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Abstract. Many scientific applications use scattered data originated from samples. Interpolation techniques are
necessary to estimate the values on non-sampled regions. In a previous work, the Modified Shepard
interpolation method was implemented and some unpredictable results occurred. Due to the flexibility of
parameter definition for the interpolant generation in this method we decided to investigate solutions for those
problems. In this paper we present four versions for the Modified Shepard method, and compare their results
through the analysis of the images, processing time and accuracy. Future work for further improvements in the
method is also discussed.
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1 Introduction

The problem of constructing approximations based upon
scattered data are encountered in many areas of scientific
applications, like meteorological information, such as the
amount of rainfall, or geological information, such as
depths of underground formations. This is done using
interpolation techniques that estimate values on
unexplored points of a region considering the values
sampled on it. These techniques could be locally or
globally defined. In global functions, the interpolant
depends on all sampled points and the addition,
modification or exclusion of any point will propagate
through all the function domain, see e.g. Franke [1]. In
local methods, the modification of one point will affect
only the neighboring points. Some locally designed
methods construct general-purpose interpolants defining
radii of influence for the data points. One example is the
Modified Shepard method, see Franke and Nielson [2],
which has its flexibility supported by radii Rq and Rw.

In previous work [3], the Modified Shepard
interpolation method was implemented to build geological
models using values sampled at certain wells. The
interpolation method achieved some undesired results,
especially on poorly sampled regions. In an attempt to

eliminate the problems of the method, some solutions
were found and new techniques applied.

The aim of this paper is to describe the changes
proposed to the Modified Shepard Method and compare
their performance through the analysis of the images, the
processing time and the accuracy of results.

2 Description of the Modified Shepard Method

The purpose of this method is the definition of a smooth
bivariate interpolant S with the property that S(xi, yi)=f i,,
given N scattered data points (xi, yi, fi), i=1,…,N. This
interpolant is built taking into account all samples (one
nodal function is found for each sample point), with the
influence of the sample depending on its position on the
region being calculated.

The first step in this method is the definition of the
radii of influence, Rq and Rw. While Rq denotes the radius
of influence of the data points in the nodal functions, Rw

denotes the radius of influence of the nodal functions in
the interpolant.  These radii are computed according to the

 relationships:
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where D = maxi,j di (xj,yj), and N is the total number of
data points. The values of  Nq and Nw can be interpreted as
representing the number of data points estimated to lie
within circles of radii Rq and Rw respectively. While
locally defined interpolants require small values for Nq

and Nw, a global interpolant is generated making these
values near the total number of samples. The default
values recommended by the autors (see Franke and
Nielson [2]) are Nq=18 and Nw=9 for uniformly
distributed data. When some regions are sparsely
populated and others are comparatively dense, or when
data sets are small (N<25), it may be necessary to increase
the values of Nq and Nw The use of the relationship Nq /
Nw ~ 2 is useful.

After calculating the radii Rq and Rw, the nodal
functions are computed using the least squares method.
These functions are calculated based only on data points
sampled inside radius Rq. This slight modification gives a
local behavior to the method.  The distance function ri

taken is given by:
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Here the subscript + denotes the positive part of the
quantity concerned, i.e., (Rq - di)+ = (Rq-di) when (Rq-di) ³
0, and zero otherwise. Hence, the weight is zero at
distances greater than Rq.

The next step is to solve (for each nodal point (xk,yk),
k=1, … , N ) the least squares problem:
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 This may be done by solving the associated set of
normal equations (obtained by setting to zero the gradient
of the above quadratic expression) using Gaussian
elimination or another linear solver, which is the fastest
approach, or we may use other standard techniques like
QR factorization or singular value decomposition (i.e., the
pseudo-inverse) of the underlying Nx5 least-squares
matrix – the extra work may well be worth the effort due
to better stability properties of these algorithms,
particularly when the matrix is close to rank-deficient, see
e.g. Trefethen and Ban [4].

Having solved these N minimization problems, the
nodal functions Qk(x,y) are known:
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These are used in the Modified Shepard formula:

å

å

=

=

=
N

k
k

N

k
k

k

yx

yx

yxQ

yxfD

1
2

1
2

),(

1

),(

),(

),]([

J

J

Each grid point is calculated based on the nodal
functions computed for the sampled points inside a circle
of radius Rw.  This is defined by:
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Again, (Rw-dk)+ = (Rw-dk), when (Rw-dk) ³ 0 and
zero otherwise.

