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L. S. OLIVEIRA'™3, N. BENAHMED?, R. SABOURIN!~3, F. BorTOLOZZI!, C. Y. SUEN®

LPUCPR Pontificia Universidade Cat6lica do Paran4
PPGIA Programa de P6s-Graduagio em Informdtica Aplicada
LARDOC Laboratério de Andlise € Reconhecimento de Documentos
Rua Imaculada Conceigfio 1155, 80215-901 - Curitiba, PR - BRAZIL
{soares, fborto}@ppgia.pucpr.br

2ETS Ecole de Technologie Supérieure
LIVIA Laboratoire d’Imagerie, de Vision et d’Intelligence Artificielle
1100, rue Notre Dame Ouest, Montreal, H3C 1K3, CANADA

benahmed@livia.etsmtl.ca,

sabourin@gpa.etsmtl.ca

3CENPARMI Centre for Pattern Recognition and Machine Intelligence
1455 de Maisonneuve Blvd. West, Suite GM 606 - Montreal, H3G 1M8, CANADA
suen@cenparmi.concordia.ca

Abstract. In this paper two approaches of genetic algorithm for feature subset selection are compared. The first
approach considers a simple genetic algorithm (SGA) while the second one takes into account an iterative genetic
algorithm (IGA) which is claimed to converge faster than SGA. Initially, we present an overview of the system to
be optimized and the methodology applied in the experiments as well. Afterwards we discuss the advantages and
drawbacks of each approach based on the experiments carried out on NIST SD19. Finally, we conclude that the
IGA converges faster than the SGA, however, the SGA seems more suitable for our problem.

1 Introduction

In practical pattern recognition problems, a classification
function learned through an inductive learning algorithm
assigns a given input pattern to one of the n existing classes
of the system. Usually, the representation of each input pat-
tern consists of features since they can distinguish one class
of patterns from another in a more concise and meaningful
way than offered by the raw representation. In many ap-
plications, it is not unusual to find problems involving hun-
dreds features. However, it has been observed that, beyond
a certain point, the inclusion of additional features leads
to a worse rather than better performance. Moreover, the
choice of features to represent the patterns affects several
aspects of the pattern recognition problem such as accuracy,
required learning time and necessary number of samples.

This apparent paradox presents us with a feature sub-
set selection problem in automated design of pattern classi-
fiers. Such a problem refers to the task of identifying and
selecting a useful subset of features to be used to represent
patterns from a larger set of often mutually redundant or
even irrelevant features. Therefore, the main goal of feature
subset selection is to reduce the number of features used in
classification while maintaining an acceptable classification
accuracy.

Feature subset selection algorithms can be classified
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into two categories based on whether or not feature selec-
tion is performed independently of the learning algorithm
used to construct the verifier. If feature selection is done in-
dependently of the learning algorithm, the technique is said
to follow a filter approach. Otherwise, it is said to follow
a wrapper approach [7]. The first one is computationally
more efficient but its major drawback is that an optimal se-
lection of features may not be independent of the inductive
and representational biases of the learning algorithm that is
used to build the classifier. On the other hand, the wrap-
per approach involves the computational overhead of eval-
uating a candidate feature subset by executing a selected
learning algorithm on the database using each feature sub-
set under consideration.

Feature subset selection in the context of practical ap-
plications such as handwritten recognition presents a multi-
criterion optimization function, e.g. number of features and
accuracy of classification. Genetic algorithms offer a par-
ticularly attractive approach for this kind of problems since
they are generally quite effective for rapid global search of
large, non-linear and poorly understood spaces. Moreover,
genetic algorithms are very effective in solving large-scale
problems [16, 22].

This paper focuses on the feature subset selection for
handwritten digit recognition through a modified wrapper-



based multi-criterion approach using genetic algorithms in
conjunction with a multi-layer perceptron neural network.
Two different versions of the genetic algorithm were ex-
plored: simple genetic algorithm (SGA) and iterative ge-
netic algorithm (IGA). All experiments reported in this pa-
per use NIST SD19.

This paper is structured as follows. Section 2 presents
a brief introduction of genetic algorithms. Section 3 de-
scribes the methodology applied in this work. Sections 5
and 6 present both approaches of genetic algorithms dis-
cussed in this paper. Section 7 reports the experiments car-
ried out and section 8 includes some discussion and com-
parison. Finally, section 9 presents our conclusions.

