook format, which consists of taking the mean
over n (ideally independent) samples of the same ran-
dom process. Assuming that the r-th observation is
Sy (s1,85) = (X -Y)(s1,52), if 1 < r < n, then the n-
looks signal is given by S = Y7, where Y7 is the mean
of n observations of the speckle process, corresponding
to n different images and where it is assumed that the
outcome of X does not vary in these n images.

Though the number of looks n should be, in princi-
ple, an integer this is seldom the case since the observa-
tions are, in practice, not independent. Its estimation
is studied in [10].

4 Distributions for rough targets

Assuming valid the multiplicative model, the complex
return from each pixel can be written as S = /oY
Speckle in complex format has bivariate Gaussian dis-
tribution, with zero mean and covariance matrix

/2 0
[ 0 1/2 } ’
so the real and imaginary components are indepen-
dent and equally distributed. Under this assumption
the intensity speckle Y; obeys an exponential law with
unitary mean.
Since multilook images are formed taking the mean

over n independent samples, multilook speckle obeys a
I'(n,n) law, with density

n
n n

~1
=— —y/n ,n > 0.
9v:(y) DK exp(—y/n) ¥y
The mean cross section that characterizes rough
targets can be modeled by another I' distribution, with
density given by

611

I'(v)

whose expected value is %, and where v and [ are
called shape and scale parameters, respectively.

The adequacy of this model has been extensively
assessed from both the theoretical and empirical points
of view.

Many applications assume that the process o obeys
the I'(v,3) distribution in every coordinate, and that
distinct positions are independent. In this work the as-

sumption of independence will be replaced by a more
realistic model of spatial correlation.

go(0) = o Lexp(—a/B),

o,v,3>0,



Amongst the many available ways to incorporate
spatial correlation, a weak stationary process will be
assumed here. In doing so, it is necessary to adopt a
characterization for the process, since the product of
the marginal densities is no longer a valid extension.

To be consistent with the I' model assumed for the
marginal data, a family of correlated I' random vari-
ables should be used but, differently from the Gaussian
case, there is no unique characterization of such model.

5 Periodic model for SAR images and spectral
estimation

Some properties of the spectrum will be studied here
and, for this task, it is convenient to assume that the
image or sub image under study is a sample from a pe-
riodic two dimensional signal that has been corrupted
by speckle noise in a multiplicative manner, as previ-
ously presented.

Let us recall that a two dimensional stochastic
process Z is said periodic if U(sy, s2) =
U(s1,82+ Na) in every (s1,82) € Z2, where N; and N
are positive integers. If these are the smallest possible
numbers such that the property holds, then they are
called the horizontal and vertical periods, respectively.
It is easy to see that every periodic array with hori-
zontal and vertical periods N7 and Ns is completely
specified by N7 Ny convenient values, which lie in the
region

Ryn, ={s:0< 851 <Ni—1,0 <5y <Np — 1},

namely the fundamental period. In this work, the hor-
izontal and vertical periods will be equal, N; = Ny =
N, so we will refer to the correspondent fundamental
period by Ry .

Let 0, Y and Z be periodic, non-negative stochas-
tic process, each with fundamental period Ry, such
that they obey the multiplicative model Z(s1,82) =
0(81,82)Y (81, 82). We will assume that ¢ models the
terrain mean cross section, that Y is the n-look inten-
sity speckle and that 7 is the n-look intensity return
image.

Notice that if U is any periodic process then for
each coordinate (s1,82) € Ry the Fourier coefficient
of U in (s1, 82), is given by

N—-1N-1

= _ * *
Utsy,s0) = N2 § : § : U(klka)wmkhNWSkaN
k1=0 ko=0

for every 0 < s1,80 < N —1 and wp y = eXp(QLNk).
The function U is called Fourier series of U.

In [1] it is proved that if U is a stochastic two-
dimensional weakly stationary process, i.e., if for every
(s1,82), (t1,t2) € Z* holds that

(](814—]\[17 81) =

1. E(Us, s,)) = pv and that
2. E(U(Shsz)'U(thtz)) =

then the power spectrum of U is the function Sy
that satisfies

Ry(s1 —t1, 82 — t2)

SU(31732) =

IA

for every 0 < sy, 8 N — 1, where % denotes the
complex conjugate.

