Simulation of Correlated Intensity SAR Images

Oscar H. Bustos', ANa G. FLEsiA', ALEJANDRO C. FRERY?

IFacultad de Matematica Astronomia y Fisica, Ciudad Universitaria, 5000 Cérdoba — Argentina
bustos,flesia@mate.uncor.edu
2Departamento de Informética, Universidade Federal de Pernambuco, 50732-970 PE — Brazil
frery@di.ufpe.br

Abstract.

This paper discusses some methods already available for the simulation of correlated

heterogeneous targets in SAR images, and extends one of those methods. This new technique is based
on the use of a correlation mask and Gaussian random variables, in order to obtain spatially dependent
Gamma deviates. Its theoretical properties are presented, along with an algorithm. These Gamma
random variables, in turn, allow the obtainment of correlated K deviates.

1 Introduction and definitions

In the synthetic aperture radar (SAR) community the
multiplicative model has been widely adopted for the
modelling of these images [10]. This model assumes
that the value in every pixel, in the intensity format,
is the observation of a stochastic process Z defined as
the product of two (mutually independent) stochastic
processes: o and Y;, where o represents the ground
truth and Y7 models the speckle noise

Z =0-Y;.

Amplitude format is the square root of the intensity
signal. Only intensity data will be treated here.

It is possible to assume that the speckle noise is a
white noise process, i.e., formed by independent vari-
ables, and that they all obey an exponential distribu-
tion with unitary mean. Since this noise is very intense
and makes difficult the direct use of the images, it is
customary to process the images in order to be able
to work with multilook data. These data are obtained
taking the mean over n (ideally independent) samples
of the same image, where from one observation (look)
to the next the only possible variation is due to the
noise. These samples are obtained in the processing
stage and, thus, there is no time elapsed among them.

Calling Y, ; the speckle in each look, and assuming
that they all obey a standard exponential distribution,
it is well known that the mean Y7 = n=*! Z:Zl Yor
obeys a Gamma distribution, denoted Y; ~ T'(n,n)
and characterised by the density

n
n n

gy; (y) = Wy “Lexp(—y/n) y,n>0.

This is a commonly accepted characterisation of the
multilook speckle noise in intensity format. In order

to derive the law that governs the observed data, it
is neccesary to postulate distributions for the ground
truth o.

A widely used model for the ground truth of het-
erogeneous and homogeneous targets is the I'(«, 3) dis-
tribution, characterised by the density

= 60‘
I'(a)

where « is referred to as the shape parameter and 3 as
the scale parameter. This distribution, besides show-
ing good fits to a wide range of targets, can be derived
from the physical modelling of the way matter and
radiation interact in the image formation. This in-
terference phenomenon is present in every image that
uses coherent illumination, as is the case of SAR, ul-
trasound, sonar and laser imaging.

The model for the observed data Z, i.e., the prod-
uct of the mutually independent processes ¢ and Y7,
has marginal intensity /C distribution. The correlation
introduced in the model of o will induce a certain cor-
relation structure in Z. For a detailed discussion of this
model and its extension, the reader is referred to [10].

A weakly stationary model will be used for the
o field, with a non-trivial correlation structure. This
departure from the white noise model requires a precise
and unique definition of the family of distributions to
be simulated, since the joint density no longer is the
product of the marginal densities.

In order to be consistent with the multiplicative
model, it is imperative to impose that the marginal
distributions obey Gamma laws, but there is no sin-
gle definition of what a vector of correlated Gamma
random variables is. The definition provided in [5, 11]
will be adopted here, since it allows the treatment of
uncorrelated Gamma random variables as a particular

9o (0) o Lexp(—0/p),

o,a,8>0,



case of correlated ones.

Definition 1.1 The random vector X' obeys a corre-
lated Gamma law if each of its components X] margi-
nally obeys a Gamma law.

Definition 1.2 The stochastic process X has a corre-
lated Gamma distribution if each finite subset of X has
a correlated Gamma law.

2 Generation of correlated Gamma deviates

Differently from the Gaussian case, where the correla-
tion matrix and the marginal distributions completely
specify the joint distribution, these two quantities do
not induce an unique joint distribution for correlated
Gamma random variables.

The applications that we bear in mind only require
the specification of the marginal distributions and the
correlation structure. The remaining components re-
quired to specify the joint distribution of the process
will be induced by the way it is constructed.

