
Parallelizing MPEG Video Encoding using Multiprocessors�

DENILSON M. BARBOSA1 JOÃO PAULO KITAJIMA 2 WAGNER MEIRA JR.1

1Departmento de Ciência da Computação
Universidade Federal de Minas Gerais

Caixa Postal 702, 30123-970
Belo Horizonte, MG, Brasil
{dmb,meira}@dcc.ufmg.br

2Laboratório de Bioinformática
Universidade Estadual de Campinas

Caixa Postal 6176, 13083-970
Campinas, SP, Brasil

jpk@lbi.dcc.unicamp.br

Abstract. Many computer applications are currently using digital video. Recent advances in digital imaging
and faster networking infrastructure made this technology very popular, not only for entertainment, but also
in health and education applications. However, high quality video requires more storage space and com-
munication bandwidth than traditional data. To deal with this problem, most of the digital video encoding
techniques use a compression scheme. The MPEG committee has defined widely used standards for digi-
tal video encoding providing high quality images and high compression rates. However, real-time MPEG
encoding also demands high computational power, usually far beyond traditional sequential computers can
provide. Fortunately, the algorithms compliant to the MPEG standard can be parallelized. In this work, we
propose a novel and simple shared-memory parallel algorithm for MPEG-1 video encoding based on the
parallel execution of different coarse grained tasks (read pictures, write coded frames, I, P, and B frames
coding). Two synchronization strategies are implemented and experimental results show that encoding rates
of 43 frames per second are achieved, which is almost 50% better than the real-time encoding standard rate
(30 frames per second).

1 Introduction

Many applications are requiring nowadays high quality
video encoding and transmission. HDTV (High Defini-
tion TV), Video on Demand services and telepresence
applications, such as remote surgeries, are some impor-
tant examples of these applications. Although the under-
lying telecommunication infrastructure allows real-time
transmission of streaming media, real-time encoding of
high quality digital video demand large amounts of com-
puting power, usually far beyond traditional hardware
can provide. Despite its increasing popularity, real-time
encoding of digital video remains a challenge.

Digital video requires more storage space and com-
munication bandwidth than traditional data. To deal with
this problem, most video encoding standards define com-
pressing algorithms to reduce these requirements. The
MPEG (Moving Pictures Experts Group) committee is
an international task force devoted to develop standards
for digital video encoding. At the present moment, there
are two MPEG standards concerning high quality video
encoding: (1) MPEG-1 and (2) MPEG-2. The later is
an evolution of the former: it handles more video for-
mats, such as HDTV, and deals with transmission issues.
However, the encoding algorithms are very similar in

�This Work was partially supported by CAPES and PROTEM-CC
Almadem Project (CNPq grant 680072/95-0). João Paulo Kitajima has
a FAPESP fellowship since May 1st, 1999 no. 99/01389-0.

both standards. There are two other MPEG standards:
(1) MPEG-4, which deals with digital video in low com-
munication capability environments; and (2) MPEG-7,
which is currently under development and is devoted to
storage and retrieval of descriptive information regard-
ing the sequence as long as allowing search by contents
in video sequences.

In this work, we are specifically interested in the
MPEG-1 Video Standard [5] due to its relative simplic-
ity. Moreover, it would be easy to extend a MPEG-1 en-
coder to take into account the MPEG-2 standard. Here-
inafter we use the term MPEG to refer to the MPEG-1
standard.

The frames in a MPEG sequence are encoded inside
Groups of Pictures (GOPs). Each frame has a decoding
timestamp relative to the beginning of its corresponding
GOP. The standard defines 4 models for frame encoding:
I, P, B, and D. D-frames cannot be mixed with frames
of other types and are only used in special purpose se-
quences. I frames are encoded independently of other
frames in the sequence, while P and B frames are en-
coded as differences from one or two previous (or subse-
quent)reference frames, as depicted by Figure 1. These
differences are obtained via motion estimation and com-
pensation techniques [4].

The frame encoding dependencies turn into data de-
pendencies for the encoder. Besides, they can hamper

I B PB

coded frames

original frames

Figure 1: Frame encoding dependencies in a MPEG se-
quence.

the simultaneous encoding of the frames thus diminish-
ing the desired maximum speedup when going to paral-
lel [2].

There are some previous approaches of MPEG par-
allel encoding. Most of them employ eitherad hochard-
ware or data-parallelism software strategies. There are
two major drawbacks in these approaches: (1)ad hoc
hardware becomes obsolete and (2) the communication
overhead is high in data-parallel algorithms [3].