It is also proved that if the process Y that mod-
els the speckle noise is a two-dimensional uncorrelated

stochastic periodic n-looks white noise process, then

So(s1,82) = ) [52(81782) - 1+nSZ}
where
N-1N-1
Z N2 Z Z SZ kl’k2
Fe1 =0 ko=0

From this we conclude that it is possible to esti-
mate S, using estimators for Sy.

This paper expands this earlier results, in the fol-
lowing directions:

1. an accurate clutter simulation with specified cor-
relation properties, based on correlated Gamma
vectors, will be obtained;

2. using this fields as input data, a comparison be-
tween the performance of estimators of S, will be
achieved.

The estimators of Sz that we will work with are
the sample periodogram, and the sample periodogram
smoothed with two windows, the Tuckey-Hanning and
the Hamming ones. These estimators will be applied
to both raw (unprocessed) and filtered data.

6 Correlated Gamma distribution

Assume U is a weakly stationary stochastic process
with fundamental period Ry, and non trivial auto-
covariance function. The definition of a random pro-
cess with correlated Gamma distribution is not an easy
task, since there no unique definition. In this work, the
definitions presented [7] will be used.

Definition 6.1 A random vector U’ is said to have a
correlated Gamma distribution if each component obeys
a Gamma low.



Definition 6.2 A stochastic process is said to have a
correlated Gamma distribution if any subset of wvari-
ables of the process, seen as a vector, has correlated
Gamma distribution.

7  Multivariate Reduction Method

This method allows the obtainment of a random field
with marginal 1" distributions with shape parameter
v =m/2, m integer, but this limitation is of no prac-
tical effect for the applications we bear in mind: SAR
images [10]. Tt is based on the generation of Gaus-
sian fields, independent among them but with a certain
correlation inner structure. Once these fields are sim-
ulated, the values among corresponding co-ordinates
are squared and added. In this work it is of particu-
lar interest the generation of a particular correlation
structure: that induced by the filtering with a mask.

Definition 7.1 Consider the periodic function E with
fundamental period Ry given by

exp(—3 3 +52)) ifse Ry

E(81782) = exp( 1%) ifs € Ry
exp(— ;M if s € R

exp(—3 1—(N 1) N 52)2) ifs€ Ry

where RlZ{S:(81782):0§81782§?}7 RQ:{S:
%+1<31<N—10<32< 2} Rg:{SZ

g5 < X T N 41<s8<N—-1}, and Ry = {s: ——|—1<
81,82 < N —1}.
Consider also Ey : Z — R the one-dimensional
function with period R=1{0,...,N — 1} given by
. N
0<i<5

-2
B = oCEF)
exp(— (Nl;)) %—O—ISJ'SN—I

(1)
Note that FE is a separable function, i.e., for every
(s1,82) € Ry holds that E(sy,se) = F1(s1) - E1(s2).

It can be seen that the Fourier transform of Fy,
El(sl) = N~ lzk 0 El(k)w;kN, is a positive real
function, so it has one and only one square root.

Definition 7.2 Let 01 : Z — R be the function de-
fined by 01(s) = k 0 El(k)wkshN with period
R=1{0,...,N—1}, and let 0 : Z* — R be the pe-

riodic function with fundamental period Ry given by
0(817 82) = 01 (81)01 (82)

It holds that

0% 0(s1,82)

N—-1N-
j{: j{: (t1,22)0(s1 — t1, 55 — o)

= (81782)7

where
H(N—Sl,SQ) if s € Ry
0(s1,82) = 6(s1, N — s3) if s € R3
H(N—Sl,N—Sg) if s€ Ry

Definition 7.3 Let {, with 1 < k < 2v, be indepen-
dent periodic white noise Gaussian stochastic processes
with fundamental period Ry. Consider also the peri-
odic processes &, 1 < k < 2u, with fundamental period

Ry defined by
(9 * (1) (81, 52)

576(81782) -
—1N-1

= Z ng tl,tg 31_t17 2_t2)

t1=0t2=0

Note that the processes &, defined above satisfy
the following properties

1. they are marginally formed by Gaussian random
variables, since £,(s1,82) ~ N(0,3(0 % 6)(0,0));

2. B(£1(0,0)&x(51,52)) = 3(0+0)(s1, 52) = S E(s1, 52).
3. p(£(0,0),&(s1,82)) =

Definition 7.4 Letn be the periodic stochastic process
with fundamental period Ry defined by

81782 E gk 81782

and also consider 5 > 0. Define, for every (s1,s2) €
Ry, the stochastic process o by o(s1,s2) = Bn(s1, s2).