Given a set of shape parameters aq,...,Q,, a set
of scale parameters Gi,...,03,, and correlations p; ;,
with 1 < 2,7 < n, it is desired to obtain observations
from the random vector X = (Xi, ..., X,)? such that
Xi ~ F(Ozi,ﬁi) and that CO?"T(Xi,Xj) = Pij-

An immediate difficulty that arises with this pro-
posal is that not every set of correlations {p; ;}1<i j<n
is consistent with an arbitrary set of scale parame-
ters {Oéi}lgign since the latter set imposes restrictions
on the former. Another limitation is that, even with
consistent scale parameters and correlations at hand,
there might not be a suitable algorithm for the obtain-
ment of the deviates. This is the reason why all the
available procedures for the generation of correlated
Gamma variables are effective in a restricted domain.

There are simple algorithms that allow the sim-
ulation of both positively- and negatively-correlated
Gamma random variables for the bivariate case. When
more than two random variables are sought, the restric-
tions are more severe. In the following section the main
simulation procedures available for the generation of
correlated Gamma random deviates will be presented.

2.1 Bivariate Vectors

The methods presented in the sections 2.1.1 and 2.1.2
yield pairs of correlated Gamma random variables, with
positive and negative correlation, respectively. They
both require a generator of outcomes of independent
Gamma random variables.

2.1.1 Trivariate Reduction Method

This method, outlined in [1], allows the generation of
a two-dimensional random vector (X7, X3) with mar-
ginal Gamma distributions with any shape and scale
parameters (namely oy, s and (i, 2), but imposes
the following restriction on the correlation between the
components: 0 < p < min{oy, a2}/ /a10z. Though
this is a limitation, this method allows the generation
of interesting situations, particularly when the scale
parameters are close. In fact, if a; = «o then there
is no restriction on the correlation coefficient p, and if
a1 = ag = 1 then positively correlated exponential de-
viates can be obtained. This algorithm is based upon
the additive properties of the Gamma distributions. It
proceeds as follows:

1. Generate an observation from the random variable

Yy ~T(oq — py/oqaz, 1);

2. generate a deviate from Yy ~ ['(ag — py/arag, 1)
which is independent of Y7;

3. generate an outcome of Yz ~ I'(p,/araz, 1) which
is independent of Y7 and of Y5;

4. return the observation from X; = é(Yl +7Y3) and
Xo = é(Yz +Y3).

This technique is known as trivariate reduction
because the correlated deviates from X; and X5 are
obtained reducing three independent random variables
Y1, Yo and Y;. Note that this algorithm exerts no
control over the joint distribution of (X, Xa).

Other methods based on the Laplace-Stieltjes trans-
form [7, 8], offer more control over the higher-order
moments of the distribution, but they are harder to
use in non-trivial situations.

If the simulation of negatively-correlated Gamma
variables is needed, the reader can use the following
method.

2.1.2 Beta-Gamma Transformation

Some of the authors the have considered the (hard)
problem of negatively-correlated Gamma random vari-
ables are [6, 12]. Consider the independent identically
distributed random variables &1, &5, &3 and &4 variables
obeying a I'(«, 8) law. Define X = £ and

&
_X+£2

(&3 +&4).

The variable X has I'(«, 3) distribution while the
ratio £2/(£1 + &2) has a Beta distribution with param-
eters (o, ), and its factor (£3 + &) is an independent



random variable that obeys a I'(2a, ) law. It is possi-
ble to see that Y is a I'(«, 3) distributed random vari-
able, and that there is negative correlation between X
and Y because the latter is inversely proportional to
the former. It can be proved that this correlation is
given by p(X,Y) = —a/(1 + 2a) and, therefore, it is
bound to the (—1/2,0) interval.

The advantage of this method is its computational
simplicity, though it also requires the use of a generator
of Gamma deviates. It can be generalised for higher di-
mensions, but the distributional properties of the data
are hard to obtain unless trivial situations are simu-
lated.

2.2 Multidimensional Vectors and Generalised
Moving Averages

It is already known that if a moving averages filter of
size L is applied to a vector of uncorrelated Gamma
random variables, then the result is a vector of corre-
lated Gamma random variables with triangular shaped
autocorrelation function, where the shape parameter is
multiplied by L. More generally, every filter with finite
impulse response with binary coeflicients will preserve
the Gamma marginal distribution and will introduce
some correlation structure.