In this paper we present a simple and novel ap-
proach to parallelize the MPEG encoding using shared-
memory multiprocessors. This paper is organized as fol-
lows. Section 2 describes related work and Section 3
presents our approach for parallel MPEG encoding. Im-
plementation issues are discussed in Section 4 while our
experimental results are summarized in Section 5. Fi-
nally, some conclusions and future works are outlined in
Section 6.

2 Related Work

Previous approaches to parallelize MPEG encoders use
eitherad-hochardware or message passing architectures.
The major problem of using special hardware, as de-
scribed in [12], is that the hardware becomes obsolete.
This happens due to improvements in processing and
memory components or in video encoding technology
and standards1 that cannot be incorporated in existentad
hochardware.

Regarding general purpose parallel machines, [1]
presents a data-parallel algorithm for real-time MPEG-2
encoding. It implements an encoder for the Intel Paragon
distributed memory parallel machine and for a network
of workstations. The strategy described consists in di-
viding each frame and distributing the pieces among the
processors. However, there are some portions of the
frames that have to be sent to more than one processor

1They also become obsolete.

due to block matching motion estimation techniques [7,
3]. Moreover, the frames cannot be arbitrarily divided,
thus defining an upper bound on the number of proces-
sors that can be used [1], depending on the size of each
frame in the sequence being encoded.

There is yet another problem with this approach.
The amount of data exchanged can be very high. Fur-
thermore, adding more processors makes the problem
worse: the proposed solution does not scale [3]. The
authors suggest an alternative approach where each pro-
cessor gathers all data it needs before start encoding.
This avoids communication during the encoding phase
but does not reduce the amount of exchanged data.

Another strategy is to send whole frames for each
processor, as described in [10]. The problem here is that
the amount of data needed by a processor depends on the
type of the frame being encoded. A processor encoding a
B-frame will need more data than a processor encoding
an I-frame. Clearly, the communication workload will
not be homogeneous among the processors.

There are not many approaches using shared mem-
ory parallelism. In [11] the parallelization of the motion
estimation process for a MPEG-4 encoder is described.
In this case, the overall speedup is limited to the por-
tion of time spent in this phase of the encoding. Further-
more, there are heuristic computations that produce good
visual results and require much less computing power
[13]. In our work, we use one such heuristic [4, 7] that,
alone, improves the sequential encoding time by a factor
of 74% [2].

3 Proposed Algorithm

We propose here a new algorithm [2] based on shared-
memory parallelism to overcome communication prob-
lems of data-parallel approaches. This is achieved by (1)
using a shared memory parallel machine, where com-
munication is performed through primary memory, and
(2) sharing the uncompressed original frames among the
tasks. With this approach, the reference frames can be
accessed directly from memory, avoiding communica-
tion among processors during encoding.

We define two kinds of task: (1) GOP encoding
task and (2) picture encoding task, responsible respec-
tively for GOP and frame encoding. The smaller task
performed in our approach is the encoding of a single
frame, regardless of its type. There are also the main
task, which coordinates the GOP tasks, and the write task
that flushes the encoded frames stored in memory to the
final compressed file. The algorithm defines two equally
sized buffers: (1) the read buffer, which holds uncom-
pressed frames, and (2) the write buffer, where the coded
frames are stored prior to be written in the compressed

Main

write

pic pic pic pic pic

GOP

. . .

. . .

. . .

pic pic pic pic pic

GOP

. . .

. . .

. . .

pic pic pic pic pic

GOP

. . .

. . .

. . .

. . .

write buffer.

. . .

Figure 2: Distribution of tasks in the proposed parallel algorithm.

output file.
Figure 2 shows the structure of our algorithm. In

the figure, circles represent tasks, dashed lines represent
synchronization dependencies and solid lines represent
data flows. The figure shows only the write buffer.

3.1 Synchronization Steps

There are two synchronization steps in our algorithm:
(1) encoding synchronization and (2) writing synchro-
nization. The first guarantees the correct encoding of
the frames, provided the dependencies imposed by the
MPEG standard. This is done by coordinating the GOP
tasks with their corresponding picture tasks. Each GOP
task encodes the appropriate GOP heading and creates as
many picture tasks as there are frames inside the GOP.
Those tasks are performed in parallel and, when they are
all finished, the GOP task is considered completed. The
main task coordinates the GOP tasks in a similar way.