Figure 1 presents the purpose of radii Rq and Rw in
the method. There are 18 samples depicted in the region
and we need to build a 13x14 grid. According to the
method, nodal functions must be determined for each
sample point. The function for sample 4, for example, is
computed based on samples 4, 1, and 2, while that for
sample 18 will use samples 18, 8, 9, and 14. Once we
have calculated the nodal functions, we can process the
grid positions. Consider the grid position marked by the
center of the Rw circle: it will be calculated using the
nodal functions of samples 12 and 6. Increasing grid
dimensions allows the generation of more detailed
regions.

Figure 1 Modified Shepard radii Rq and Rw.



3 Previous results – Version 1

The method implemented following the description in
section 2 will be referenced as Version 1. In this version,
some problems were detected in the method, which
influence the results.  The first part of the method, the
creation of nodal functions for all sample points, is crucial
for the accuracy of the result. In this case, if there are too
few neighboring points in the sample, the computed
coefficients for this equation could be wrong. An example
will be shown below.

Consider the surface z=2y2 and eight sample points:
P0(0,0,0), P1(0,3,18), P2(1,2,8), P3(2,1,2), P4(2,4,32),
P5(3,2,8), P6(3,3,18), P7(4,0,0). In figure 2 we see the
result of the interpolation process and the exact (intended)
result. Their differences were caused by wrong nodal
functions generated for some points.

Figure 2 Version 1 result compared to intended*.

Figure 3 shows the equations generated for sample
points. While the equations generated for points 0, 2, 3, 5
and 7 are similar to the correct result, the equations
generated for the other points don’t agree with the
expected ones.

Figure 3 Nodal equations for sample points: (1) sample
points 0,2,3,5 and 7; (2) point 1; (3) point 4; (4) point 6.

                                                          
* The four reference points helps the viewer orientation for
comparison purposes.

4 Version 2
In this version some changes were made to guarantee
better results avoiding the problem of wrong nodal
equations. Essentially, in the first part of the method, the
program recalculates the distance functions ri , amplifying
the radii Rq until there exist at least five samples around
the point of the nodal equation being calculated. For the
other nodal functions the radii Rq remain unchanged. A
standard requirement of the least squares method is that
the number of points involved in the process should be
larger than the number of coefficients to be found. In this
case there are five coefficients and six points in the
process.

In the second part, the grid calculation, we can
increase the radius Rw, until at least five nodal functions
have been used in the computation

The achieved result was quite better and can be
seen in figure 4.

Figure 4 Version 2 result compared to intended.

5 Version 3
This version was made in order to reduce the processing
time of version 2. In the present case, the least squares
problem fits a linear equation to the data points, instead of
a quadratic equation. Thus, the nodal equation coefficients
to be found are only two:  

Qk(x,y) = fk + ak2 (x-xk) + ak3 (y-yk)

In the first part of the method, the program
recomputes the distance functions ri  , increasing the
radius Rq until there exist at least two samples around the
point of the nodal equation being calculated. For the other
nodal functions the radii Rq remain unchanged. Here there
are two coefficients to be found and three points involved
in the process.

In the second part, the grid calculation, we can
increase the radii Rw, until at least two nodal functions
have been used in the computation.

Figure 5 shows the achieved and intended results
from version 3. Note that the result is better than in
version 1, with less processing work. Figure 6 shows the
plane equations generated to each sample point.



Figure 5 Version 3 result compared to intended.

Figure 6 Equations generated for the sample points.

6 Version 4

This is an upgraded version for the previous version 2.
Here we added a monotonization step for the coefficients
of the nodal equations. The goal of this stage is to smooth
the surface. This is accomplished by making the nodal
equations take into account the neighboring equations.

After finding the coefficients for a nodal equation, the
table of ri values is used to determine what equations will
influence the coefficient values and how much (the weight
is inversely proportional to the distance). To the ri

distance is added a factor   f  (influence factor), a
parameter that can be initialized with 1 and can be
increased if the user wants to reduce the neighboring
influence on the nodal function. For the equation:

Nkyya

yyxxaxxayyaxxafyxQ

kk

kkkkkkkkkkk

,...,1,)(

))(()()()(),(
2

6

5
2

432

=-

+--+-+-+-+=

the coefficients found are: ak2, ak3, ak4, ak5 and ak6. To
perform the monotonization process for the coefficient ak2,

for example, we compute:

Figure 7 shows the result obtained with the other test
equation (z=x4-x3y+y2) in the monotonization process
(version 4) , without monotonization (version 2) and the
intended result.