2 Genetic Algorithms

In this section we present a brief introduction about genetic
algorithms. A more detailed introduction can be found in
[17].

The genetic algorithm is a model of machine learning
which derives its behaviour from a metaphor of some of
the mechanisms of evolution in nature. This is done by the
creation within a machine of a population of individuals
represented by chromosomes, in essence a set of character
strings that are analogous to the base-4 chromosomes that
we see in our own DNA.

The individuals represent candidate solutions to the
optimization problem being solved. In genetic algorithms,
the individuals are typically represented by n-bit binary vec-
tors. The resulting search space corresponds to an n-dimen-
sional boolean space. It is assumed that the quality of each
candidate solution can be evaluated using a fitness function.

Papulation
(chromosome)
PhenoType

Selection Fitness

Replacement Mating Pool Objective
(parents) Function
Genetic Fitness

Figure 1: A SGA cycle.

Genetic algorithms use some form of fitness-dependent
probabilistic selection of individuals from the current pop-
ulation to produce individuals for the next generation. The
selected individuals are submitted to the action of genetic
operators to obtain new individuals that constitute the next
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generation. Mutation and crossover are two of the most
commonly used operators that are used with genetic algo-
rithms that represent individuals as binary strings. Muta-
tion operates on a single string and generally changes a bit
at random while crossover operates on two parent strings
to produce two offsprings. Other genetic representations
require the use of appropriate genetic operators.

The process of fitness-dependent selection and appli-
cation of genetic operators to generate successive genera-
tions of individuals is repeated many times until a satis-
factory solution is found. In practice, the performance of
genetic algorithm depends on a number of factors includ-
ing: the choice of genetic representation and operators, the
fitness function, the details of the fitness-dependent selec-
tion procedure, and the various user-determined parameters
such as population size, probability of application of differ-
ent genetic operators, etc. The specific choices made in the
experiments reported in this paper are summarized in sec-
tion 3.2. Figure 1 depicts a SGA cycle. The basic operation
of the genetic algorithm is outlined as follows:

Procedure:
begin
t <- 0

initialize P(t)

while (not termination condition)
t <-t + 1
select P(t) from p(t - 1)
crossover P(t)
mutate P(t)
evaluate P(t)

end

end

Since genetic algorithms were designed to efficiently
search large spaces, they have been used for a number of
different application areas such as camera calibration [19],
signature verification [21], medical diagnosis [11], facial
modeling [20] and handwritten recognition [8].

3 Methodology
3.1 Representation and Operators

In this subsection we present the choice of a representation
for encoding candidate solutions to be manipulated by the
genetic algorithm.

Each individual in the population represents a candi-
date solution to the feature subset selection problem. Let
m be the total number of features available to choose from
to represent the patterns to be classifier (m = 132 in our
case). The individual (chromosome) is represented by a bi-
nary vector of dimension m. If a bitis a 1, it means that the
corresponding feature is selected, otherwise the feature is
not selected. This is the simplest and most straightforward



representation scheme [12]. As mentioned before, other ge-
netic representations require the use of appropriate genetic
operators.

Since we are representing a chromosome through a bi-
nary string, the operators mutation and crossover operates
in the following way: Mutation operates on a single string
and generally changes a bit at random. Thus, a string 11010
may, as a consequence of random mutation get changed to
11110. Crossover on two parent strings to produce two off-
springs. With a randomly chosen crossover position 4, the
two strings 01101 and 11000 yield the offspring 01100 and
11001 as a result of crossover.

3.2 Parameter Settings

Our experiments used the following parameter settings:

e Population size: 30
¢ Number of generation: 1000
o Probability of crossover: 0.8

¢ Probability of mutation: 0.007

The parameter settings were based on results of several
preliminary runs. They are comparable to the typical values
reported in the literature [1].

3.3 Selection Mechanism

The selection mechanism is responsible for selecting the
parent chromosome from the population and forming the
mating pool. The selection mechanism emulates the survival-
of-the-fittest mechanism in nature. It is expected that a fit-
ter chromosome receives a higher number of offsprings and
thus has a higher chance of surviving on the subsequent
evolution while the weaker chromosomes will eventually
die.