(81782)

V(s1,82) € Ry,

The following statements hold:

1. The stochastic process 77 is periodic, weakly sta-
tionary with correlated distribution and 7(sy, s2) ~
(v, 1).

2. The stochastic process o is periodic, weakly sta-
tionary with correlated Gamma distribution such
that

(a) 0(sy,85) ~ I'(v, B), therefore E(o(sy,s2) = ¥
and Var(o(s1, s2) = 5.

(b) The coefficient of correlation of the process &
is given by p(0(s, 55):00,0)) = E*(s1,82).

(c) Its normalized auto-correlation function is gi-
ven by r(s1,82) =1+ %E2(31,32).

(d) Its auto-correlation function is R, (s1,82) =
L1+ 1E%(s1,52)).

(e) It can be seen that is spectral density func-
tion is S(,—(S) = # ZkeRN (kl, k2)wklsl+k252,N



7.1 Simulation of heterogeneous targets

The aforementioned multivariate reduction method was
implemented in the IDL 5.2 development platform for
Windows. The algorithm, in pseudo language, is as
follows:

1. Generate (;, Gaussian white noise fields with vari-
ance 1/2, 1 <k <w.

2. Define e1(j) = exp(—%g—) i
er(j) = e (N —j)if &

3. Define

_I_
o
A
Q.’—h
IA @
Zl/\

Pa(s1,52) = \/FFT(ey, —1)(51).FFT(e1, —1)(s2)

4. Define §, = FFT (. FFT ((,—1),1), 1 <k <
2v.

2v
5. Define 0 = % S &R
6. Generate Y ~ I'(n,n), where n is the number of
looks of the final image.

7. Return Z = oY.

In this algorithm FFT(U, —1) and FFT(U, 1) rep-
resent the direct and inverse Fourier transform, respec-
tively. They are evaluated with a routine based on the
Fast Fourier Transform algorithm. The bigger the pa-
rameter v the slower the simulation algorithm will be,
since the more correlated Gaussian random fields will
have to be generated. The distribution of the prod-
uct of the independent distributed random variables is
known as Intensity K, and it has a central role in SAR
image analysis (see, for instance, [2]).

The following images are constructed with four
different shapes parameters and four different lengths
of correlation. Figure 1 shows sixteen images with
Gamma correlated distribution; these are samples of
the ground truths to be estimated through the pro-
cedures that will be presented in section 8. Figure 2
exhibits sixteen K-correlated images with the same pa-
rameters and three numbers of looks. These are sam-
ples of the data that will be used by the first three
algorithms to be presented in the following section.

8 Sample and smoothed periodograms

If Ry = {(51,82) : 0 < 81,80 < N — 1} with N = 2%,
and k integer, we define the set C®¥ = {u: Ry — C}
with the canonical product

| NNy
(u,v) = ~z Z Z u(s1, s2)v(s1,82)",  (2)

.5‘1=0 52=0

L e
R

Figure 1: Sixteen Gamma correlated images, with v €
{0.5,1,1.5,2} varying in the rows and correlation lag
¢e{1,2,4,8} varying in the columns.

Figure 2: Sixteen K correlated images corresponding
to the Gamma correlated fields shown in Figure 1.



for every pair of complex complex matrices u,v € CB~ |
For every (s1,82) € Ry let W(sy,s8) € CE~N be defined
as Wis, 55) (K1, K2) = Whys) NWhy,so,n- It can be proved
that
(w©0,0y:--- WN-1,N—1))

YWO,N—-1)y--- s WN-1,0)5-- -5

is an ortho-normal basis of CF~ with respect to the
inner product defined in eq. (2), called Fourier basis.
Therefore, if u € C®~ | the Fourier transform is defined
as

<u w(sl,sz)>
N—-1N-1

7 30 ulhr, o )etey (b k)

k1=0 k2=0

(s, 82) =

Define the set of frequencies associated to Ry as
fN = {)\(81782) (27}—\}51, 27;\?2) : (81782) S RN}

