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Abstract. The Dual-T-Snakes model plus dynammic programming (DP) techniques is an efficient methodology
for boundary extraction and segmentation of 2D images. However, the original proposal of the Dual-T-Snakes suf-
fers from difficulties for parameters choise and instabilities due to the normal force definition. Also, the proposed
method to push a snake way from a local minimum is not efficient for noise images. In this paper we address these
limitations. Firstly, we reduce the number of parameters without affecting the basic features of Dual-T-Snakes.
Next, we propose a new normal force definition which maintains the desired features of a balloon-like one but is
more stable and gives better performance. Then, we propose other methods to avoid local minima based on mesh
resolution, image statistics and a new region growing technique. We demonstrate these methods for artificial and
cell images. Finally, in the future works, we figure out how to apply Dual-T-Snakes plus Viterbi together with

non-parametric multiscale methods.

1 Introduction

The Dual-T-Snakes is a parametric snake model. Snake
models, also called Active Contour Models, are deformable
models. They were proposed by Kass at al. [9] and since
then have been successfully applied in a variety of prob-
lems in computer vision and image analysis, such as edge
and subjective contours detection, motion tracking and seg-
mentation [3]. Its mathematical formulation makes easier
to integrate image data, an initial estimated, desired contour
properties and knowledge-based constraints, in a single ex-
traction process [3].

However, parametric models have also their limitations.
First, the topology of the structures of interest must be known
in advance since the mathematical model can not deal with
topological changes without adding extra machinery [11].
Second, parametric snakes are too sensitive to their initial
conditions due to nonconvexity problems {16, 8].

Among the approaches to deal with the topological
limitations of the traditional snake model [13], the T-snakes
has the advantage of being a general one [12]. On the other
hand, to reduce the problems caused by the convergence of
a snake to local minima some authors have proposed mul-
tiscale methods [10], the addition of other internal force
terms [4, 16}, as well as Dual Contour approaches [8, 6].

Another way to address the non-convexity problems is
based on a two stage approach: (1) the region of interest is
reduced; (2) a global minimization technique is used to find
the object boundaries. Few works have been done in this
direction [2].

In [7] we propose to address the stage (1) by using our
Dual-T-Snakes method [7, 5]. The result of this method is

two contours close to the object boundary which bound the
search space. Hence, a DP algorithm [1, 2, 8] can be used
more efficiently.

Despite of the capabilities of Dual-T-Snakes, its prac-
tical application has some drawbacks. In this paper we
address the corresponding problems and the solutions pro-
posed are the main contribution of this work.

The first point is the parameters choise. We demon-
strate that the set of parameters for the original Dual-T-
Snakes can be reduced without affecting the fundamental
role of this method in our approach: to reduce the search
space for DP.

Next, we show that the normal force definition (the
same of the T-Snakes model [ 13]) is inefficient for noise im-
ages. A new definition have to be designed to make proper
use of the Dual-T-Snakes framework as well as to get better
stabilty and performance.

Another important point is the methodology to push a
T-Snake away from a local minimum. The original proposal
creates instabilities and performance problems for noise im-
ages. To address these problem we test three methods: the
use of images statistics; change the grid resolution and a
new region growing method [5].

Also we demonstrate in section 6 how to use hierarchi-
cal filtering and non-linear methods with the Dual-T-Snakes
approach. The use of non-parametric multiscale methods in
the context of this work is discussed in section 7

The paper is organized as follows. Firstly, we review
the T-Snakes model and the Dual-T-Snakes plus DP frame-
work. In section 5 we discuss technical details and present
the improvements for Dual-T-Snakes. In section 6 we demon-
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strate these improvements for syntetic and cell images. Fi-
nally, we discuss future works and conclusions.

2 T-Snake: A Framework for Topological Changes

The T-Snakes approach is composed basically by three com-
ponents [11, 13, 12]: (1) a triangulation (simplicial decom-
position) of the domain of interest, in our case a closed
subset D C R2; (2) a particle model of the snake; (3)
a characteristic function x defined on the grid nodes
which distinguishes the interior from the exterior of an ob-
ject O:

x:D c®® - {0,1} )

where x (p) = 1if p € O and x (p) = 0, otherwise.

Following the classical nomenclature, a vertex of a tri-
angle is called a node and the collection of nodes and tri-
angle edges is called the (simplicial) grid I';. A triangle o
is a traverse triangle if the characteristic function y in
equation (1) changes its value in o. Analogously, for an
edge.

