An Interactive Algorithm for Image Denoising and Segmentation
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Abstract. This paper presents an interactive algorithm for image denoising and segmentation. A global
competition criterion is used to impose an order of processing on all image pixels. The smoothing step
employs an evolution equation controlled by the local curvature to denoise the image while preserving the
features. The interactive segmentation step requires the user to select one definitive seed per region. Region
growing is initiated around provisory seeds, which are automatically detected, labeled and eventually merged
by the algorithm. A simple merging mechanism is used to handle the topological transformations required to
remove the image over-segmentation. It is shown that accurate and fast segmentation results can be achieved
for gray and color images using this simple method. Extension to 3D images is straightforward and easily

handled.
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1. Introduction

Image denoising and segmentation play an important role
in image analysis and computer vision. Image denoising
reduces the noise introduced by the image acquisition
process while image segmentation recovers the regions
associated to the objects they represent in a given image.
These treatments typically rely on semantically poor
information, directly obtained from the image around a
spatially restrained neighborhood and, for this reason, are
broadly classified as low-level treatments [8].

Image segmentation often requires pre- and post-
processing, where the user judgment is fundamental and
helps to feed information of high semantic content back
into the process. The pre-processing is an essential step in
which specialized filters smooth the image simplifying it
for the subsequent segmentation step.  Interactive
segmentation allows the user to intervene directly in the
segmentation contributing to its success. Post-processing
may be required to complete the task if the segmentation
itself fails to produce the desired results.

Image segmentation is an application-oriented
problem. There is no general-purpose segmentation
method. The choice of a particular technique depends on
the nature of the image (non-homogeneous illumination,
presence of noise or texture, ill-defined contours,
occlusions),  post-segmentation  operations  (shape
recognition, interpretation, quality control, localization,
measurements), primitives to be extracted (contours,
straight segments, regions, shapes, textures) and on
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physical limitations (algorithmic complexity, real-time
execution, available memory) [8]. It is not possible to
define, a priori, how good a segmentation method is. The
quality of a segmentation method can be evaluated by the
results obtained from the treatments using the extracted
primitives.

Other important issues concerning fundamental
aspects of image segmentation methods are initialization,
convergence, ability to handle necessary topological
changes, stopping criteria and over-segmentation.

Segmentation by deformable models (DM) describes
contours, which evolve under a suitable energy
functional. In the pioneer work of Kass et. al., the snakes
method [20], image forces and external constraints guide
the evolution of the DMs by minimizing the energy of
spline curves and surfaces. Former versions of the snakes
method required the initialization to be done close to the
boundaries of the objects to guarantee proper
convergence and to avoid being trapped by local minima.
Recent versions of the snakes method [29] solved this
problem. The balloon method [14] adds an inflation force
to the snakes to move the initialized model into the
neighborhood of the edges avoiding the local minima.
However, the inflation force often pushes the contour
over weak edges.

Modeling the contours in the level set framework
[9,10] easily solves the topological problem, i.e., merge
the non-significant curves. The active contours method
[5] presented by Caselles et. al. and the front propagation



method [23,24] introduced by Malladi et. al. greatly
simplify the topological problem but do not address the
initialization and convergence issues. Initialization is
usually difficult and time-consuming requiring the manual
introduction of polygons around the features of interest.
Convergence is also difficult since some models are still
evolving while others have finished the evolution or,
worse, have leaked through weak boundaries. The
geometrical version of the active contours method is
stable and retrieve simultaneously several contours but do
not retrieve angles [5].
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Figure 1. Convergence is difficult to achieve using the
bubbles method [7] implemented in the PDE based level
set framework.

The bubbles method [7] simplifies the initialization
issue allowing, for instance, the contours to be initialized
at the image minima or at predefined grid cells having
homogeneous statistical properties. However, the bubbles
method depends on fine tuning parameters in order to
achieve simultaneous convergence of bubbles and is slow
compared to the watershed based methods. Figure 1
illustrates the convergence problem using the bubbles
method on a ceramic micrographs containing grains
separated by thin gaps. In this example the bubbles were
initialized at the image minima. Notice that some bubbles
have converged while others are still evolving and some
are being merged.