Definition 8.1 The sample periodogram of the com-
plex sequence u € CEY is the function Iy (u) :— [0, +00)
given by In(w)(A\(s1,82)) = |a(s1,52) |2

If U is a weakly stationary stochastic process and
© = U(w) is a sample of this process, the sample auto-
correlation function 7, : Ry — C is defined, for every
81,82 € Ry, as the double summation r,(s1,82) =

2 SN e (ke k)l + sy ke 82)"

It can be seen that

In(W)(A(s1,52)

/\

1,82)) =

N-1N-

Z Z ul(br, k2)wis, s,y (K1, k2),
where 7, is a summation of sample auto- correlations,
that estimate the auto-correlation of the process Ry =
E(U((t17t2)U(*sl+t1752—}-2&2)) in the values of the period
Ry . Then, since

2|H

vk, k2)wis, s,) (K1, k2)

it is possible to estimate this function with Iy ().

Nevertheless, Iy does not have a good perfor-
mance close to the edges of Ry, so it is advisable to
conveniently weight the observations, and then esti-
mate the periodogram [4]. In other words, instead of
working with the observed values {u(sy,s2), (s, $2) €
Ry}, the weighted data

{a(s1, s2)u(s1,52),(51,52) € Ry}

will be used, with

S1
N-—-1

52

a(sy, s2) = h( ]

I

),

where h : [0,1] — [0,1], R(0) =0, h(1) = 1. Two func-
tions usually found in the literature will be here con-
sidered: the Tuckey-Hanning window given by Ay (s) =
1(1 — cos(2ms)), and the Hamming window defined as
hi(s) = 0.54 — 0.46 cos(27s).

9 Simulation and Results

If z: Ry — R is the image sample under study, ob-
tained by the simulation method previously presented,
the following estimators for the spectrum of the un-
derlying process Z will be considered: the sampled pe-
riodogram Iy (2), the smoothed periodogram over the
Tuckey-Hamming window [y, 7(2), and the smoothed
periodogram over the Hamming window, Iy g (2). The
correspondent estimators of ¢ are

= (v~ 5 v0)

Pra(e) = o (1) - T @)

PN(U) =

1
Prnte) = o (1)~ T )

where 7 is the number of looks of the image 2.

Applying the Lee filter, (see [2, 5]) to z, with a
window of size 3 x 3 the image & is obtained. This
image is an estimator of the true incorrupted image
o and, therefore, it should be possible to estimate
S, directly with the sample periodogram Py p(0) =
Iy (Leefilt(z)). The samples shown in Figure 2, after
being submitted to this speckle reduction technique,
are shown in Figure 3. These are the input data for
the estimator Py p, that uses filtered images.

The Lee filter is a local linear minimum mean
square error filter, derived from a linearization of the
multiplicative model, by Taylor expansion, around the
mean. This approximation transforms that model into
an additive one, and then the Wiener filter is applied.

These four estimators were implemented in the
IDL 5.2 platform, as well as a good approximation of
the true power spectral density

1
— FFT(R,,1),

So(51,82) = ~2

using the previously mentioned algorithm based on the
Fast Fourier Transform.
In order to assess the relative performance of these



Figure 3. Sixteen images obtained applying the Lee
filter to the data shown in Figure 2.

estimators, the following biases were considered

| NorN-n
D = & (Pn(0)(51,82) — So (51, 52)
51 =0 52=0
| NorN-n
Dy = ~ Pn.r(0)(s1,82) — So(s1,52)
51=0s2=0
| NorN-n
Dy = N PN7H(U)(31732)_SU(81782)
51 =0 52=0
| NoiN-a
Dy = Py p(0)(s1,52) — S5(s1,52)
51=052=0

over one thousand replications. These biases are re-
ferred to as D;, and the value of the index denotes,
respectively, the four estimators defined above.

The chosen period was N = 32, and the values
v € {0.5,1,1.5,2} and 8 = 1 were used. Also the
considered number of looks were one and three, repre-
senting the image with the highest possible corruption
by speckle (n = 1) and a signal-to-noise ratio usually
found acceptable by remote sensing applications users
(n = 3). The correlation lags ¢ € {2,4,8} were chosen
for the comparison of estimators.

The criteria chosen to make the comparison were
based on an empiric rule (described in the following)
and on the mean square error.