The writing synchronization process prevents occu-
pied write buffers from being incorrectly overwritten by
other tasks. There are flags to indicate the state of the
write buffers. When a frame is coded, the correspond-
ing flag is set and no other frame can be encoded on that
buffer. The write task, after dumping that buffer to disk,
clears its flag. Another compressed frame can then be
written on. The task of dumping frames into the out-
put file must be serialized because the ordering of the
frames is unique. Therefore, this synchronization step
can hinder the full exploitation of the parallelism of our
algorithm.

4 Implementation

The tasks defined in a parallel algorithm are mapped
to code fragments in the real parallel program. This
mapping process is largely dependent of the parallel ar-
chitecture in use. Multithreaded programming environ-
ments are well suited for shared memory algorithms be-
cause the tasks are easily mapped onto threads of execu-
tion. These threads, by their nature, share every resource
available for the program, including the main memory.
We implemented our algorithm using the C language and
the multithread programming library Pthreds [6].

In a multithreaded environment, the allocation of
tasks to processors can be done automatically by the par-
allel machine’s operating system. Thus, the programmer
focus only in the synchronization and communication of
tasks and the mapping of these tasks to threads. In this
work we create different kinds of threads corresponding
to the different kinds of tasks. However, a single thread
can perform more than one task in different moments
(e.g., a given picture encoding thread can encode more
than one frame).

Tasks in a shared memory environment use shared
portions of memory to communicate. In this work we
define two structures, which we call task tags, for GOP
tasks and picture tasks. A GOP tag holds information re-
garding the number and the position of the frames inside
the GOP. These tags are created by the main task and
processed by GOP tasks (i.e., written by the main thread
and read by the GOP encoding threads). The picture tag
holds informations on the read and write buffers to be
used, the type and the location of the frame to be coded
and, when necessary, the number of the buffers where
the reference frames are stored. These tags are created
by GOP tasks and used by picture tasks.

Main

GOP

picpicpicpic pic. . .

GOP

picpicpicpic pic. . .

GOP

picpicpicpic pic. . .

. . .

task tag

(a) Fork-join

task tag

Main

GOP GOP GOP

. . .

. . .

pic pic pic picpic picpicpic

(b) Bag of tasks

Figure 3: Synchronization strategies. The circles represent threads.

Moreover, every tag contains semaphores to signal
the start and the completion of the corresponding task.
Thus, both synchronization and communication among
tasks are done using the tags. We use semaphores to
avoid race conditions when accessing tags.

In this work, the main task (performed by the main
program – which is also a thread) creates a number of
GOP tasks and coordinates the execution of them by sig-
naling the GOP encoding threads via the semaphores in
the corresponding tags. The GOP encoding threads, by
their turn, create picture tasks and fill the correspond-
ing tags. Each GOP encoding thread encodes the GOP
header, starts the picture encoding threads (signaling the
tags) and blocks until all frames are coded. When the
task is completed, the GOP encoding thread signals the
main thread which creates a new GOP task to be per-
formed.

Concerning the picture tasks synchronization, we
implemented two different strategies: (1) fork-join and
(2) asynchronous execution of threads, also known as a
“bag of tasks”.

4.1 Fork-Join Synchronization

In this strategy, each picture encoding thread is attached
to a unique GOP encoding thread. Moreover, there is
a fixed number of picture threads to each GOP thread.
Therefore, a given picture encoding thread will always
encode frames of the same type. Each GOP task holds a
private vector of tags as shown by Figure 3(a).

The major problem with this approach is the syn-
chronization overhead imposed. After finishing a task,
a given picture thread cannot encode another frame un-
til every other thread inside the same GOP is finished.
If this synchronization is not respected, the buffers as-
signed to the GOP task can be replaced by new frames

while still in use by other tasks.

4.2 Asynchronous Encoding

There is only one picture tags vector, shared by all GOP
and picture threads, in this strategy. Each GOP task
writes in a portion of this vector, creating the correspond-
ing tasks. All picture threads read this vector in a circu-
lar circuit (Figure 3(b)) encoding the first available task
found. Thus, the picture threads are no longer attached to
particular GOP threads and eventually encode different
types of frames.

With this approach, the number of picture threads
no longer depends on the number of GOP tasks. The
number of buffers, however, is still a function of the
number of GOP tasks and the number of frames per GOP.