Conventional region growing and merging methods
work well in noisy images but are sensitive to seed
initialization and produce jagged boundaries. The Seeded
region growing method (SRG) [1, 22] introduces a
competition between by ordering all pixels according to
some suitable criteria, a property inherited from the non-
hierarchical watershed method [15,16]. This global
competition ensures that the growth of regions near the
weak or diffused edges is delayed until other regions have
had a chance to reach these areas. SRG does not
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incorporate any geometric information and hence can leak
through gaps or weak edges, as illustrates Figure2.

Figure 2. Seeded Region Growing — SRG can leak
through weak or diffused edges

The region competition method - (RC) [27]
combines the geometrical features of the DM and the
statistical nature of SRG. It introduces a local competition
between regions by trading pixels that result in a decrease
in energy, thus allowing recovery from errors. However,
RC produce jagged boundaries and depends on seed
initialization which eventually leads to leakage through
weak boundaries if the seeds are asymmetrically
initialized [28].

The non-hierarchical watershed method — (NHW)
treats the image as a surface, starts the region growing
from the surface minima and expands them following
geodesic paths, thus minimizing the potential energy. The
region growing process continues until neighbor regions
touch each other. This provides a powerful stopping
criterion difficult to achieve in the PDE based level set
framework. However, NHW leads to a strong over-
segmentation if proper image smoothing is not provided.
Alternative solutions to the NHW over-segmentation exist
[17, 18, 19], however, they require the fine-tuning of
parameters related to geometric features of the regions.

The hierarchical watershed method - (HW) starts the
region growing process from markers. Usually, highly
specialized filters are required to select the markers. HW
is optimal from the point of view of the execution time.
Finally, the skeletally coupled deformable models method
(SCDM) [28] combines features of curve evolution
deformable models as bubbles and region-competition
and introduces an inter-seed skeleton to- mediate the
segmentation. Nonetheless, it requires an elaborated sub-
pixel implementation using ENO schemes [13, 28].

This paper introduces an interactive algorithm for
image denoising and segmentation — (IIDSA) which
retains some of the most attractive features of the methods
described above and overcomes some of their limitations.



It combines a noise removal step and an interactive image
segmentation step in one algorithm, resulting in a robust
and easy-to-use tool where higher level knowledge of the
image can readily be incorporated in the segmentation
process. IIDSA provides solutions to automatic
initialization and stopping criterion, convergence and
over-segmentation. However, it does not handle region
shrinking or splitting.

2. The interactive image denoising and segmentation
algorithm

The interactive image denoising and segmentation
algorithm — (IIDSA) treats the image as 3D surfaces in
evolution. This construction serves a dual purpose: first, a
denoising filter, which efficiently preserves edges, is
implemented in the PDE based level set framework [9,
10] constraining the surface to evolve according to its
vertically projected mean curvature [2, 12], see section
3.1. Secondly, an efficient segmentation algorithm,
avoiding the costly PDE, is implemented in the
Mathematical Morphology framework [3, 4, 15, 16, 17,
18, 19, 25, 26]. In this context, the segmentation is an
ordered region-growing and merging process initiated at
the minima of the surface whose evolution is constrained
by geodesic paths imposed by the surface itself, see
section 3.2.

The IIDSA segments the image into as many
regions as the number of seeds interactively selected by
the user, here called definitive seeds to distinguish them
from the provisory seeds automatically detected by the
algorithm. Initiating the region growing around the image
minima (white dots shown in Figure 3a), makes the
algorithm less sensitive to seed (black spots) positioning
or seed size.

The topological transformations required to reduce the
over-segmentation are easily handled through a simple
merging mechanism. However, the IIDSA has no
provision for region splitting and thus no region
shrinking.

Figure 3a shows a micrograph of ceramic sample
containing gains (dark gray) separated by thin edges (light
gray), definitive seeds selected by the user (black spots)
and provisory seeds automatically detected by the
algorithm (white dots). Figure 3b shows the regions of
influence associated to each minima of the original image.
Figure 3c shows the IIDSA segmentation result after
merging the non-significant regions.