In this work we are using the roulette wheel selec-
tion [4] which is one of the most common and easy-to-
implement selection mechanism. Basically it works as fol-
lows: each chromosome in the population is associated with
a sector in a virtual wheel. According to the fitness value of
the chromosome, the sector will have a larger area when the
corresponding chromosome has a better fitness value while
a lower fitness value will lead to a smaller sector.

3.4 Objective Function and Fitness Evaluation

The fitness evaluation is a mechanism used to determine
the confidence level of the optimized solutions to the prob-
lem. Usually, there is a fitness value associated with each
chromosome, e.g., in a minimization problem, a lower fit-
ness value means that the chromosome or solution is more
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optimized to the problem while a higher value of fitness in-
dicates a less optimized chromosome.

Our problem consists of optimizing two objectives:
minimization of the number of features and minimization
of the error rate of the classifier. Therefore, we are deal-
ing with a multi-objective optimization problem. While in
single-objective optimization the optimal solution is usu-
ally clearly defined, this does not hold for multi-objective
optimization problem. Instead of a single optimum, there
is rather a set of alternative trade-offs, generally known as
Pareto-optimal solutions.

In order to generate the Pareto-optimal set, we are us-
ing a classical approach proposed by Hajela and Lin in [18],
called weighting method, which aggregates the objectives
into a single and parameterized objective. Such an aggre-
gation is performed through a linear combination of the ob-
jectives

f(z) = fi(z) x wy + fa(z) X w ¢))

where w; are called weights and, without loss of general-
ity, normalized such that 3~ w; = 1. fi(z) is the error rate
produced by the classifier for a given feature subset (rep-
resented by the chromosome z) and f2(z) is the number
of features selected in the chromosome z. Therefore, the
fitness of a chromosome is represented by a single and pa-
rameterized objective function f(z).

Using genetic algorithms for feature subset selection
involves the running of a genetic algorithm for several gen-
erations. Regarding a wrapper approach, in each genera-
tion, evaluation of a chromosome (a feature subset) requires
training the corresponding neural network and computing
its accuracy. This evaluation has to be performed for each
of the chromosomes in the population. Since such a strat-
egy is not feasible due to the limits imposed by the learning
time of the huge training set considered in this work, we
have adopted the strategy proposed by Moody and Utans
in [10], which uses the sensitivity of the network to esti-
mate the relationship of input features with network perfor-
mance.

The sensitivity of the network model to variable 3 is
defined as:

N
1 -
Sg = ~ ]E—l ASE(zg) — ASE(zp) 2)
with
1 N
Tg = N j§=1: Z; 3

where zg, is the Bt" input variable of the jt* exemplar. S
measures the effect on the training ASE (average square



error) of replacing the A" input z4 by its average 3. Re-
placement of a variable by its average value removes its
influence on the network output.

So, in order to evaluate a given feature subset we re-
place the unselected features by their averages. In this way,
we avoid training the neural network and hence turn the
wrapper approach feasible for our problem. We call this
strategy modified-wrapper. Such a kind of scheme has been
employed by Emmanouilidis et al in [3] and Yuan et al in

[9].

4 Feature Set and Classifier

In this section we describe both the feature set and classifier
used in our experiments. The feature vector is based on a
mixture of concavity and contour-based features while the
classifier is a neural network trained with the backpropa-
gation algorithm [5]. Such a recognition module has been
successfully applied on handwritten digit recognition to our
recent works [14, 15].

(b)

(c)

Figure 2: Feature set: (a) Concavities, (b) Auxiliary direc-
tions, (c) 4-Freeman directions and (d) 8-Freeman direc-
tions.

The basic idea of concavity measurements [13] is the
following: for each white pixel in the component, we ver-
ify in each possible direction (Figure 2a), if a black pixel
can be reached. The number of times as well as the direc-
tions leading to the black pixels are computed and stored in
a vector. When black pixels are reached in four directions
(e.g. point z; in Figure 2a), we branch out in four auxil-
iary directions (s; to s4 in Figure 2b) in order to confirm
if the current white pixel is really inside a closed contour.
Those pixels that reach just one black pixel are discarded.
Therefore, the concavity measurements are represented by
13 components.
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The second part of the vector contains contour infor-
mation, which is extracted from a histogram of contour di-
rections. Taking into account 8-Freeman directions (Figure
2d), we have 8 more components in our feature vector. The
last component of this vector corresponds to the character
surface. Finally, the image is divided into six regions and
132 components normalized between 0 and 1 are consid-
ered.