Using this property, Ronning [11] and Blacknell [3]
propose methods for the simulation of correlated Gamma
deviates. The major problem is the determination of
the filters that have to be applied, since they only allow
the generation of very simple correlation structures.
They are presented in the following sections.

2.2.1 Incidence Matrix Method

This technique was introduced by Ronning [11] as a ge-
neralisation of methods for bivariate generation, where
only non-negative correlation is obtained (as in sec-
tion 2.1.1).

Consider v and ~?) vectors of positive constants
and dimensions N2 and M, respectively, with M >
N2, Assume that &1 = (551) ... 51(\2) and £2) =
( 52) ... 5\?) are independent random vectors such that
51-(1) ~ I‘('yi(l), 1) and 5§2) ~ I‘('yj(?), 1) forevery 1 < j <
M,and 1 <1 < NZ2. Then the covariances matrices of
€1 and £2) are, respectively,

r, = Diagonal(’yfl)7 - 7')/1(\}2))
T, = Diagonal('yg)7 ... ,75\?)

Consider T an incidence matriz, i.e., T is a N2 x
M matrix such that T; ; € {0,1}. Defining the vector
n=£&0 4 TE@ it is possible to prove that

1. the covariance matrix of n is ¥ = I'; + T2 T%;

2. if @« = (ay,...,ayz) is the diagonal of the covari-
ance matrix of 7, then a = 4 4+ T~2);

3. denoting every element of ¥ by o, ;, then

(1)+ZTzk'Yk i,k

Z T kT
k=1

Oii =
Oij =

4. every component 7; has I'(c;, 1) distribution for
every 1 <1 < NZ,

In this manner, the vector 1 = (7;)1<i<n2 has a
correlated Gamma distribution with means given by
a=(wy,...,an2) and covariance matrix X.

In order to introduce different scale parameters,
consider the positive numbers 3i,...,8y2 and B =
Diagonal (1/84,...,1/8yz). If ¥ = By it is immediate
that the marginal distributions are ¥, ~ I'(ay, Bi). It
is also possible to see that the correlation between vy
and %; is the same as the correlation between 7, and
5

With these results, in order to generate Gamma
correlated deviates with a certain correlation structure
it is neccesary to derive the incidence matrix T as well
as I and I'® in order to have 7 with the desired
correlation matrix X. An algorithm for this is as fol-
lows:

1. Define M = N?(N? —1)/2, ¥ the correlation ma-
trix and B the diagonal matrix with the desired
scale parameters.

2. Choose v?) a vector of constants and T an inci-
dence matrix such that

Oy = (1)+ZTzk'Yk ik

Z T T
k=1

Oij =

&, &7

3. Generate random deviates from L& ey

independent samples from I‘('yi@), 1) distrlbutlons.

Zkl

4. Define 'y( ) = Oi i ik VR )TM, for every

1 <4< N2

5. Obtain samples of 5(1), e ,51(\2, i

deviates from I'(; 1) ,1) random variables.

e., independent



6. Return ¥ = B(¢(M 4 T¢@)),

This method cannot yield Gamma random vari-
ables with negative correlation, and the shape parame-
ters are imposed by the desired correlations. Moreover,
it is often numerically unstable.

2.2.2 Moving Average Filter Method

This technique, due to Blacknell [3], is based on the
use of moving average filters over independent Gamma
random variables. The analysis of the filter is per-
formed using the moment generating function of the
result.

If X ~ I'(«, B) then its moment generating func-
tion is Mx (s) = E(exp(Xs)) = (1 — %s)o‘

Consider X = (X1,..., Xx)! part of a weakly sta-
tionary process; if for every s = (s1,...,8y), with
|s| < 8, holds that Mx(s) = B[}, exp(X;s;) < oo,
then Mx is called moment generating function of X.
Note that Mx,(s;) = Mx((0,...,si,...,0)") for ev-
ery s;, therefore if marginal Gamma distributions are
sought for each X; with shape and scale parameters
and § the following conditions must be verified:

Mx((5,0,...,0)") = Mx((0,s,...,0)")
Mx((0,...,5)")
— (1-29)"

We also have that E(X;X;) = 8%‘ [%MX(O)] and,
therefore, if the correlation p; is desired at lag 7 then
it must be imposed that

2 |55 Mx(0)] - B(x1)?
Var(Xy) ’ (1)

pi(X) =

The method proposed by Blacknell consists of ob-
taining X as Zle HYY,, with R > 1 finite, H, being
N x N matrices and Yq,..., Yg independent random
vectors, each one formed by independent identically
distributed random variables obeying Gamma distri-
butions such that Mx has the required properties.