9.1 Empiric rule

This criterion is based on the assumption that the ob-
served biases approximately obey a Gaussian distribu-
tion. Considering that an estimator is “admissible”
when the sample confidence interval of the bias based
on two standard deviations includes the zero value, the
best estimator will be the admissible one which min-
imizes the variance. Tables 1, 2, 3, 4, 5, and 6 show
the mean and standard deviations of the four afore-
mentioned biases, and the acceptable estimators are
highlighted, but in most of the studied cases most of
the parameters values yielded no admissible estima-
tors. Thus, we were induced to consider that the bi-
ases may be far from obeying the Gaussian law, and
several boxplot and histograms were made in order to
asses or discard this possibility. In figures 4 and 5,
boxplots calculated with one thousand replications are
shown, and it can be seen the strong asymmetry of the
observed biases. This feature was observed in all the
cases, even in those which led to admissible estimators.
Hence, the essential condition in order to be able to use
this criterion is to increase the period N in order to be
able to use the central limit theorem.

9.2 Mean square error

Let E; be the mean square error of the aforementioned
biases, defined by
E; = E(D?)= E(D))*+Var(D;) 1<i<A4.
In the light of the asymmetries commented in the
previous section, a more interesting criterion would be
choosing as the best estimator the one having bias with
minimum mean square error. Tables 1, 2, 3,4, 5 and 6
also show the mean square error of the four biases and
the best estimator was highlighted in boldface.

10 Conclusions

Several estimators for the spectrum were presented,
and a Monte Carlo study was devised to compare four
estimators in a variety of situations. Two criteria were
considered in order to find the best estimator. The fist
criterion is based on the assumption that the observed
biases are approximately Gaussianly distributed, and
it was clearly not true when the period was N = 32,
thus no conclusion could be drawn. However, the situ-
ation could be very different working with periods like
N = 64 or N = 128, because of the central limit the-
orem, but the computational cost should be taken in
consideration. The second criterion was based on the
mean square error of the biases and in this case, for
one look images, the periodogram was the best among



( v=05 n=1 |
=2
Mean Std. Dev. | MSE
Dy | —0.0005 0.0001 3.e—7
Dy | —0.0007 0.00003 5.e—7
D3 | —0.0007 0.00003 5.e—7
D4 | —0.0006 0.00004 4.e-T7
- =1 |
Mean Std. Dev. | MSE
D, | —0.0005 0.0002 3.e—7
Dy | —0.0007 0.00006 5.e—7
D3 | —0.0007 0.00006 5.e—7
Dy | —0.0006 0.0001 4.e-T7
| (=38 |
Mean Std. Dev. | MSE
Dy | —0.0005 0.0005 5.e—7
Dy | —0.0007 0.0002 5.e—7
D3 | —0.0007 0.0002 4.e-T7
D4 | —0.0005 0.0004 5.e—7

Table 1: Mean, standard deviation and MSE between
the truth and each estimator, with n =1, N = 32 and
8=1
v=1 n=1 |
| =3
Mean | Std. Dev. | MSE
D; | —0.0014 0.0002 2.e—6
Dy | —0.0019 6.e—5 3.e—6
D3 | —0.0019 6.e—5 3.e—6
Dy | —0.0016 0.0001 3.e—6
L | (=4 |
|| | Mean | Std. Dev. | MSE ||
D; | —0.0014 0.0003 2.e—6
Dy | —0.0019 0.0001 3.e—6
D3 | —0.0018 0.0001 3.e—6
Dy | —0.0015 0.0002 2.e—6
L | (=3 |
Mean | Std. Dev. | MSE
D; | —0.0013 0.0007 2.e—6
Dy | —0.0018 0.0003 3.e—6
D3 | —0.0018 0.0003 3.e—6
Dy | —0.0014 0.0006 2.e—6
Table 2: Mean, standard deviation and MSE between

the truth and each estimator, with n =1, N = 32 and

B=1.