In order to train the neural network, we have used the
NIST SD19 in the following way: the training, validation
and testing sets were composed of 195,000, 60,089 and
58,646 samples from hsf_{0,1,2,3}, hsf_7 and hsf_4 respec-
tively. The recognition rates (zero-rejection level) achieved
by the classifier were 99.66%, 99.13% and 97.52% on the
training, validation and testing sets respectively.

Despite the fact that this feature set achieves good re-
cognition rates on NIST database, we believe that it can be
optimized since it contains a large number of components.
In the next section we will compare two different strategies
to carry out this task.

5 Simple genetic algorithm

In this experiment an SGA was used, i.e., an algorithm
based on bit representation, one-point crossover, bit-flip mu-
tation, roulette wheel selection (with elitism). The sole
modification that we have carried out was the initialization
of the population. We have inserted a chromosome with all
features selected. Since we know an admissible solution of
the system, it is very interesting to use such a knowledge
in order to speed up the convergence time of the genetic
algorithm.

6 Iterative genetic algorithm

This approach is based on the work presented by Man et
al [12]. The main idea behind this approach is to speed
up the convergence time of the algorithm by restricting the
search space in each iteration. The algorithm is described
as follows:

1. Let N, be the maximum allowable topology for search-
ing (132 features in our case). The algorithm is applied
and terminated when a solution 1 with (f; ~ 0)is ob-
tained. (Figure 3a).

. Assuming that fo(z;) = Nj, the searching domain
for the complexity of the topology is reduced from N>
to N3 — 1. The algorithm is then applied again until
another solution with (f; & 0) is obtained (Figure 3b).

Repeat step 2 by reducing the searching domain of the
topology complexity and eventually the optimal point
Zopt With fa(zepe) = Ny will be obtained (Figure 3c).



4. Another iteration with the complexity of the topology
bounded by N; ~ 1 is carried out and no solution may
be found. This process can be terminated by setting
a maximum number of generations for the algorithm.
If no solution is found after the generation exceeds
this maximum number, the solution obtained in step
3 would be considered as the optimal solution for the
problem (Figure 3d).

. t
2
N
(a) l"‘ Iteration
f.
N, N, 2
a
(b) 2™¥ 1teration
fi
f
0 - . af
%72
! N Ny Ny
{c) 3¥? Iteration
—df,

I N
(a) 4N Iteration

N,

Figure 3: Iterative approach.

The same methodology and parameter settings used in
the previous approach are also used here. The differences
lie basically in two points: search mechanism and initial-
ization of the population. The search mechanism is clearly
illustrated in Figure 3, where the best solution found in
the previous iteration is used to initialize the current one.
The initialization of the population was modified in this ap-
proach in order to allow a more focused search in each it-
eration. In order to perform this, we have used a Hamming
distance d between the injected solution and the chromo-
somes generated at the initialization time. Such a constraint
is defined as
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d(Sl,Sz) <T (4)

where S; is the chromosome that represents the best solu-
tion found in the last iteration of the algorithm (if the algo-
rithm is running the first iteration, S; will be represented by
the chromosome with all features selected), Ss is a chromo-
some generated at the initialization time and 7 is the thresh-
old that defines the maximal distance between S; and S,.
Figure 4 shows an example of the initialization using 7 = 5.
In such a case, the initialization of the population produces
a population entirely located in the sub-space A.

Figure 4: Initialization of the population using the Ham-
ming distance.

7 Experiments

In this section we present some experiments that use the two
different approaches outlined in the previous sections. The
main goal of these experiments is to optimize the feature

set presented in section 4 to reduce both the complexity and
error rate of the classifier.
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Figure 5: Performance of the SGA.

The first experiment takes into account the SGA to per-
form the features subset selection. After 1,000 generations,
the best solution found by the SGA was 95 features and er-
ror rates of 0.83% and 2.60% on validation and testing sets



Table 1: Results found by both approach on different data sets.

