Segmentation of TEM Images Using Oscillatory Neural Networks
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Abstract. Oscillatory neural networks are a relatively recent approach for the problem of image segmentation.
Inside of this context, the oscillator neuron of Terman-Wang is presented, which one is used as base element
of an oscillatory network called LEGION (Locally Excitatory Globally Inhibitory Oscillator Network). The
continuous version of the LEGION network, based on a set of differential equations, presents high
computational complexity and has limited capacity of segmentation, what restricts its practical application,
being adequate for implementation in parallel hardware topologies. To reduce the computational complexity in
serial computers, an algorithm proposed by Terman and Wang is presented, which implies significant gain of
speed in comparison to the continuous version and, in contrast, capacity to discriminate a unlimited number of
segments. An interactive version of this algorithm was proposed and the results obtained in segmentation of
transmission electron microscopy (TEM) images were evaluated, with the objective of measuring helium
bubbles in silicon samples. As final result we found that the LEGION network presents itself as a singular
alternative to solve problems of image segmentation, which provides simultaneously both spatial and temporal

discrimination of segments.

1 Introduction

Innumerable applications imply the extraction of features
from an image in order that the same can be understood by
a system of artificial vision. The pre-processing implies
the restoration, the improvement or simply the adequate
representation of the image data, improving some features,
as the contours of objects, for example, or the
transformation of the image for some other domain more
appropriated to the application. The conveniently pre-
processed image is then segmented through the use of
some appropriated technique, with the objective to isolate
regions with similar features (segments). The posterior
application of a classifier relates a label with each one of
the regions or segments identified according to a previous
base of knowledge. With the results of the classification
procedure, a description or an interpretation of the image,
appropriated to the context of the application, can finally
be elaborated.

The procedures used in image segmentation can be
classified in 4 great categories [7]: a) the classic methods
based on amplitude thresholding, detection of edges or
growing/contraction of regions; b) statistical methods,
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such as the classifier of maximum likelihood; ¢) methods
based on fuzzy logic, as the algorithm fuzzy c-means and
d) methods based on artificial neural networks with varied
topologies.

Several techniques of image segmentation based on
artificial neural networks have been developed,
particularly using MLP networks (MultiLayer Perceptron)
associated to the Backpropagation algorithm [5,8],
Hopfield networks [5] or Kohonen maps (SOFM - Self-
Organizing Feature Map) [5], with typical examples found
respectively in [3,4,9]. Such algorithms have presented
good results even in the presence of noise or distortions in
the image to be segmented, bringing with itself the
inherent advantages of the neural networks related to the
robustness in relation to the occurrence of faults and to the
parallelism that can be expressed as velocity of operation
when used the adequate hardware. As disadvantages,
some of these methods present the training necessity, what
can be problematic due to the long necessary time, the
number of available samples previously segmented and
also very high complexity, in some cases, for
implementation using non parallel machines.



Recently, alternative topologies of artificial neural
networks, called oscillatory neural networks or simply
oscillatory networks, have been applied in procedures of
image segmentation with favorable results. In this area, is
particularly interesting the work developed by DeLiang
Wang and David Terman [14], who have lead most of the
practical research with this type of network. For example,
in [6] it is found a procedure involving MLP networks
associated to the oscillatory networks, used for extraction
of hydrographic regions in images of remote sensing. In
[10], can be found a study about the use of networks of
oscillator neurons applied to the segmentation of medical
computerized tomographic images (CT) and magnetic
resonance (MRI). A different application can be found in
[17], where an oscillatory network is used to separate the
speech of a speaker from interfering signals.

The study of such topologies of neural networks,
which have direct biological inspiration on the mechanism
of segmentation executed by the human brain, and
applications of the same ones, is presented as a fertile
field, as well as the development of architectures of
hardware for practical implementation of the networks,
exploring the parallel nature of them.

In this work, a topology of oscillatory neural network
called LEGION is presented (Locally Excitatory Globally
Inhibitory Oscillator Network), in both its continuous and
discrete versions, based on the called Terman-Wang
oscillator neuron. Also are presented some results relative
to the use of a modified LEGION network for
segmentation of images of silicon samples obtained by
transmission electron microscopy (TEM).