In this framework, the reparameterization of a contour
is done by [13, 12]: (1) taking the intersections points of
the snake with the triangulation; (2) carrying out topologi-
cal changes by using the characteristic function x to distin-
guishing the inside from the outside of the snake(s).

As an example, consider the characteristic functions
(x1 and x2) relative to the two contours pictured in Fig-
ure 1. The functions are defined on the vertices of a CF-
triangulation of the plane. The vertices marked are those
where max {x1,x2} = 1. Observe that they are enclosed
by a merge of the contours. This merge can be approxi-
mated by a curve belonging to the dual of a two dimensional
combinatorial manifold obtained by tracing the boundary
triangles [13]. The same would be true for more than two
contours (and obviously for only one).

Figure 1: Two snakes colliding with the inside grid nodes
and snaxels marked.

2.1 Discrete Snake Model

A T-Snake [13, 12] is a discrete form of the classical snake
[9]. It is defined as a set of IV particles (snaxels), whose po-
sitions {v; = (z;,¥:),i=0,..., N — 1} are connected to
form a closed contour. Each pair of points v;, v;4; is called
a “model element ”. The snaxels are linked by springs
defined by a stiffness parameter a;, and a natural length
l;. The corresponding elastic force is added to a rigidity

347

(smoothing) force, a normal (balloon-like) force, and a ex-
ternal (image) force [13, 12). These forces are given re-
spectively by the following expressions:

Elastic Force : o; = aie;ri(t) — ai—1€,—17i—1(t). (2)

where ||7;(2)]] = llviva — vill and e; = || (2)l] = L,

1
Rigidity Force: p; = b; (vi -3

Normal Force : F; = k; (sign;) n;,

(vicg + 'Ui+1)) . (3

)
®)

where n; is the normal at the snaxel v; and b;, k;,y; are
force scale factors, P = — ||VI||?, sign; = 1if I (v;) > T
and sign; = —1 otherwise (T’ is a thresholded for the image
I). Region based statistics can be also used [13].

The T-Snake position is updated according to the fol-
lowing evolution equation:

Image Force: f; =~ VP,

A =t p b (b + BE+FEH Y, (6)
where h; is an evolution step.

The T-Snakes model incorporates also an entropy con-
dition: “‘once a node is burnt (passed over by the snake) it
stays burnt ” [13, 12]. A termination condition is defined
based on the number of deformations steps (temperature)
that a triangle remains as a boundary one. A T-Snake is
considered to have reached its equilibrium state when the
temperature of all the snaxels fall below a pre-set "freezing
point”.

The T-Snake model can be summarized as follows [13,
12]. Until the temperature of all snaxels fall bellow the
freezing point: Compute the external and internal forces
and update the snaxels positions using equation (6). Com-
pute the intersection between the grid and the model el-
ements. Next, update the characteristic function (1) and
through it determine the corresponding set of boundary tri-
angles. For each boundary triangle find a model element
which separates the inside from the outside nodes. Discard
the other ones.

3 Original Dual-T-Snakes Algorithm

In this section we outline the basic points of the Dual-T-
Snakes method [6]. The key idea behind this method is to
explore the T-Snake framework to propose a generalized
Dual Active Contour Model (Dual ACM) [6]: one T-
Snake contracts and splits from outside the targets and an-
other ones expand from inside the targets. The snake model
is that one of section 2.1.

To make the outer snake to contract and the inner ones
to expand we assign an inward normal force to the first and
an outward normal force to the others according equation



(4). Also, to turn the T-Snakes evolution interdependent we
use the image energy and an af finity restriction.

We use two different definitions for image energy: one
for the outer contour ((E,yter)) and another one for the set
of inner contours enclosed by it (Einner)):

Bower = Y (~IVI@IP) /N, (D
1 m Ni—1 )
Binner = — (Z ( > (-Ivr @l )/Nk)) :
k=0 i=0
(¥

where m is the number of inner curves.

If E;pner > Eouter an inner curve must be chosen. To
accomplish this we first use an a f finity operator which
estimates the pixels of the image most likely to lie on the
boundaries of the objects. Based on this operator, we can
assign to a snaxel the likelihood that it is close to a bound-
ary. That likelihood is thresholded to obtain an af finity
function that assigns to the snaxel a 0-1 value. Then the
inner curve with highest number of snaxels with affinity
function not null is chosen. If E,yier > FEinner the outer
snake is evolved if the affinity function corresponding is not
null.