Now notice that if Y is an N-dimensional ran-
dom vector, H is an invertible matrix and X = H'Y,
then X has its moment generating function given by
Mx(s) = My(Hs). Also if Yy,...,Yg are indepen-
dent random vectors, Hy,..., Hg are N X N matrices,
and X = S°% | H!Y,, then Mx(s) = [['~, My, (H,s).

Given L such that 1 < I < N define V, = {{ =
(h,...,0y) - & = 1,6, € {0,1}, I, ¢; = L}; then
for each € € Vy,, the circulant N x N matrix Hyy, is

defined as
b by ... Uy
1 KN gl €N71
=g
by f3 ... A

These matrices have the property that rows and co-
lumns have L non zero values.

Consider Y = (Y7,...,Yn)" a vector of uncorre-
lated Y; ~ I'(42, %) distributed random variables, then
for every t such that |t| < %, My (t) = Hi1(1 —
%Lti)’a_f. Therefore, if X = Hy 1Y, one has that

Mx((sl,...,SN)t) = My(H&LS)
S | CE-77) DI et

Therefore, for each 1 < k < N,

0)) = (1 - %sk)*w.
because there are only L rows where h; 3 # 0 and,
thus, X obeys the correlated Gamma distribution with
X; ~ I'(act, 3). The coefficients of correlation can be
evaluated using eq. (1), or from the moment generating
function at the desired lag jo:

Mx((O,...,sk,...

MX(Skm Sk0+j0) =

3

N
1 _
= J[a- L5 (hikoSho + Mi(kotjo) Sho+io))
=1

and comparing this function with the bivariate case,
since

Mx, x,(s1,52) =
(1= gs1)(1 = o)l 0P (1= S(s1 +52))
3 1 3 2 3 1 2 .
From this it is immediate the identification of the co-
efficient p.

In both cases the obtainment of p; as a function
of a and L is complicated, and only available in partic-
ular cases. It is also noteworthy that it is not possible
to establish a specific correlation with a single free pa-
rameter, so additional parameters are required.

Finally, the algorithm for the generation of the
vector X with correlated Gamma distribution can be
posed as:

1. Define py, ..., pr the desired correlation coeffici-
ents for the first R lags, @ and § the shape and
scale parameters for the final marginal distribu-
tions, and IV the dimension of the final vector.



2. Define Lq,...,L,, integers with 1 < L; < N and
for each of them let ¢; € Vi, be such that they
generate filters Hy, ,...,Hy . These filters induce
non-null autocorrelation functions only in the first
R lags.

3. Calculate a1, ..., a,; such that

1 1
P1 £1 (Hél Yl)
. — al . + “e .
PR pr(He, Y1)
1
p1(He,,Yim)
+ anm . )
pr(He, Yim)
where Y1,...,Y,, are N-dimensional independent

vectors that marginally obey Y; ; ~ I'(%2, %) dis-

tributions , for every 1 <¢ < Rand every 1 < j <
N.

4. Return X =>"1"  Hy, 1,Y;.
Note that

m N I N
= L0 =5 2 heas) 7
r=11=1 6

then Mx((0,...,8%,...,0)") = (1— %sk)’o‘ and X has
marginal Gamma distributions with the desired pa-
rameters o and 3.

This algorithm is relatively simple, though com-
putationally more and more expensive as the number
of non-null correlated random variables increases. This
limits its usefulness to “small” cases, where the biggest
non-null correlation lags are of order 2 or 3 at the most.

2.3 Transformation Method

An alternative approach to the problem of generating
outcomes from correlated Gamma vectors is a method
based in three steps:

1. generating independent outcomes from a conve-
nient distribution;

2. introducing correlation in these data;

3. transforming the correlated observations into the
desired marginal properties [10].

The transformation that guarantees this is ob-
tained from the cumulative distribution functions of
the data obtained in step 2 and that of the desired

distributions. The reader is invited to recall that if U
is a continuous random variable with cumulative dis-
tribution function Fy then Fi7(U) obeys a U(0,1) law
and, reciprocally, if V obeys a l£(0, 1) distribution then
F[}I(V) is Fy7 distributed. In order to use this method
it is neccesary to know the correlation of the random
variables after the transformation.