2 The Terman-Wang Oscillator Neuron

The Terman-Wang oscillator is a relatively recent
proposal, which, due to mathematical and computational
reasons, has been used for composition of oscillatory
artificial neural networks with application in segmentation
of signals. The behavior of the Terman-Wang oscillator
can be described through the pair of non-linear differential
equations (1) and (2) [16]. The state variables x(z) and y(1)
represent the system. Under the biological point of view,
x(t) can be understood as the potential of the nervous cell
membrane, or the physical variable that represents the
output in the neuron. @, f and € are parameters of the
model and ] is an external input.

dx(t)

3x() - x3 (O +2-y(O) +1 )
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Fig. 1 presents the phase trajectory of the Terman-
Wang oscillator with parameters I=1I, f=0,2 and o=3.

e
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The functions y,(t) and y,(t) are obtained by making both
the derivatives represented by (1) e (2) equal to zero.
These functions are called nullclines of the system. The
points, B and C correspond to examples of initial
conditions for the presented differential equations. When
the points B or C are used as initial conditions, the system
acquires oscillatory response whose trajectory of phase is
represented by the bold line, with the indicated direction.
The initial condition represented by x(0)=0 and y(0)=3
implies an equilibrium situation for which oscillation does
not occur, and must be avoided. Normally, a random noise
of small amplitude can be added to the input in order to
avoid such equilibrium state.

7

sf \n® ysz——
5t + c
41
B
Y 3t l A T
2t ]
1t >

-

2 X 0 i 2
x(t)

Figure 1 Phase trajectory of the Terman-Wang

oscillator for I=1, =0,2, o=3.

Fig. 2 represents the output of the Terman-Wang
oscillator in function of the time, characterizing the
behavior of a relaxation oscillator. The intervals of time
where the value of the output (x(#)) is high or positive are
called active phases, while the intervals of time where the
value of the output is low or negative are called silent
phases [16].

In the case of I<0, one says that the oscillator is
excitable or it is not stimulated and there is no oscillation
in the system [16]. For values of 7 that result in oscillatory
behavior, a correlation can be observed between the value
of the input and the value of the ratio of the times of
permanence in the active and silent phases. In order to
such oscillation occurs, the value of the external input
received by the oscillator must be restricted to the band
0<I<(2a-4), situation which the oscillator is said
stimulated [16].

The Terman-Wang oscillator mathematically has a
similar behavior to other models, being simpler than the
Morris-Lecar oscillator and presenting bigger flexibility
that the oscillators of van der Pol and of FitzHugh-
Nagumo [16]. Such properties make the Terman-Wang



oscillator a better alternative to implement networks of
oscillators with several practical applications, including
15

image segmentation.
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Figure 2 Output of the Terman-Wang oscillator
in function of the time for I=1, $=0,2, a=3,

£=0,01, x(0)=0 and y(0)=0.

3  Continuous LEGION Network

In the end of 80’s decade, oscillations of approximately 40
Hz had been discovered in the visual cortex and in other
areas of the human brain. It was verified that such neural
oscillations present strong correlation with the coherence
of the visual stimulus, occurring synchronism of phase
between physically near neurons that receive similar
external stimuli, what can characterize a homogeneous
region of the perceived image. On the other hand,
physically near neurons that receive different external
stimuli or physically distant neurons that receive similar
external stimuli do not present the cited synchronism of
phase [16].

Since the discovery of the coherent neural
oscillations, diverse types of networks composed by
oscillator neurons have been studied with the objective to
create artificial models for the phenomenon. Extending
the study of Somers and Kopell [12], Terman and Wang
had proved that in a network of relaxation oscillators with
local coupling and arbitrary dimensions, an attraction
domain exists for which whole the network tends to the
synchronism with an exponential rate [13]. Using such
property of local synchronism between coupled oscillators
and adding a mechanism of global inhibition to get
desynchronism among several groups of oscillators,
Terman and Wang obtained a network they -called
LEGION. Moreover, a gaussian signal of small variance is
added to the input of each oscillator to prevent that the
initial conditions of the network imply not desired states
of stability and also to prevent the possible synchronism
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between distant oscillators with similar inputs [16]. The
lateral excitation of an oscillator of the LEGION network
(S), also added to the input, is defined as the coupling
received from the others oscillators of the network and
from the global inhibitor, being represented by the
equation (3). Only the oscillators that belong to a near
neighborhood possess coupling, as it can be observed in
the example of topology presented in fig. 3. The global
inhibitor (z(t)), on the other hand, is connected to all the
oscillators of the network. W, are weights related to the
connections between oscillators k£ and i, W, is the weight
of the global inhibitor, 8, and 8 are thresholds, N(R) is the
neighborhood of radius R of the oscillator i, H(x-6) is the
function of Heaviside, k is a parameter that controls the
inclination of the function defined by (5) and ¢ adjusts the
rate of variation of the global inhibitor output.