5 Experimental Results

Both versions of the algorithm were implemented and
tested on a Sun Enterprise 10000 belonging to CENA-
PAD2-MG/CO. This machine has 32 processors and 8
GB of primary memory. Unfortunately, exclusive ac-
cess to this machine was not possible, although its load
was stable during the experiments. The average work-
load of the machine during our experiments was of 15
CPUs fully busy. There were idle processors, but the
processor-memory bus was shared, as well as the disk
subsystem. The standard deviation of the measures were
low, reinforcing the load stability of the multiprocessor.

5.1 The Parallel Encoder

The first step towards the intended parallelization was
to isolate the encoding routines for I, P, and B frames.

2Centro Nacional de Processamento de Alto Desempenho.

sequence frames screen size
football 146 320� 240

susie 148 320� 240

sun 4653a
352� 240

leroy 2054 352� 240

Table 1: Test sequences.

aIn the first experiment only 1000 frames are used.

Our first approach was to use available public domain
encoders [8, 9]. However, these encoders did not suit
our intended modularization. We then implemented a
simple MPEG-1 encoder, based on the MPEG syntax
described in [7]. Some optional features of the MPEG
standard were not implemented. Although they are very
important, we left them as future work because our cur-
rent major concern is not video quality but evaluate both
speedup and scalability of our algorithm.

In this work, we fixed the number and the distribu-
tion of the frames for the encoder. We used 12 frames per
GOP, according to the following sequence: I-B-B-B-P-
B-B-B-P-B-B-P. This generated a uniform workload in
every experiment of 12 picture tasks for each GOP task.

5.2 Video Sequences Benchmark

The computational effort needed to encode a video se-
quence depends largely on the sequence itself. Besides
screen size and number of frames, one of the most im-
portant factors is the complexity of the scenes [4]. Thus,
in order to better determine the performance of our al-
gorithm, we chose four different sequences to run the
experiments. Table 1 shows some features of these se-
quences.

From these four sequences, two are considered sim-
ple: susie andleroy. Thesusie sequence shows a girl
answering the phone and theleroy video shows an in-
terview with a musician. The other two are considered
more complex.Football shows a scene of an American
football game whilesun is a promotional sequence pro-
duced by Sun Microsystems. Thesusie andfootball se-
quences were used as test sequences by the MPEG com-
mittee. We decided to use also longer sequences to verify
the impact of the size of a sequence over the encoder’s
performance.

5.3 The Experimental Environment

Two experiments were devised in order to characterize
the performance of our encoder according to the syn-
chronization technique used. The first experiment com-
pares the speedup and the efficiency of each synchro-
nization strategy. By efficiency we mean the portion of

time the encoder spends doing useful work. More specif-
ically, the time spent in file reading and synchronization
steps are not considered useful. The second experiment
is intended to verify the real-time encoding capability of
our encoder. The benchmark in this experiment is the 30
frames per second threshold, accepted as the minimum
for real-time encoding.

In the first experiment we used 1, 2, 3, and 4 si-
multaneous GOP tasks for the fork-join encoder (corre-
sponding to 12, 24, 36 and, 48 picture tasks and threads).
The bag of tasks version was tested with 1, 2, 4, 8, 16,
and 32 independent picture encoding threads. In this
configuration, we used 4 simultaneous GOP tasks or, in
other words, 48 picture tasks.

In the second experiment, we used the configuration
that exhibited the best performance: using bag of tasks
synchronization with 16 threads. Different portions of
the same sequence were encoded.

We performed 20 measures for each point. In order
to reduce the impact of the machine load, the measures
were compared to the average of these 20 points. The 5
points presenting the largest deviation were discarded.

5.4 Performance Evaluation

The overall speedup of both versions is depicted by Fig-
ure 4. The fork-join version is limited to a speedup close
to 5, while the bag of tasks version presents almost linear
speedups when up to 8 threads are used. Since we do not
change the MPEG encoding algorithms, the above ideal
speedup in the figure is due to the write and GOP tasks
which are also performed in parallel.

Figure 5 presents the average encoding efficiency
curves for both versions of the encoder. The figure shows
that I/O and wait times due to synchronization operations
are the major factors of performance degradation of the
fork-join version. The graph for the bag of tasks version
shows that these overheads have less impact over the en-
coder’s performance until 32 threads are used. The first
advantage of the bag of tasks strategy can be seen by the
comparison of these two figures. Since the fork-join ver-
sion uses more picture threads, more requests to the I/O
subsystem are performed. Therefore, it is more likely to
overload the machine by using this approach.