Also, the balance between the energy/affinity of the
outer and inner snakes allows to avoid local minima. For
instance, if a T-Snake has been frozen we can increase the
normal force at the snaxels where the affinity function is
Zero.

To evaluate similarity between two contours we use
the difference between the Characteristic Function of the
outer snake and the Characteristic Functions of the inner
ones (Characteristic_Dif f). For example, in the case of
the CF triangulation of the Figure 1 we can stop the motion
of all snaxels of an inner snake inside a triangle o if any of
its vertex v € ¢ has the two following properties:

Property (a). All the 6 triangles adjacent to v have a
vertex where Characteristic. Diff = 0;

Property (b). One of these triangles is crossed by the
outer contour.

The freezing point is used to indicate that a T-Snake
found an equilibrium position. In the following algorithm
we call Dual Snake a list of T-Snakes where the first one
is an outer contour and the others are inner contours. The
algorithm can be summarized as follows:

Dual — T — Snakes Algorithm. Put all the dual
snakes into a queue. Until the queue is empty do: Pop out
a dual snake from the queue. Use the energies (equations
(7) and (8)) and the affinity function to decide the snake
to be processed. If all snaxels of that snake are frozen in-
crease the normal force at those with affinity zero until the
snake energy starts decreasing. Then, remove that added
normal force and leave it to evolve until the temperature of

all snaxels falls bellow the freezing point again. Analyze
the Characteristic_Dif f to identify if the snake being
processed is close to a snake of the other type (inner/outer).
In this case, remove the dual snake from the.queue. Other-
wise, mount the resulting dual snake(s) and go to the begin-
ning.

4 Segmentation Framework

The Dual-T-Snakes method plus DP result in a boundary
extraction procedure composed of four steps [7]: (a) The
user defines seed points inside the objects and initializes
the outer snake; (b) Computation of the Affinity operator
and affinity function; (c) Application of the Dual-T-Snakes
Algorithm; d) Find the final boundaries using Dynamic Pro-
gramming.

As each boundary is enclosed by a dual snake (see
Figure 4.b) the Viterbi algorithm [8] is suitable. In this
algorithm the search space is constructed by discretizing
each curve in N points and establishing a matching between
them. These points are then connected by segments which
are subdivided in M points to provide a discrete search
space with N M points.

The energy functional used is given by [8]:

N-3
Esnake = Z E‘i
i=0

®

where:

E; = 0Ein; (v, Vig1,Vig2)+BEezt (Vig1)+AEtinhe (Vit1)
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(10)
with Ejnt, Eezt € Eline given by:
vits — Wip + v\’
Eint (v, Vit1,vit2) = (m) , (1)
ezt (v) = = IVI (w)II*, (12)
Eiinha (Vit1) = £I (vig1) . (13)

with o, 8 and X parameters to be chosen in advance.
The corresponding recurrence relation is the classical
one given by [1]:
Siv1 (Vig2,vip1) = min {S; (viq1,v:) + Ei}, (14)

Vi

where E; was defined just above.

5 Technical Details and Improvements

In this section we discuss some limitations of the original
Dual-T-Snakes model (section 3) The solutions proposed
are the main contribution of this paper.



5.1 Parameters Choise

For deformable modes, in general, the most commonly used
method to set parameters is trial and error. You repeatedly
modify the parameters and evaluate the result. Few works
have been done to calibrate parameters automaticaly [15].
This point is critical for Dual-T-Snakes as we have both the
outer and inner snakes to calibrate.

Such as the T-Snakes model, the parameters of the
original Dual-T-Snakes method are the stiffness parameter
a;, the natural length [;, the rigidity b;, the normal force
parameter k; and the external force scale ;.

The Figure 2.a shows the difficulties in this case. In
this figure we picture a sequence of snaxels for the outer
and inner snakes. The elastic and the rigidity force are rep-
resented following the expressions (2)-(3), respectively. We
are supposing that the natural length /; is zero and that the
image forces can be discarded (low contrast). The diffi-
culty is that for the outer snake the elastic and rigidity forces
point towards the boundary while for the inner snake these
forces point in a oposite direction.

()

Figure 2: (a)Internal forces for Dual-T-Snakes. (b)Effect of
reparameterization over snaxels distribution.