The IIDSA is an interactive algorithm, and so requires the
user to add and subtract seeds and to repeat the process
until the desired results can be achieved. Making the
segmentation interactive allows some high level
knowledge of the image to be feedback into the process,
thus improving the segmentation results.
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Figurg 3a. Seeds superimposed
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Figure 3c. IIDA segmentation result after meging.

2.1 Edge preserving
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Surface evolution under the PDE based level set
framework [9, 10] has been successfully used to perform
both image denoising and image segmentation. For image
denoising purposes, partial differential equations (PDEs)
can be employed to modify the image topology and
implement an edge preserving smoothing under controlled
curvature motion (2, 12].

By treating the image I(x,y,z(t)) as a time-dependent
surface in R and selectively deforming the surface based
on the vertical projection of its mean curvature,
effectively removes most of the non-significant image's
extrema. For smoothing purposes the surface height z at
the point p(x,y) is initialized as value of the local gray-
level. The local surface deformation is computed from the
local mean curvature K expressed by the following
relation between the second derivatives of I:

[ (A+IH=21 11 +I, (1+12)
K= ] 7V X ‘2/v2v
200+17+12)

(1)

Evolving the image I, as a surface, under this modified
level set curvature motion is equivalent to repeatedly
iterating the following edge-preserving anisotropic filter:

I, =I+K 2)
Figure 4 illustrates the results of applying the anisotropic
filter to a corneal endothelial cell for 20, 40 and 60

iterations respectively. After 60 iterations most of the
noise has been attenuated.

i
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Figure 4a. Original endothelial cells
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Figure 4c. Smoothing after 40 iterations
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Figure 4d. Smoothing after 60 iterations
2.2 The interactive region growing and merging step
In region-growing methods the growing process is

initiated around seeds located in the inner parts of the
regions and follows a given "order of processing”.



Usually, the regions grow in successive layers until the
growing process finally stops thus defining the definitive
location of the edges. From this perspective, the most
important pixels are precisely those located in a narrow-
band around the definitive location of the edges. Sorting
all image pixels according to a convenient relation
between each pixel p(x,y) and its neighborhood NP, is
sufficient to impose an "order of processing”, deferring
the processing of pixels on the edges. This ordering can
be established, for instance, defining a 3D surface whose
height z, at each point p(x,y), is computed from this
relation. Sorting the z's in ascending order allows the
region-growing process to automatically start from the
minima of this surface. The following relations, for
instance, were implemented in the IIDSA:

e In its simplest form, z is assigned to the value of the
image's gray-levels themselves;

e z can be the difference between a pixel and mean
value in N(p) as in the SRG method;

e the difference between the maximum and the
minimum values in N(p);

e the mean curvature at p(x,y) as expressed by equation
2.

The first relation is useful when the image characteristics
are such that the gray-levels themselves already dictate a
natural order of processing. An example is shown in
Figure 3b, which already have edges at higher elevation
than the inner parts. The second is useful for images
having homogeneous textures. The third criterion is
useful, for instance, in images having a stepwise transition
between the regions as shown in Figure 7. In this case,
taking the difference between the maximum and the
minimum in N(x), forces higher values at the edges and
have the additional benefit of closing small gaps in the
borders.

Finally, adding a merging mechanism, controlled by user-
selected seeds, the region growing and merging is
complete. A simple table, as shown in Table 1, can be
used to merge the regions. This table is initialized as a
sequence of integer numbers from I to N, where N is at
least equal to the number of minima present in the image.
This table is updated according to the sequence of
absorptions. If, for instance, the region having label = 1
absorbs the region having label = 3, the merging table is
updated as shown below:

before 1{2(3(4|5)..]1i]... N
after 1{2(1(4|5})..]i}|..|N
2.3 The IIDSA algorithm

The IIDSA algorithm is outlined below.

278

1. Apply the edge preserving anisotropic filter (eq. 2), to
the image.

2. Using a mouse, place one seed per region, labeling
them from 1 to N. The user-selected seeds are here
referred to as definitive seeds to distinguish them from the
provisory seeds detected by the algorithm. They may be a
single point or sets of points inside a user-selected

polygon.