In principle, there are no restrictions on the pos-
sible order parameters values that can be obtained by
this method, but numerical issues must be taken into
account. Other important point is that not every de-
sired final correlation structure is mapped onto a fea-
sible intermediate correlation structure.

Consider any a > 0 and let G be the cumulative
distribution function of a I'(«t, &) distributed random

variable
a pry
Gy) = _(a) / 2o e 2%y,
() Jo

Let now ® be the cumulative distribution function of a
standard Gaussian random variable (denote this distri-
bution N(0,1)). Since U ~ N(0,1) then the variable
G o)) =X ~T(a, ).

Consider now the N2-dimensional random vector
(Ui, ...,Uyz2) with N(0, X) distribution, where

1 P1,2 ... P1,N2
P1,2 1 ... P2,N2
=1 .. : (2)
PNz P2NZ .- 1

with 0 < |p; ;| < 1, for every 1 < i < N? — 1 and
every i +1 < j < N2, Define for every 1 < k < N?
the random variable X; = G~ 1(®(Uy)); then X =
(X1,...,Xn2)! has a correlated Gamma distribution
with ,O(Xk,Xl) = Oé(E(Xk.Xl) — 1) Now

E(XpX;) =

[.].

ur)) G H(D(w)) padurdu,

where

by = 1 exp u% — 2pp ugpuy + ulQ
2 = - 2 :
2w, /(L —p2 ) 2(1 —pic,)

Since the function G~! is only available using nu-
merical methods, it is an approximation that may im-
pose restrictions to the use of this simulation method.

2.4 The sum of squared normals

It is known that the sum of the squares of n indepen-
dent identically standard Gaussian random variables



obeys a Gamma distribution with shape parameter
n/2. If another Gaussian vector is generated, with
the same distribution and independence structure, but
with correlation between corresponding coordinates in
the first vector, then the Gamma random variable ob-
tained from the second vector will be correlated with
that obtained from the first one.

This procedure, described for the bivariate case
in [2] and easily generalised to any finite number of
Gamma random variables, has the disadvantage of only
allowing shape parameters taking values n/2 with n in-
teger. The correlation between components is required
to be the square root of the final desired correlation,
which constitutes another restriction of the method.

A proof of the properties of correlated Gamma
fields obtained by this method is presented, and in the
following section this scheme will be extended to allow
the use of convolution in Gaussian vectors.

Proposition 2.1 Consider the o independent random
vectors 51, ..,5 each of dimension N2, all obeying
the N(0, %) distribution, such that ¥ is of the form
= %21 3)

with Xy given in eq. (2), 0 < p; ; <1 for everyl <i <
N?—landi+1<j< N2

Consider 1 = Z?ﬂﬁ?) then n = (N1,...,n2)"
has the correlated Gamma distribution such that n; ~
I'(a/2,1) and the correlation between 1; and n; is pf ;,
foreveryl <i<N2?—landi+1<j<NZ

Also if 1/B1,...,1/Bn2 are positive integers and
if B is the diagonal matriz formed by these constants,
then X' = Bn has correlated Gamma distribution with
marginals T'(a/2,8) and with correlation between X!
and X; given by pij, for every 1 < i < N? —1 and
i+1<j< N2

Proof: Some useful and well known results are:
1. If € ~ N(0,1/2), then £2 Ir(1/2,1).

2. Consider the independent identically distributed
random variables &1, ... ,&, obeying the N (0,1/2)
law, then &2 +--- + €2 ~ T(a/2,1).

3. Consider £ = (&,...,&y2)" an N2-dimensional
vector with N(0,%) distribution, where ¥ is as
given in eq. (3). Let §j = (&14,---,&nz2;)" with
1 < j < «, be N2-dimensional independent ran-
dom vectors, each having a N(0,%) distribution,

with ¥ of the form given in eq. (3). Define n =

a 2 [} o
Z] 15 = (Z‘:l 5%7‘]'7"'72‘7‘:1 5]2\]27‘7‘)25 and let
m = Z] 15”, with 1 <1 < N2. Then N~

I'(a/2,1), with E(n;) = a/2 and Var(n;) = a/2.
In other words, n has a correlated Gamma distri-
bution.