Si (=Y WyS.(x,(6,6,)-W,S.(2(0,6,) (3)

ke N;(1)
D — g (5, 0)-0,) 20 @
dt
g 1 5
w (X, )—W ©

A mechanism used for normalization of the weights
is proposed in [15]. The normalization of the weights is
not a necessary condition for the correct functioning of the
LEGION network, but it improves the quality of the
synchronism between neighbor oscillators that are
submitted to similar external stimuli. The W, weights can
be determined in the beginning of the process representing
the similarity between the external inputs of neighboring
oscillators [15].

array of oscillators

global inhibitor
Figure 3 Example of a topology of a 2-
dimentional LEGION network.

The fig. 4 presents the behavior of a LEGION
network with 4 neurons hardwired in a 1-dimentional ring



architecture, where it can be observed the synchronism
between neighbor oscillators with similar external inputs
and desynchronism between oscillators with distinct
external inputs. The temporal discrimination of groups of
physically near neurons with similar inputs can be
observed in the output of the network.
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Figure 4 Outputs of the oscillators and of the
global inhibitor of a LEGION network with
external inputs /,=0,3, 1,=0,4, 1,=0,5 and I,=0,5.

For a set of parameters, a continuous LEGION
network can discriminate a limited number of segments,
which depends on the ratio between the permanence times
in the active and silent phases. This limit is called capacity
of segmentation of the network and places in the band of 5
to 10 segments [16]. This property, although presenting
itself as a restriction to practical applications of the
network in segmentation, has Dbiological correlation
because it is also observed in human beings, which
present a quantitative limitation for discrimination of
several objects at the same time [15].

In [15] is also presented a modification in the
excitation of the Terman-Wang oscillator, considering the
basic idea that a set of oscillators with similar inputs must
possess at least one oscillator, called leader oscillator,
which must receive great lateral excitation from its
neighborhood. On the other hand, isolated oscillators that
belong to noisy regions, cannot be characterized as
leaders. So, an oscillator with great lateral potential can
lead the activation of a group of oscillators that
correspond to a homogeneous region of the external input.

The results found in the bibliography demonstrate
that the continuous LEGION network presents itself as a
potentially efficient tool for image segmentation. As
positive aspect, can be ' pointed the property of
simultaneous spatial and temporal segmentation presented
by the network. As negative aspect, can be pointed the
high computational complexity, due to the great number
of differential equations to be solved. On the other hand,
the use of the model based on differential equations is
presented as an alternative for realization of a full parallel
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network using analog circuits, associating the high speed
presented for such circuits and the inherent high level of
parallelism of the LEGION network.

4  Discrete LEGION Network

With the objective to reduce the computational effort in
the use of serial computers, Terman and Wang had
developed an algorithmic discrete version of the LEGION
network, with basically the same properties of the
continuous version [15]). The limitation related to the
number of segments to be distinguish presented by the
continuous network is not verified in this proposal, adding
a positive feature to the same one. In the developed
algorithm, the state variable x(f) is the only one
considered, since the same represents the output of the
oscillator. A neighborhood relation was used considering
the 8 neighbor pixels for determination of the lateral
excitation of each oscillator in a 2-dimentional network
used for applications of image segmentation, what can be
easily modified. The algorithm can be divided in three
great stages, which are presented to follow:

1) Phase of initialization

e Make the global inhibitor z(t) equal to zero:
z(0)=0

e Calculate the weights of the connections between
neighbor oscillators (W,) considering the input image,

where [/, the maximum intensity found among the
pixels of the same one:
1
W, =—M — ke NQU) )
1+, - 1|

¢ Find the leaders p, using the function of Heaviside with a
threshold 6:
pi=H ZW'

ik -6
ke N(i)

)

14

e Set the outputs of all the oscillators in random positions
in the silent phase:

2<x;(0)<-1

2) Determination of the first oscillator to pass to the
active phase

e Considering that all the oscillators (x,) are in the silent
phase, choose the leader oscillator (p=1) which will be
the oscillator with its state next to the point of transition
for the active phase (state x=-1) and carry it to the active
phase (state x=1), increment the global inhibitor (z(t)=1)
and recalculate the states of the others oscillators in the
silent phase:



[x;(¢+1)=1 and z(t+D=1]

for [x;()2x, (1) ,Vk]

®

and x; (t+D)=x, ()—1-x;(t) k=] ®

3) Dynamics of the network

e Keep the oscillators that are in the active phase if the
global inhibitor was incremented. Return the oscillators
that are in the active phase to the beginning of the silent
phase (defined as the state x=-2) if the global was
decreased or kept constant. For each oscillator that
returns to the silent phase decrement the global inhibitor.
When no more oscillator neurons exist in the active
phase (z(2)=0), return to the stage 2.