However, Figure 5 shows that wait times due to syn-
chronization steps are the major limiting factor to the
performance of the fork-join version. Picture threads in
this version of the algorithm spend more than 50% of
their time in these operations. Again, the bag of tasks
version performs better, as detailed by Figure 6. There
are two main reasons for this fact: (1) the number of
threads used and (2) the flexibility of the scheme em-
ployed. Since synchronization is done by using shared

12 24 36 48

threads

0

20

40

60

sp
ee

du
p

ideal
average

(a) fork-join version

1 2 4 8 16 32

threads

1

10

100

sp
ee

du
p

ideal
average

(b) bag of tasks version

Figure 4: Overall speedup.

12 24 36 48

threads

0

25

50

75

100

%
 o

f
tim

e

work

I/O

wait

(a) fork-join version

1 2 4 8 16 32

threads

0

25

50

75

100

%
 o

f
tim

e
work

I/O

wait

(b) bag of tasks version

Figure 5: Average efficiency.

semaphores, more threads represent more synchroniza-
tion operations and greater synchronization times.

The fork operation consists in the division of the
GOP task in a number of picture tasks. The encoding
process is then blocked until all picture tasks are done
(the join operation). With this strategy, when a thread
finishes encoding a frame, it remains blocked until all
other threads (attached to the same GOP) also finish their
work. Since encoding times are different for different
frames, the longest encoding time will determine the en-
coding time for the entire GOP. There is another similar
synchronization step concerning the main thread and the
GOP threads which increases the synchronization over-
head of this strategy.

The bag of tasks strategy is a much more flexible
approach. Although the synchronization for the GOP
threads remains the same, the picture threads search for

new tasks independently of GOP threads signals. Also,
the picture threads do not wait for other picture threads.
However, by increasing the number of threads in the
encoder, we diminish the relative number of tasks per
thread. The higher synchronization times in Figure 6 for
16 and 32 threads are a consequence of this fact. At the
cost of adding more simultaneous GOP tasks, thus in-
creasing the number of picture tasks and buffers used,
the efficiency can be further improved. Since the largest
buffer used in our experiments occupied 115 kilobytes
of data, adding more buffers is not a concern.

Regardless of the thread synchronization strategy
used, two facts were observed: (1) the write synchro-
nization overhead was insignificant and (2) the algorithm
performs slightly better with longer sequences. Also, as
expected, the complex sequences (football andsun) de-
manded more average encoding time per frame than the

12 24 36 48

threads

0

0.25

0.5

0.75

1

1.25

se
co

nd
s

football

susie
sun

leroy

(a) fork-join version

1 2 4 8 16 32

threads

0

0.25

0.5

0.75

1

1.25

se
co

nd
s

football

susie
sun

leroy

(b) bag of tasks version

Figure 6: Synchronization times.

500 1000 2000 4000

frames

0

0.1

0.2

0.3

se
co

nd
s

work

I/O

wait

(a) impact of sequence size

500 1000 2000 4000

frames

34

38

42

46

fr
am

es
 p

er

se
co

nd

without I/O

with I/O

(b) frame rates

Figure 7: Real-time encoding.

simple ones.

5.5 Real-time encoding

The second experiment, concerning real-time encoding,
has two goals: (1) verify the impact of sequence size
over the encoder’s performance and (2) verify the capa-
bility of real-time encoding (i.e., more than 30 frames
per second). The first goal is hard to achieve because the
complexity of different portions of a sequence may vary.
In this experiment, we used 500, 1000, 2000, and 4000
frames of thesun sequence, because its scene complex-
ity is approximately the same across the sequence. This
was also verified by our experiment.

As mentioned, the encoder used in this experiment
has 16 picture threads and uses the bag of tasks strategy.
The results are summarized by Figure 7. The graph in
Figure 7(a) shows that the encoder performance seems
not to be affected by the size of the sequence. As men-

tioned however, the encoder performed slightly better
with longer sequences. This is also confirmed by the
slowly decreasing average frame encoding times in the
figure.

In Figure 7(b) we show the frame encoding rates
achieved, either with and without considering I/O times
for frame reading. We overlooked I/O times consider-
ing that an ideal real-time encoder would grab the un-
compressed digital frames from a digitizer attached to
a camera or a VCR, would store them in a temporary
buffer and would encode them directly from the main
memory.