The problem behind this behavior is the choise of the
normal force parameter. In fact, it should be high enough to
make the internal T-Snake to evolve in the desired direction
but, if it is too high, the internal forces of the outer snake
may be so strong that we may lost the boundary.

To address this difficult we could set different values
for the inner and outer snakes. However such idea implies
to calibrate two unrelated snakes which is an undesireble
task.

The elastic force also depends on the natural length
l;. The role of this parameter is to bias the distribution of
snaxes into an uniform one. However, in the Dual-T-Snakes
model the reparameterization is done through the projection
over the triangulation. So, a curve with uniform distribution
of snaxel may have non-uniform distribution after the repa-
rameterization (see Figure 2.b).

From these remarks, we decided to simplify the model
(6) by setting I; and a; to zero. Thus we still have the ef-
fect of reducing curvatures of the rigidity forces and discard
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natural length parameter whose effects are not worthwhile
for the model. However, the problem pictured on Figure 2.a
remains. It will be addressed again on section 5.2 bellow.
The final model to be used is given by:

At
oA = gty - BE+F+fh. a9

5.2 Image and Normal Forces

Another point is that the normal force definition given by
the equation (4) is limited for noise images because it may
implies in many oscilations of the snake due to the abrupt
variantions of image intensity (Figure 3.a). This may lead
to instabilities and performance problems as the number of
deformation steps may be too large due to the oscilations.

Fuomat (1 < T)

F,

Imagen
Froma (I >T) ‘
Paorma (1 < T) _
y Y
mex:’!
(@) (b)

Figure 3: (a)Normal force generates local oscilations.
(b)Null Internal forces due to snaxels alignmen.

In this paper, we address these problems by proposing
a new definition for the normal force as follows:

Fi (’Ut) =Val (vz) k”n,,;, (16)

where Val (v;) = 1if I'(v;) < T, Val(v;) = 0 other-
wise. Also, ni, k and T have the same meaning then in the
equation (4).

With this definition, we can reduce the oscilations by
avoiding situations like on Figure 3.a. On the other hand,
we still have the effect of pushing the snake towards the
object boundary. Despite this, the snake may be frozen far
way the desired region. However, the tests demonstrate that
the number of times that this happens is reduced dramati-
caly, mainly for noise images, which is the desired effect.

In a simple way, definition (16) implies that we are us-
ing the normal force only to get closer the region of interest.
Thus we can set the normal force large enough to solve the
problem pictured on Figure 2.a without making the outer



snake passes over the target. When close the bounday, the
normal force will be null and the equilibrium depends only
on the external and rigidity forces. This is another advan-
tage of the definition (16) because we avoid the subtle trade-
off between the normal end image forces observed for ex-
ample, in the Balloon model [4]. However, the smoothness
of the final result may be affected. This is discussed bellow.

5.3 Smoothing Forces

Some considerations should be done about the smoothness
of the result obtained with definition (16). So, let’s see Fig-
ure 3.b. In this Figure we have a sequence of snaxels in line
and uniformly distributed. In this case, the rigidity force
given by equations (3) is null.

So, in this case, the resultant force over each snaxel is
given by the normal force plus the image force. However,
if the snake is near a boundary then the normal force may
be null due to the definition (16) and we will have only the
image force over each snaxel. This lack of internal forces
may implies less smoothoness for the final result, which is
an undesirable effect of the definition 16.

However, for the Dual-T-Snakes model this behaviour
is not critical as the method is used only to reduce the search
space. The tests have shown that this lack of smoothness is
not critical for the DP step. Besides, the local oscilations
observed change the temperature of the snaxels until them
fall below the freezing point. Hence, the stoping criterium
of the T-Snakes remains efficient.

54 Avoiding Local Minima

In the original Dual-T-Snakes model, we propose to in-
crease the normal force for snaxels with affinity zero to
push a T-Snake away from local minima. This method can
be efficient for images with artefacts. However, for noise
images this methodology implies in instabilities as the nor-
mal force depends on the image threshod (Figure 3.a).

In this paper we propose other three methods: (1) Re-
lax the image threshold T in equation (4) (section 6.1); (2)
A Multigrid approach (section 6.3); (3) A Region Growing
method based on the grid (section 6.4).

6 Experimental Results

In this section we present results for 2D images obtained
through the segmentation framework of section 4 with the
improvements proposed above.

The discussions bellow are steered by the following
aspects: (a)Computational cost; (b)Model parameters and
noise; (¢)Efficience of the new normal force definition (equa-
tion 16); (d)Methods to get a T-Snake to go away from a
local minimum.