Data Original Feature Set SGA Subset IGA Subset
Set Features Error % { Features Error % | Features Error %
Learning 132 0.34 95 0.34 104 0.34
Validation 132 0.87 95 0.83 104 0.84
Test 132 2.48 95 2.60 104 2.58
respectively. Figure 5 shows the trade-off the between error 096
rates and the number of features selected.
The second experiment considers the iterative approa- 0% 13t | —o— Simple ~a—lterative |

ch. We have run 10 iterations with 100 generations each.
The best solution provided by this strategy was found at the
seventh iteration and it has selected 104 features and pro-
duced error rates of 0.84% and 2.58% on validation and
testing sets respectively. As we can observe in Figure 6, af-
ter the seventh iteration this approach faces an over-training
problem, since it finds admissible error rates on the valida-
tion set, a small feature subset (about 65 features) but a very
poor generalization on the testing set.

In order to validate the solutions provided by the ge-
netic algorithms, we have re-trained the classifier with these
solutions and observed the same performance achieved by
the original classifier.

Number of Features
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t 2 3 4 5 6 7 8 9 W
lterations

Figure 6: Performance of the IGA.

Figure 7 and Table 1 summarize the results found by
both approaches on different data sets.

8 Discussion

So far, we have described two different approaches of fea-
ture subset selection using genetic algorithms. As we have
seen, the main difference between these approaches lies in
the search mechanism. In the previous section we have ob-
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Figure 7: Evolution of the error rates.

served that both approaches achieved satisfactory results in
reducing the number of features used by the classifier while
maintaining the error rates in the same level produced by
the original feature set.

We have seen in our experiments that the IGA con-
verges faster than the SGA, since it found an optimal so-
lution at the seventh iteration (700 generations). However,
we can observe also that the SGA reaches a more interest-
ing solution in terms of number of features (95 instead of
104).

Figures 8a and b clearly illustrate the evolution of the
chromosomes in the objective plane for all generations for
both approaches. As we can see in Figure 8a, the SGA
focuses its search in a more defined sub-space. Such a con-
centration is due to the objective function that we have cho-
sen and also the elitist selection method applied. On the
other hand, the IGA searches in a broad space and conse-
quently it finds a great variety of solutions. However, part
of these solutions pay a high price (low accuracy) for hav-
ing a reduced number of features. This behaviour can be
explained by the methodology applied in creating a new
population of chromosomes, which was described in sec-
tion 6.

Figures 8c and d detail Figures 8a and b respectively.
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Figure 8: Evolution of the chromosomes in the objective plane for all generations: (a) Simple genetic algorithm, (b) Iterative

genetic algorithm (c) Zoom of SGA and (d) Zoom of IGA.

In both Figures we can observe the distribution of the chro-
mosomes for an error rate between 0,8 and 1%. As men-
tioned before, both approaches produce similar error rates,
however, we can verify that the SGA yields a great number
of solutions in the interval 90-100 features, which does not
happen in the IGA. In this Figure we can see also a set of
alternative trade-offs (error rate-number of features) gener-
ated during the search.

It is interesting to emphasize that all results reported
so far are computed by using a classical multi-objective
optimization function. We believe that our methodology
can be enhanced by using different approaches of multi-
objective optimization in order to focus the search in the
Pareto-optimal subset of solutions [6].

Since we are dealing with a large scale classifier (more
than 100 features and a huge database) our experiments
were very time consuming. For instance, 1,000 generations
of SGA in a SUN Ultra (167 Mhz CPU, with 128 Mb RAM)
took about 20 days. However, low cost parallel computing
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based on a cluster of personal computers (PCs) makes this
approach tractable on short term [2].

9 Conclusion

In this paper we have discussed two different strategies for
feature subset selection using genetic algorithms. All ex-
periments reported in this work use a wrapper-based multi-
criterion approach in conjunction with a multi-layer percep-
tron neural network. We have shown that such a scheme
became feasible by means of the sensitivity analysis.

We have seen that both approaches discussed in this
paper achieved interesting results in reducing the complex-
ity of the classifier. However, the SGA seems more suitable
for our problem than the IGA by Man et al in [12]. This
conclusion is based on comprehensive experiments carried
out on NIST SD19 databases, where the SGA provided a re-
duction of about 28% of the feature vector and maintained
the error rates at the same level of the original feature set.

In spite of the fact that both approaches did not suc-



ceed in reducing the error rate of the classifier, we consider
they achieved their objective, since the classifier used in
our experiments already have a good performance on NIST
SD19 database.

For future works we plan to study different approaches
of multi-objective optimization as well as to apply different
operators and schemes of representation for our problem.
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