In order to compute the correlation between 7
and 7;, let us verify first that if (U, V) is a N((0,0), X)
distributed vector with covariance matrix of the form

Y= o % po 120'2
pPO102 o5
then F(U?V?%) = o%03(1 + 2p%). Using this, since

Cov(ns, n;) = E(nin;) — E(m:)E(n;), and since E(n;) =
E(n;) = a/2, we must compute E(1;,7;). Using the
fact that the vectors §j are independent, the previous

result and the fact that F(£2,) = 1/2, we have

7717773 Z Z
h=1 k=1
= ZZ zh jk

= Z Enéin +ZZE 2B )

h=1 h=1 kkh
= ab(& i j,i) + afa — 1)E(5i1)2

o« 9 1
= Z(l +2p7 ;) + ala — 1)1—1

a
= Z(a +2P?,j)

2

Then COU(U%%) = 1042 + 2!01] - aT = %Iozz,jv 50

Cov(mi;n)) _ 5075 — 2.
Var(m)Var(n;)) 2 "

p(ni,m;) =

Summarizing, consider 1) = (71, ..., 7y2)" is a N*-
dimensional vector with 77; ~T(a/2,1) and p(n;,n;) =
p?j If B = Dlagonal( . ’@_12) with 8; > 0 and

B N
X' = Bn then 7; ~ F(a/2 Bi) and Cov(X{,X}) =

Cov(ni,nj) :pij.

2.5 Proposal: multivariate reduction

The last method has a restriction on the possible val-
ues for the shape parameter, but it has the advantage
of being easy to implement and the restriction is of
no practical importance for the applications that we
bear in mind. This method relies on the obtainment of
correlated Gamma random variables, with correlations
that are the square root of the desired value.

The use of convolution filters for the generation
of such correlated Gamma deviates is proposed in this
work, using independent normal random variables as
input. The procedure can be outlined as



1. Generate independent normal observations.

2. Choose the correlation as the square of a suitable
function E, defined on Z2.

3. Calculate the mask 6 that the convolution filter
will use, such that 8«0 = F

4. Apply the convolution filter to the independent
normal deviates, obtaining outcomes from the pro-
cesses with correlation F in each component.

5. Return the sum of the squares of each normal de-
viate.

We will consider the family of functions E such
that

1. E:Z? — R is a periodic function with fundamen-
tal period Ry = {(s1,82)/0< 51,82 < N —1}.

2. There is a uni-dimensional periodic function F;
such that E‘(Sl7 82) = E1 (Sl)El(Sg).

3. There is a real characteristic function ¢ such that

_ c(s) 0<s<Z
El(s)_{ (N—s) Y41<s<N-1

The use of this technique will be illustrated with a
particular (useful and widely employed) characteristic
function: that of normal distribution. The following
definitions are needed:

Definition 2.1 Denote s = (s1,82) and let E : Z? —
R be the periodic function with fundamental period Ry
defined by

1 52+52 .
exp(—3==2)) ifse€ Ry
1 (N—51)%+s3 ;
B(s) = exp(—3 s ifs € Ry
B 187 +(N—55)* ;
exp(— T) . ifs € Ra
eXp( 1 (N 51)° Z‘(N s2) ) if s € Ry

where Ry = {8 : 0 < 81,80 < N/2}, Ry = {s: N/2 +
1<5 < N-1,0<s,<N/2}, Bg={s:0< 35 <
N/2,N/24+1 <83 <N—1}, and Ry = {s: N/2+1 <
81,82 < N —1}.

Definition 2.2 Let § : Z> — R be a periodic function
with fundamental period Ry such that

—-1N-1

Z > 0(t1,12)0(s1 — t1, 55 — o)

t1=0t2=0
E(s1, 32)

O%0(s1,82) =

and such that

O(N — s1,82) if (81,82) € R
0(s1, N — s2) if (81,82) € Rg
O(N — 51, N —s2) if (s1,82) € Ry

Proposition 2.2 There is a function 0 : Z> — R that
satisfies the previous definition.

0(s1,82) =

Proof: The function E belongs to the family since

E(s1,83) = exp(—1 3 42 ) exp(—3 ZQ) Ey(s1)Eq(s2).
We will prove that there exists 67 : Z — R unidi-
mensional with period R = {0,...,N — 1} such that

1. 0y % 0,(sy) = Zj«tol 01(5)01(s1 — J)

every s1 € Z,
2. 01(81) = HI(N

If such 6, exists, it will suffice to define the func-
tion 6 in separable form, i.e., 8(s1,s2) = 601(51)01(s2)
in order to hold the proposition.