[ +D)=x,(1)]

if [z(t)>z(t-1) and x;(t)=1] (10)
and [x;(¢+1)=~2 and z(¥)=z(t-1)~-1]
if [z()<z(t-1) and x;()=1] (1)

¢ Find the lateral excitation of the oscillators that are in
the silent phase according to the criterion established for
(12) or other alternatives presented in [1]. Those
oscillator neurons that possess enough potential will
pass to the active phase and the global inhibitor will be
incremented.

Si)= Y WyH(x, (0 +1)-W,H(z(-05) (12)
keN(i)
[x;¢+1)=1 and z(t)=z(@-1)+1]

if [S,(t)>0 and x,(r)<1] (13)
and [x;(¢+1)=x;(t) and z(t)=z(t~1)]
if [S,(1)<0 and x,(1)<1] (14)

e Execute the dynamics of the network until reach the
condition of no oscillators in the active phase and then
go to the stage 2.

The algorithm presented for the LEGION network
considers that the leaders and the weights of the
connections must be determined in the initialization phase,
not needing posterior update. It must be observed that the
number of leaders does not correspond to the number of
discriminated segments, since each segment can generate
several leaders.

The results presented in the bibliography demonstrate
that the LEGION network, in its algorithmic version are
efficient for segmentation of signals of diverse natures
and, in particular, for segmentation of images. The
significant increase in the speed makes the discrete
version of LEGION network more suitable for
implementations that use serial computers.
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5  Sensitivity to Noise of the LEGION Network

Preliminary evaluations had demonstrated that the result
of the segmentation using LEGION network in its two
versions is sensible to the noise present in the image
signal, due basically to the use of the intensity similarity
criterion between adjacent pixels.

In [1,2] is proposed an algorithm for smoothing
called FPS (Feature-Preserving Smoothing), which
reduces the noise while preserving relevant details found
in the original image. The related algorithm can be used
with the algorithms presented for the LEGION network,
promoting a gradual update of the weights, whose effect is
equivalent to the one of a filtering that attenuates the noise
and simultaneously preserves details of the original image
[2]. The FPS algorithm can also be directly used in a
previous stage of the LEGION network, acting on the
pixels of the image as a non-linear filter. The equation
(15) presents the cited procedure of smoothing for
application over images [2). I/ is the intensity of pixel ij at
iteration ¢, D,.j' is a measure of the local discontinuities
around the pixel, ¢, is the normalized variance of the
intensities of the pixels calculated in a neighborhood of
radius R of the pixel ij, 8, is a threshold for the influence
of the variance and k, and &, are weight parameters.

2(11 _ Il —(k,@(o',%,,,ﬂg)+kzD,’,,,,)

4l (m,m)eN; (1) —k, (0} .6,)
1+ ___I'I]+ i > e 1 ]
Y ki ) +aDhn)
(m,n)e Ny (1)
(15)
' l |l;—l,j n—l} |'// -1 l/+l + (16)
i =
4 +*1,-1, 1 Inl,j+l +PHJ+1 ~I:+I,j~li
2 2
o o5 2
y 7y 4
(I>(0'U ,0,)= a7
o; <8
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The fig. 5 presents an image with dimensions of
1482x2060 pixels and resolution of 8 bits in gray level
scale, which was obtained through transmission electron
microscopy (TEM), representing a silicon sample in
which had been implanted ions of helium with the
objective to reduce defects in the crystalline structure of
the semiconductor. Due to its physical properties, the
helium tends to accumulate itself in small bubbles
concentrated in one determined depth of the silicon
sample. For evaluation of the process, whose result
depend on factors as the temperature of implantation, it is
necessary to determine the amount of helium bubbles in

Segmentation of TEM Images



one determined region, as well as the volume of the
present gas, which can be estimated through the diameter
or the area of the bubbles [11]. This procedure must be
carried through for several images, being a complex task
for manual execution by a human being.

Figure 5 Image of TEM representing a silicon
sample with helium bubbles.

To segment the helium bubbles and simultaneously
separate the same ones in time, facilitating the
implementation of an automatic process of counting and
measuring its areas or diameters, it was opted to use a
discrete LEGION network with the same dimensions of
the image (1482x2060 oscillator neurons). The fig. 6
presents an region extracted from the image of the fig. 5,
which is used to verify the qualitative results of the
proposed segmentation procedure.