The results show that our encoder was able to en-
code 43 frames in a second, which is almost 50% better
than the 30 frames per second threshold, widely accepted
as adequate for video encoding.

6 Conclusions and Future Works

This paper presented a simple and novel approach to par-
allelizing MPEG video encoding using shared-memory
multiprocessors. Also, two implementation strategies
were discussed. Our parallel encoder was able to encode
43 frames per second using only 16 threads. This figure
was achieved using anon dedicatedSun multiprocessor
with 32 processors. Although this machine is still ex-
pensive, in a medium term, it will sell as a deskstation
(QuadPentium PCs are already sold by less than US$
10,000.00).

Two versions of this algorithm were implemented.
The encoders were compared regarding speedup and av-
erage efficiency. Our experimental results show that the
bag of tasks strategy performs better than the fork-join
approach. Regardless of the synchronization strategy,
our algorithm performed better with longer sequences.

The performance exhibited by our parallel encoder
is promising and we believe in further improvements.
The more-than-necessary encoding rate suggests that the
30 frames per second threshold can be achieved when
considering other overheads (e.g., due to capture and
digitization processes) and other standards (e.g. MPEG-
2 video). Moreover, it suggests that similar results can be
achieved using less powerful and expensive machines. If
the multiprocessor is dedicated to the encoding process,
30 frames per second would be sustained without diffi-
culty.

Future work includes (1) implementation of adap-
tive quantization to improve video quality, (2) audio en-
coding, and (3) further code improvement in order to
achieve 30 frames per second using a less expensive plat-
form (e.g., a multiprocessor Intel PC).

Finally, we would like to acknowledge CENAPAD-
MG/CO for making their multiprocessor available and
Almadem PROTEM-CC project.

References

[1] S. M. Akramullah, I. Ahmad, and M. L. Liou. A
Portable and Scalable MPEG-2 Video Encoder on
Parallel and Distributed Computing Systems. In
Symposium on Visual Communications and Image
Processing ’96, pages 973–984, Orlando, Fl., 1996.

[2] Denilson M. Barbosa. MPEG Encoding of Digital
Video in Parallel. Master’s thesis, Federal Univer-
sity of Minas Gerais, March 1999. in Portuguese.

[3] Denilson M. Barbosa, João Paulo Kitajima, and
Wagner Meira Jr. Real-Time MPEG Encoding in
Shared-Memory Multiprocessors. To appear in the
2nd International Conference on Parallel Comput-
ing Systems, 1999.

[4] Vasudev Bhaskaran and Konstantinos Konstan-
tinides. Image and Video Compression Standards:
Algorithms and Architectures. Kluwer Academic
Publishers, second edition, 1997.

[5] ISO/IEC 11172-2: Coding of Moving Pictures and
Associated Audio for Digital Storage Media at up
to About 1.5 Mbit/s - Part II: Video, 1993.

[6] Bil Lewis and Daniel J. Berg.Multithreaded Pro-
gramming with Pthreads. Prentice Hall PTR, 1997.

[7] Joan L. Mitchell, William B. Pennebaker, Chad E.
Fogg, and Didier J. LeGall.MPEG Video Com-
pression Standard. Chapman and Hall, 1996.

[8] MPEG-2 Video Encoder, Version 1.1a. MPEG
Software Simulation Group, 1994.

[9] PVRG MPEG codec, Version 1.2.1. Portable Video
Research Group, Stanford University.

[10] K. Shen, L. Rowe, and E. Delp. A Parallel Im-
plementation of an MPEG-1 Encoder: Faster than
Real-Time! InSPIE Conference on Digital Video
Compression: Algorithms and Techniques, San
Jose, CA, 1995.

[11] M. K. Steliaros, G. R. Martin, and R. A. Pack-
wood. Parallelisation of Block Matching Motion
Estimation Algorithms. Technical Report CS-RR-
320, Department of Computer Science, University
of Warwick, Coventry, UK, January 1997.

[12] H. H. Taylor et al. An MPEG Encoder Implementa-
tion on the Princeton Engine Video Supercomputer.
In Proceedings of Data Compression Conference,
pages 420–429, Los Alamitos, CA, 1993.

[13] A. Murat Tekalp.Digital Video Processing. Pren-
tice Hall PTR, 1995.