Using lemma 2.1, the Fourier transform of E;

L Nl
=N Z Ey(k)wi kv
k=0

is a real positive function, then we can define the pe-
riodic function ¥ as ¢ = v/E;. This function satisfies

= El(sl) for

—51),if F+1<s <N-—1.

that (k) = ¢ (N — k), since
i | N1
Ey(N-k) = N Ey(Dwin kv
o
= N Z Ey(N — Z)w(*ka)l,N
1=0
= Ei(k).

In order to obtain this result the properties of the unit
roots and the definition of Iy are used.
Consider now #1, the inverse Fourier transform of

P
N-1
01(s1) = Zw YWhsy N
&=0

Then, by the properties of the periodic Fourier trans-
form and the definition of 6, 91*/\91 = 6,0, = 1;1; =
Y. = F7, and by the unicity of the transform one has
that 6, x ; = F; verifying, thus, the first condition.
The second condition stems from the fact that the

inverse Fourier transform always satisfies that @(N —
k) = ¢(k)* for every 0 <k < N — 1, and that

N-1

Y(O)wi v

=0

v(k) =



N-1 )
YN = Dwiy ey = V(k).
=0

From these one has that 64(s1) = 0;(N
1<s <N-—-1.

Lemma 2.1 The Fourier transform of Fy, given by
Ei(s1) =+ kN;OI Ey(k)w} ;. n 8 a real positive func-
tion.

Proof: We will now check that E; is a real positive
function. Remember that E;(j) = ¢(j), for every 0 <
j < N/2 and Ei(N — j) = ¢(N — j) in every 1 <
j < N/2 —1, with ¢ the characteristic function of the

N(0,¢-2) distribution. Since ¢ is a positive definite
function, then
E(0)  E(1) Ef(N—1)
Ei((N—1) E0) Ei(N —2)
M =
B BE £1(0)

is a circulant positive definite matrix. Therefore, its
eigenvalues are positive real numbers. These eigenval-
ues are, for every 0 <j < N — 1,

i: Ey (k)

Wiy = NE(j) >0,

and, therefore, ) is a real positive function.

Definition 2.3 Consider (i, 1 < k < 2a, indepen-
dent Gaussian white noise periodic stochastic processes
with fundamental period Ry. Define &, 1 < k < 2a,
periodic processes with fundamental period Ry, as

r(s1,82) = (0% Cx) (51, 82)

Proposition 2.3 The processes &, as previously de-
fined satisfy the following properties:

1. &(s1,82) ~ N(0,(0 % 6)(0,0)/2), i.e., & are sto-
chastic processes with Gaussian marginals with zero
mean and variances 1/2.

9 E(fk(o, 0)£k(81782)) — (9*9)(251752) — E(s;,sz).

3. p(£x(0,0),&x(s1,52))

= E(s1,52)

Proof: Since the periodic convolution is a finite linear
combination, the processes £ obey Gaussian distribu-
tions since the processes (. are independent white noise

Gaussian processes. In order to verify the second item,
the same reason is used along with the definition of 6.

ng t1,t2)-

O(s1 —t1,52 — t2)§k(n17n2)9(_n17 —n2))
= ZH(—nl, —ng)0(sy — 11,82 — to) -

t,n

E(Cr(t1,12)Ce(n1,n2))
= ZH(—nl, —ng2)0(s1 — 1, $2 — na) -

E(£,(0,0)&(51,52))

E(Cr(n1,m2)Cr(n1,n2))
= % Zo(nhnz)@(«ﬁ — N1, 82 — N2)

1 1
= 5(0 % 0)(s1,82) = §E(31,32)

Also note that p(£(0,0),&(s1,82)) = E(s1,82).

Definition 2.4 Define the periodic stochastic process

n with fundamental period Ry as the sum of squares

N(s1,82) = Yoacy §3(s1,52) for every (s1,52) € Ry,

and assume 3 > 0. The periodic stochastic process o

Z defined as 0(s1,82) = %n(sl,SQ) for every (s1,s2) €
N -

Proposition 2.4 The following properties hold

1. The process 1 is a weakly stationary slochastic
process with correlated Gamma distribution such
that n(sy,s2) ~ T'(a, 1).

2. The process o is a weakly stationary stochastic
process with correlated Gamma distribution such
that

(a) o(s1,s2) ~ I'(a,3), then E(o(s1,s2) = 5
and Var(o(s1, s2) = 4.