3. Sort all image pixels, in ascending order, by the
address calculation technique described in [11] according
to one of the criteria listed below:

e gray-level value of the current pixel;

e difference between the maximum and minimum
values in a neighborhood N(p) of the current pixel;

e difference between a pixel and the mean of it's
neighbors;

e mean curvature at the current pixel;
any other criteria which can be used to defer the
processing of the edges.

4. For each sorted pixel p, extracted from the sorted list,
find how many labeled pixels exist in its neighborhood
N(p). The three possible outcomes are: There is no
labeled pixel in N(p). The current pixel receives a new
label and starts a new provisory region. New regions
receive labels starting from N+1. These labels are here
referred to as provisory labels and are assigned to
provisory seeds. There is only one labeled pixel in N(p).
The current pixel receives this label and is integrated into
the neighbor region. There are more than one labeled
pixels in N(p). If two or more neighbors have definitive
seeds (label <= N) a real border has been found, mark the
current pixel as a "border”, say a -1 label, else merge all
neighbors into one region (the one having the smaller
label; the first labeled in N(p) ) and add the current pixel
to 1t.

5. Re-label all pixels to reflect the absorption they have
undergone using a merging table.

6. Draw the segmented image according to the newly
assigned labels.

Figure 5, illustrates the IIDSA merging process for an x-
ray image. Since this image contains regions whose
transitions are stepwise, the gray levels cannot be directly
used to impose an order of processing to the pixels. The
difference between the maximum and minimum values in
N(p) was used, instead.



Figur 5. Snapshots for increasing time-steps.
3. Application to micrographs

This section illustrates some practical results produced by
the IIDSA algorithm. Figure 6a shows a ceramic
micrograph containing grains (darker regions) separated
by thin gaps (lighter regions). The highlighted areas in
Figure 6a indicate weak/diffused boundaries. One 3x3
seed per region was marked inside each region. Since the
borders already have gray-levels higher than the grains,
all pixels were sorted according to the gray level criterion.
In this case, a complete tessellation of the space is
required to segment the image. Figure 6b shows the
IIDSA segmentation result. Notice that even the barely
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perceptible edges have been correctly detected. Figure 7a
shows a micrograph of albitite, a geological material,
containing grains. In this image, the difference between
maximum and minimum values in N(p) was used to sort
the image pixels, forcing higher values at the edges.
Figure 7b shows the IIDSA segmentation result. Observe
that some "leaking" occurred parallel to the edges in
homogeneous flat zones. Figure 8 shows the definitive
seeds (black spots) and the IIDSA segmentation result
(white lines) superimposed on the original cross-section
of a human renal glomerulus. The sorting criterion was
based on the maximum-minimum difference in N(p)
forcing higher values at the edges. Only a few seeds (one
per region) were needed to extract the edges of the main
structures.

DN

Figure 6a. Orlgi\lnlz;lnmiérogrépla of ceramic material

Flguré 6b. IIDSA ségfrlehtatlon result.
4. Concluding remarks

The IIDSA combines some valuable features of known
image smoothing and segmentation methods developed in
the Mathematical Morphology and in the PDE based
Level Set frameworks.
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Figure 7b. Seeds and the IIDSA segmentation result
For instance, efficient edge preserving smoothing guided
by PDEs, typical of surface evolution methods; ability to
automatically detected all image minima and to make the
regions grow inside geodesic domains, a property
inherited from the watershed transformation; ability to
automatically stop the growing process whenever two
user selected regions touch each other, a characteristic
difficult to implement in the PDE based level set
framework; global competition between all image pixels
according to a user selected criteria; ability to change the
image topology using a simple merging mechanism, thus
dramatically reducing the over-segmentation; recovery
from errors mediated by a user guided segmentation; low
sensitivity to seed positioning and execution time directly
proportional to image size. However, the IIDSA does not
provide region splitting and shrinking. At the expense of
more user interaction, the IIDSA allows the recovery of
complex shapes from images in 2D or 3D in gray-scale or
color images. The algorithm can be easily extended to n-
dimensional images. For the future efforts will be directed
to improve the merging algorithm. An attribute based
splitting mechanism is also being considered.
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Figure 8b. Seeds and IIDSA segmentation result
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