During a deformation step, each snaxel moves some
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distance D according to the equation (15). Following Gunn
and Nixon in their Dual ACM [8], we decided to stablish
a maximum D allowed (one pixel in general). Thus we
can improve the numerical stability as well as guarantee the
efficience of the image energy definitions (7)-(8).

Snake models are in general applied after some kind
of image processing methods for noise reduction and edge
detection [10]. We demonstrate bellow that hierarchical fil-
tering and directional smoothing can be usefull in the seg-
mentation framework proposed.

6.1 Synthetic Images

In the following examples we start from the image on Fig-
ure 4.a and increase the gaussian noise (mean = u and
variance = o) as indicated on Table 1. The grid resolution
is 5 x 5 for all examples corresponding. The Dual-T-Snakes
parameters are also indicated on that Table.

uo tk 5 b | Snakel | Snakel
30.0,5.0 | 200.0 | 50.1 | 50.0 40 97
30.0,10.0 | 200.0 | 50.1 | 50.0 41 89
50.0,25.0 | 200.0 | 50.1 | 50.0 38 112
50.0,40.0 | 200.0 | 50.1 | 50.0 43 149

Table 1: From left to right: mean,variance,Dual-T-Snake
paramenters,num. of deformation steps for Snake 0 and for
Snake 1.

It is difficult to compare results about the computa-
tional cost of snake models due to the lack of such results
in the literature. However, from the Figure 4.a we can re-
alise that the distance between the inner snake (Snake 1)
and the interested boundary has an upper bound of order 45
pixeis. If considering the last image (¢ = 50.0,0 = 40.0),
we consider that the number of interactions is acceptable.

The Figures 4.b shows a tipical Dual-T-Snakes results
for this set of images. The first aspect to be considered is
the distance between the inner and outer snakes in some
regions of Figure 4.b.

This behavior is due to the terminating criteriun given
by properties (a)-(b) of section 3. These “defects” do not
affect the Viterbi result, unless we use a too coarse grid
resolution [5].

It is opportune to compare the performance if we use
the normal force of the original Dual-T-Snakes given by
equation 4. By using the new definition (equation (16)),
the inner snake gets the final result with 149 interactions
(Table 1) while by appling the original one (equation 160)
the inner snake did 168 interactions but it is still far away
from boundary (Figure 4.d).

From Table 1 we can observe that parameters do not
change when the noise was increased. This indicates stabil-
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Figure 4: (a)lInitial image and initialization. (b)Dual-T-
Snakes result for 5 x 5 grid. (c)Viterbi result. (d)Interaction
-168 with original Dual-T-Snake model.

ity of the parameters over noise which is a desired feature
for the model. Also, we use the method (1) of section 5.4 to
go away from a local minimum; thatis: 7' — (T + AT) €
(ﬂ - \/E, u+ \/E)

Figure 4.c shows a tipical Viterbi solution for the ex-
amples of this section. The parameters used for all of them
are: « 1200.0,8 = 0.5 and A = 140.0. Hence, the
Viterbi parameters show also stability under noise variation.
More tests can be found in [S5]. All of them indicating the
same behaviour.

6.2 Blood Cells

The following example is usefull to understand how multi-
scale methods fits very well with our segmentation frame-
work. The Figure 5.a shows a blood cell obtained by an
electronic microscope technique. When pass-band filter is
applied, we get an edge map resembling a ribbon whose
thickness depends on the kernel size of the filter used (
Figure 5.b). That is an ideal situation for applying Dual-
T-Snakes plus Viterbi because first the former extracts the
ribbon (Figure 5.c). Then the later may be applied to the
original image to give the final result (Figure 5.d).

6.3 Electronic Micrography of Nucleolus

In this example we will show how the Dual-T-Snakes can
be used in a multigrid methodology.

Let’s take the Figure 6.a which pictures an image of a
cell nucleolus whose resolution is 895 x 682.

We can observe the presence of noise and artefacts as
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Figure 5: (a)lmage to be processed. (b)Band-Pass filtered
image. (c)Dual-T-Snakes solution. (d)Viterbi solution.

Figure 6: Segmentation of nucleolus: (a)Original im-
age. (b)Partial solution. (c) Offsets of partial solution.
(d)Extracted boundary.



well as that the interested boundary have points with high
curvature.