(b) The coefficient of correlation at lag (s1, s2) is
P(O (51 55):0(0,0)) = (51, 52).

Proof: Note that the processes &i,...,&, are inde-
pendent weakly stationary Gaussian processes, each
with

1. fk(sl,SQ) ~ ]\/Y(O7 1/2)7 v

2. E(&(s1,52)8k(t1,t2) =

(81782) € Ry and

%E(Sl — tl, S9 — tg).
Applying Proposition 2.1 to £, in Ry, we obtain
the correlated Gaussian process 7 with marginal dis-
tributions 7(sy, s2) ~ (e, 1). Analogously, o is a peri-
odic process with correlated Gamma distribution and



o ~ I'(a, ), with coefficients of correlation given by

p(n(s1,52),1(0,0))
P (E(51,52).£(0,0)
F2(s1,82).

p(051752 ) 0(0,0))

3 Simulating heterogeneous images

The previously presented method was implemented us-
ing the IDL5.2 development platform, and as the fol-
lowing algorithm

1. Generate the Gaussian white noises (z, with vari-
ance 1/2 for every 1 < k < 2a.

2. Define ¢, (j) = exp(—1L) if 0 < j < N/2, and
e1(f) =e(N—j)if N/2+1<j<N -1

3. Compute the frequency domain mask 2(s1, s2) =
VFFT(e1,—1)(s1).4/FFT(e1,—1)(s2).

4. Calculate & = FFT(¢2.FFT({s,—1), 1), for every
1<k < 2.

5. Obtain 0 = S e

6. Generate independent random variables identically
distributed as I'(n,n), where n is the desired equiv-
alent number of looks, Y.

7. Return Z =o0Y.

The notation FFT(U,—1) and FFT(U,1) repre-
sents the direct and inverse Fourier transforms, respec-
tively, of the input U. IDL 5.2 computes these func-
tions using a routine based on the Fast Fourier Trans-
form algorithm. It is noteworthy that the bigger the
parameter «, the slower will be the execution of this
procedure.

The return simulated with this procedure obeys an
intensity K distribution, characterised by the density

a+n
2 (x/)\n) slotm)/2pe (2\/)\nz)

fz (=)= )T (@)

where 2, a, \,n > 0 and K, is the modified Bessel func-
tion of the third kind and order v. This is the dis-
tribution of a random variable obtained as the prod-
uct of two independent random variables that obey
I'(n,n) and I'(o,A) distributions. This distribution
has been consagrated in the SAR literature as an excel-
lent model for heterogeneous and homogeneous targets.
More details about this and other distributions arising
from the multiplicative model can be seen in [4].

Fig. 1 shows sixteen simulated I fields of size 256 x
256 each, with varying shape parameter « (columns

with a € {0.5,1,1.5,2}) and correlation length ¢ (rows
with ¢ € {1,2,4,8}). Fig. 2 shows the images that
should be returned by a three-looks system, correspond-
ing to the truth images shown in Fig. 1.

Figure 1: Simulated ¢ fields, with « varying in the
rows and correlation lag varying in the columns.

The adequacy of the simulation procedure was
checked comparing desired correlation structures with
the observed ones, for a variety of parameters, and the
results are compatible with the theory. Detailed results
on estimation procedures for the spatial dependence of
SAR data will be reported elsewhere.

4 Conclusions

Methods for the generation of correlated Gamma fields
have been presented and discussed, aiming at the sim-
ulation of correlated K fields for SAR image simula-
tion. Moving averages has the advantage of allowing
any shape parameter and a wide variety of autocorre-
lation functions but, in practice, it is too cumbersome
to be implemented but in very simple situations. Me-
thods based on random variables transformations are
also very general and have the least restrictions of all
the techniques considered, but they rely on numerical
approximations which are seldom effective. The sum of
squares of Gaussian random variables limits the shape
parameters to halves of integers, but if this restriction
is of little or no significance (as is the case for SAR
image simulation) it is the recommended method.



Figure 2: The observed data, with three looks and
ground truth simulated in Fig. 1.

A family of autocorrelation functions was proposed
in this article, and a simulation methodology was pre-
sented for it. Members of this family have been previ-
ously used for the modelling of forest data [9], assum-
ing that the spatial correlation decays exponentially at
distance ¢. Simulations of this model are presented for
several parameter values.

This work will be extended to other members of
the class of distributions arising in the modelling and
analysis of SAR images.
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