Figure 7 Results with and without monotonization.

7 Discussion

In the previous sections we described all the versions
implemented for the Modified Shepard method. In order
to compare the results obtained from each version some
tests were carried out.

Taking a rectangular region [0,0] x [2,2], random
points (x,y) were generated for two sample test files, one
with 100, and the second with 200 points. Figures 8 and 9
show the points distribution in files t100 and t200.

 
Figure 8 Samples distribution in file t100

Figure 9 Samples distribution in file t200.

Next, four test equations were used to generate the z
values for each sample. The equations were:

f(x,y) = 10 * sin(x) * sin(y) (1)
f(x,y) = ( 10+sin(x) ) * ( 10+cos (y) ) (2)
f(x,y) = 10 * sin(x)  * sin(y)2 (3)
f(x,y) = 10 * sin(x*y) (4)
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These equations were chosen in order to know
exactly the form of the surfaces to be approximated by the
interpolation method, thus allowing computing the error
easily. They produced eight test files referred here as
t100e1, t100e2, t100e3, t100e4, t200e1, t200e2, t200e3,
and t200e4.

All tests measure processing time and accuracy.
Processing time is taken in milliseconds. The accuracy
measurement is obtained by computing the difference
between the intended and the interpolation results for all
grid positions. Dividing the computed difference by the
intended result at each grid position gives the relative
error at that point. In this measurement technique, when
the correct (intended) values are too close to zero, the
generated relative error could be classified in a range near
or over 100%. In this case, the simultaneous analysis of
the resulting images and other error ranges are necessary
for a correct conclusion.

For better understanding, we will first present
specific results from one test equation file (t100e4). Then,
we will generalize the results through tables and graphics
using average results from all tests.
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9.00-9.99

Figure 10 Number of points with errors ranging
from 0 to 9.99%. Test file t100e4, 900 grid points.

Error Shepard01 Shepard02 Shepard03 Shepard04
0-10 % 694 841 753 782
10-20% 32 6 24 10
20-30% 28 3 13 6
30-40% 7 2 2 1
40-50% 2 4 4 5
50-60% 2 1 3 0
60-70% 2 1 1 0
70-80% 3 1 0 0
80-90% 3 0 1 0

more than 90% 97 28 41 40

Figure 11 Number of points with errors ranging from
0 to more than 90%. Test file t100e4, 900 grid points.

Figure 10 shows the distribution of points per error
ranging from 0 to 9.99%. We can observe that the version
2 gives more than 600 points with less the 1% of deviation
from the intended result. This observation is confirmed by
the data shown in figure 12. Version 2 gives the maximum
number of correct values (841 points with error ranging
from 0 to 10%) and the minimum number of wrong values
(only 28 points with error greater than 90%). Both figure
10 and 11 allow to assert that version 4 shows better
results than those obtained with version 3, which is better
than version 1.

Regarding to processing time, version 3 takes 15%
less time than version 1 giving results with similar
accuracy (see figures 10 and 11), while version 2 takes
only 1.6 % more processing time than version 1 but its
results are quite more accurate. Version 4 takes 0.4 %
more time than version 2.

6000.0

7000.0

8000.0

9000.0

10000.0

11000.0

T100/e4 10195.0 10355.0 8652.0 10395.0

Shepard01 Shepard02 Shepard03 Shepard04

Figure 12 Processing time in milliseconds using
test file t100e4.

Although statistics provide useful means to compare
general versions' characteristics, images allow a rapid and
efficient analysis of results. Figures 13 to 17 show the
intended result using equation 4 in a 30x30 grid, and the
Modified Shepard versions results.

Figure 13 Intended result using equation 4.



Figure 14 Shepard01 result for equation 4, 100 samples,
30x30 grid, Nq=12, Nw=8.

Figure 15 Shepard02 result for equation 4, 100 samples,
30x30 grid, Nq=12, Nw=8.

Figure 16 Shepard03 result for equation 4, 100 samples,
30x30 grid, Nq=12, Nw=8.

Figure 17 Shepard04 result for equation 4, 100 samples,
30x30 grid, Nq=12, Nw=8.

We can observe that the results obtained with version
4 are smoother than those with version 2, only in some
sub-regions. This is due to the monotonization process
introduced in version 4. In this process the errors are
propagated around the grid points, resulting in a less
accurate global result. Despite the surface obtained with
version 4 shows an overall decrease in correctness, we can
noticed a better approximation to the real surface near the
bottom-right border.