To be able to extract the boundary details we have to
use a grid with enough resolution [13]. However, the finner
is the grid resolution the stronger is the effect of the noise
and artefacts [5]. On the other hand, a coarse grid resolution
could lost details in points with high curvature.

This drawback can be addressed in the Dual-T-Snakes
framework by a multigrid approach based on the following
steps: (1)Apply Dual-T-Snakes for a coarsest resolution and
the Viterbi algorithm next; (2)Offsets of the result obtained;
(3)Dual-T-Snakes for a finner grid followed by Viterbi to
get the final result.

Figures 6.b shows the result of step (1) with the fol-
lowing parameters: k = 200.0, v = 50.0, b = 10.0,
T = 140.0, Freezing Point= 15 and grid resolution 15 x 15.
The max step allowed in each interaction is 2 pixels. The
Viterbi result (Figure 6.b) was obtained with the following
parameters: a = 1200.0, 3 = 0.5 and A = 0.0.

The distance between an offset and the partial solution
is of order of the grid resolution. Hence, we should apply
Dual-T-Snakes again in the last step to get a more reduced
search space as the distance between the offsets is of or-
der 30 pixels in this case (Figure 6.c). Figures 6.d shows
the final result of step (3) with the some parameters values
above.

6.4 Electronic Micrography of Cat Cells

The next example uses topological changes in the context
of cell images. Figure 7.a shows the original image whose
resolution is 600x600. In this case particularly, the image
has artefacts, structures and textures which may stop the
snake evolution far away from the cells.

An importante observation is that the grey level inten-
sity of the cell boundaries is of order T = 80.0. Linear
scalespace methods will mix the boundary with its neigh-
boorhods given problems to extract the boundary in the
coarse scale.

Non-linear methods could be better. In this case, we
use directional smoothing. A more sophisticate one could
be non-linear diffusion [5]. Figure 7.b shows the filtered
image and the Dual-T-Snakes initialization is presented. The
(partial) solution is shown on Figure 8.a. The parameters
values are: k = 200.0, v = 50.0, b = 10.0, T = 80.0,
Freezing Point= 28 and grid resolution 20 x 20.

At first, the method used to push a T-Snake away from
a local minimum is to relax the threshold. The normal force
definition is given by equation (16).

This example shows a difficulty for the original pro-
posal of the Dual-T-Snakes: in the presence of big artefacts,
the terminating criterium of section 3 may never hold. That
is exactly what is happening in this case. This example
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Figure 7: (a)lInitial image. (b)Filtered image and Dual-T-
Snakes initialization.

shows also the necessity of an upper bound of interactions
to avoid an infinite loop. For example, a multiple of the
freezing point.

The main problem about the botton right cell is that the
threshold that characterizes the boundary holds also for a
structure in its interior (Figure 7.a). The solution proposed
to address this problem can be visualized on Figure 8.b:
firstly, we mark the grid nodes interior to the inner snake as
well as its neighboors ones whose grey intensity is above
the threshold; next, we get a piecewise linear curve through
a simple continuation algorithm ([51).

The method is a kind of region growing and the ob-
tained curve can be used to re-initialize the Dual-T-Snakes
for that cell (Figure 8.b). The corresponding Dual-T-Snake
solution is shown on Figure 8.c. Now, the terminating crite-
rion is satisfied. The Viterbi solution is presented on Figure
8.d. The parameters used in this fase are: & = 1200.0,8 =
10.0 and A = 20.0.

7 Future Works and Conclusions

The segmentation method based on Dual-T-Snakes plus the

Viterbi algorithm can be applied together with a non-parametric
multiscale methodology based on the following steps: (1)Pyra-

mid model; (2)Solve Dual-T-Snakes plus Viterbi for the
coarsest resolution; (3)Track the Virterbi Solution through
the pyramid following [14].

Anther possibility would be to use linear multiscale
methods [10] to construnt the pyramid model. Than, Dual-
T-Snakes is applied in the coarsest scale and the solution
obtained is used to initialize the Dual-T-Snakes in a finner
one. The method proceed until the terminating criterium is
reached. Than, Viterbi algorithm is applied in the finnest
scale.

The improvements proposed on section 5 for the orig-
inal Dual-T-Snakes (parameters, normal force definition,
methods to avoid local minima) allow this method to be
applied more eficiently as we demonstrated in the experi-
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(d)
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Figure 8: Segmentation of Cat cells. An example using
topological changing capabilities.

mental results.
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