v=2 n=1

=2
Mean Std. Dev. | MSE
D; | —0.0043 0.0004 2.e—5
Dy | —0.0056 0.0001 3.e—5H
D3 | —0.0056 0.0001 3.e—5H
Dy | —0.0047 0.0003 2.e—5

|| (=4
Mean Std. Dev. | MSE
D, | —0.0042 0.0008 2.e—5
Dy | —0.0056 0.0002 3.e—5
D5 | —0.0056 0.0003 3.e—5H
Dy | —0.0044 0.0007 2.e—5

l =38
Mean Std. Dev. | MSE
D; | —0.0039 0.0017 2.e—5
Dy | —0.0054 0.0005 3.e—5H
D3 | —0.0054 0.0006 3.e—5
Dy | —0.0040 0.0017 2.e—5

Table 3: Mean, standard deviation and MSE between
the truth and each estimator, with n =1, N =32 and
8=1.
v=20.5 n=3
(=2
Mean Std. Dev. | MSE
D, | —0.0007 le—5 5.e—7
Dy | —0.0007 4.e—6 5.e—7
D3 | —0.0007 4.e—6 5.e—7
D4 | —0.0006 4.e—5 4.e—T7
( (=4
Mean Std. Dev. | MSE
D, | —0.0007 2.e—5 5.e—7
Dy | —0.0007 8.e—6 5.e—7
D3 | —0.0007 9.e—6 5.e—7
D4 | —0.0006 0.0001 4.e—T7
( (=38
Mean Std. Dev. | MSE
Dy 0.0014 0.0038 l.e—5
Dy | —0.0002 0.0013 2.e—6
D3 | —0.0002 0.0014 2.e—6
Dy 0.0164 0.0315 0.0012
Table 4: Mean, standard deviation and MSE between

the truth and each estimator, with n =3, N =32 and

B=1.



v=1 n=3 |
| (=
Mean Std. Dev.
Dy | —0.0018 2.e—5 4.e—6
Dy | —0.0019 5.e—6 4.e—6
D3 | —0.0019 6.e—6 4.e—6
D, | —0.0016 0.0001 3.e—6
| (=1 |
Mean Std. Dev. | MSE
D¢ | —0.0019 4.e—5 3.e—6
Dy | —0.0019 l.e—5 4.e—6
D3 | —0.0019 l.e—5 4.e—6
D, | —0.0015 0.0002 2.e—6
- = |
Mean Std. Dev. | MSE
D4 0.0038 0.0067 6.e—5
Dy | —0.0006 0.0024 6.e—6
D3 | —0.0005 0.0026 7.e—6
Dy | 0.04585 0.0566 0.0053
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90

I |

D2 in position 10, D3 in position 15, D4 in positio
&>
T T
> 4
|

S\X

-0.006 -0.004 -0.002 0.000 0.002
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o

Table 5: Mean, standard deviation and MSE between
the truth and each estimator, with n = 3, N = 32 and Figure 4: Box plotsforthey =2, {=4,n=1, N = 32

B=1 situation.

v=2 n=3 |
=2

Mean Std. Dev. | MSE
D4 0.0074 0.0031 6.e—5
Dy | —0.0039 0.0009 2.e—5
Ds | —0.0037 0.0010 l.e—5
Dy 0.0833 0.0202 0.0073
(=4
Mean Std. Dev. | MSE
D4 0.0085 0.0063 0.0001
Dy | —0.0033 0.0023 2.e—5
Ds | —0.0031 0.0023 l.e—5
Dy 0.1036 0.0486 0.0131
=38
Mean Std. Dev. | MSE
D4 0.0114 0.01408 | 0.0003
Dy | —0.0019 0.0050 3.e—5
D3y | —0.0016 0.0052 3.e—5
Dy 0.1417 0.1203 0.0346

/o L B S

20

, D2 in position 10, D3 in position 15, D4 in positio

% |
% |
T

-0.10 0.00 0.10 0.20 0.30 0.40
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Table 6: Mean, standard deviation and MSE between
the truth and each estimator, with n =3, N = 32 and Figure 5: Box plots for the v = 2, f = 4, n = 3, N = 32

f=1 situation.



the considered estimators. When three looks data are
available the choice was not so clear, because it de-
pends on the correlation structure. The estimation
with the Tuckey-Hanning was the best one when v = 2,
but the pre-filtering was better in some other cases here
considered.

This work will continue with the analysis of the
N = 64 and N = 128 cases, and the proposal and
assessment of robust estimation techniques. Another
extension is the use of the Frost filter, that incorporates
a correlation structure similar to the one here used.
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