Version 3 uses planes instead of quadric functions
and thus the resulting surface is not so smooth as those
generated with versions 2 and 4, but the image (figure 16)
gives an idea of the shape of the interpolated function. It
could be used as a preview function saving processing
time.

Figures 18 to 21 show data collected from all eight
tests. The results of tests with all files are shown in figures
18 and 19. These allow a global analysis of the four
versions by comparing results from all tests at the same
time. While these figures show absolute values for each
test, figures 20 and 21 present average values.

Figure 18 shows the number of grid cells with errors
ranging from 0 to 10% in each test file, per Modified
Shepard version. In figure 19, the errors ranging from
10% to 90% are shown. In both figures the results
obtained previously are confirmed. Again, the version 2
achieved the best results, considering the criterion
accuracy.

In figure 20 we can observe the average processing
time for all versions. Considering version 1 as basis of
comparison, version 2 takes 2.1% more time, version 3,
13.5% less time, and version 4, 2.5% more time, thus
confirming the results (figure 12) already discussed in this
section. The same occurs when analyzing the average
number of correct and incorrect z values. Figure 21 shows



that the average of correct grid values is greater in version
2 than in the other versions. Moreover, the average
number of grid cells with an error greater than 10% is
smaller in version 2.

Errors form 0 to 10% in 900 grid cells 
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Shepard01 797 900 762 694 782 883 746 776

Shepard02 856 900 804 841 861 898 813 853

Shepard03 803 900 727 753 850 898 776 816

Shepard04 824 900 757 782 841 898 775 821

t100e1 t100e2 t100e3 t100e4 t200e1 t200e2 t200e3 t200e4

Figure 18 Errors of Modified Shepard versions
from 0 to 10% obtained with all test files.

Errors from 10 to 90% in 900 grid cells
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Shepard01 58 0 88 79 58 15 68 59

Shepard02 14 0 54 18 29 0 41 38

Shepard03 59 0 96 48 27 0 61 53

Shepard04 37 0 58 22 33 0 61 49
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Figure 19 Errors of Modified Shepard versions
from 10 to 90% obtained with all test files.
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Figure 20 Average processing time (in milliseconds) of
each Modified Shepard version.
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Figure 21 Average grid errors (900 cells) per
Modified Shepard version.

The results of the application of versions 2 and 4 to
real data are presented in figures 22 to 27. It can be
observed that in this dataset there is a global smoothing
from version 2 to version 4, especially in the region where
there are less sample points.

Figure 22 Real sample distribution – top view.

Figure 23 Shepard02 result – top view.



Figure 24 Shepard04 result – top view.

Figure 25 Real sample distribution – perspective view.

Figure 26 Shepard02 result – perspective view.

Figure 27 Shepard04 result – perspective view.

8 Final remarks and future work
Achieving an optimized interpolation method taking into
account both accuracy and performance is very important
for many applications. As reported by Basso and Freitas
[3], our motivation was to visualize three-dimensional
surfaces approximated from scattered data obtained from
oil prospecting activities. However, we can find
application of these results in diverse areas such as fluid
dynamics and biomedical data. This is possible because of
the flexibility of the Modified Shepard interpolation
method. Although being locally designed, this method
allows to vary radii Rq and Rw, which determines the
influence of data points, thus controlling how much global
or local will be its application.

We shall consider next the introduction of
monotonization techniques of the type found in modern
high-resolution methods for partial differential equations
like the PPM code originally developed by P. Collela, H.
Glaz and P. R. Woodward in the early 1980’s. Those
methods proved very successful in the simulation of very
complex nonlinear phenomena, like compressible
convection, fluid instabilities, turbulent flows and
interaction of shock waves, see e.g. [5,6,7].

These techniques compute local linear or quadratic
interpolants to describe the structure of certain carefully
selected flow variables within the grid cells (cell sub-
structuring), which are subsequently modified by
examining behavior on the neighboring cells, see e.g. [8].
The latter is a monotonization step adding some artificial
diffusion, which turns out to be very important for the
high resolution/accuracy features of the method.

It seems likely that similar techniques can be
employed on the nodal functions Qk(x,y) above before
they are used to generate the final interpolant improving
stability and accuracy properties at the expense of a small
extra work. This, however, will be the subject of another
paper.
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