Fig. 7 presents the result of filtering the image of fig.
6 using the FPS algorithm, being able to be observed the
preservation of the contours of the helium bubbles. The
used parameters had been R=3, 6,=90, k;=20, k=5 and
10 iterations.

Fig. 8 presents the segments related to the 9 bubbles
segmented for the LEGION network using the image of
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the fig. 7 as input. The parameters used in the network
had been 9p=4 and W=0,4. The black color represents the
oscillators in the silent region (inactive), while that the
white regions represent the oscillators with output in the
active phase. An additional segment, presented in fig. 9,
presents the silicon background and also is supplied by the
network, which, due to its very big area, can easily be
detected and discarded in the automatic procedure of
measure. Pixels pertaining to not homogeneous regions
are not incorporated to the extracted segments got from
the LEGION network. Fig. 10 presents pixels that had not
been segmented by the network (represented in black
color) relative to the image of fig. 7.

. H

Figure 6 Region extracted from
fig. 5.

B

Figure 7 Image of fig. 6 filtered with the FPS
algorithm.

The relative areas of each one of the bubbles can
quickly be obtained from the segments presented in fig. 7,
as the ratio between the number of oscillators with output
in the active phase and the total number of oscillators of
the network, which corresponds to the number of pixels of
the image. Being known the relation in pixel/nm of the
image obtained of a TEM (showed near de right bottom
corner in fig. 5), the volume of helium in the region



represented by the image can then be estimated. It must be
observed that the visual determination of the area of each
bubble (or of the average diameter) can be inexact in the
cases in which the bubbles are not perfectly circular. Such
limitation is not observed in the considered method, since
the relative area of each segment can be determined with
exactness, independently of the form of the same. On the
other hand, incomplete bubbles, located at the extremities
of the images, bubbles with very degraded contours and
bubbles superimposed lead to wrong measures. To avoid
such limitation, an interactive procedure was adopted,
where points on the regions to be segmented are marked
(bubbles). Such points are used to determine the leader
oscillators of the LEGION network. In this way, the
homogeneous regions around the indicated leaders will be
the only regions segmented by the network. The bubbles
not marked, in number relatively reduced, can be

measured later through a manual procedure.

Figure 8 Result of the segmentation of the
image of fig. 7 with a LEGION network.

Figure 9 Segment related to the homogeneous
silicon background.
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Figure 10 Pixels not segmented by the network
(represented in black color).
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The use of oscillator networks to simulate the capacity of
temporal segmentation that is given credit to possess the
human brain is presented as a recent alternative and with
satisfactory results. The researchers DeLiang L. Wang and
David Terman have developed works where a called
LEGION network (Locally Excitatory Globally Inhibitory
Oscillator Network) is proposed, which is constructed
based on relaxation oscillators locally connected and with
a mechanism of global inhibition. This mechanism of
connections allows that neighboring oscillators submitted
to similar external inputs oscillate in synchronism of
phase and desynchronism with other groups of oscillators
of the network. Of this form, each group of oscillators
corresponding to coherent regions of the input signal of
the network is activated in a different time interval,
propitiating both spatial and temporal segmentation of the
input signal simultaneously.

Conclusion

The Terman-Wang oscillator, used as the basic
element of processing of the LEGION network, is based
on a pair of differential equations, what implies high
computational complexity for application of the network
in  non-parallel machines. An algorithm for
implementation of the LEGION network in serial
computers was proposed by Terman and Wang, having
presented a significant gain of speed in relation to the
continuous version of the network and still supplanting the
limitation of the continuous version related to the capacity
of segmentation for simultaneous discrimination.

One of the key points for the correct operation of the
LEGION network, as much in its continuous version how
much in its discrete version it is the determination of the
weights of the connections between neighboring
oscillators. According to proposal of Terman and Wang,
the related weights can be determined in the beginning of
the process, in a single step, based on some attributes of



the signal applied to the input of the network, what
implies relatively low computational complexity to
develop such task. Another relevant aspect says respect to
the determination of the parameters of the network, 8, and
W,, which must interactively be determined for the correct
operation of the network. The quality of the segmentation
supplied by the network is also strongly related with the
quality of the image to be segmented, leading to the
necessity of application of a previous procedure of
smoothing, such as the FPS filtering presented, which has
the property of drastically attenuate the noise in the image,
preserving relevant characteristic, as the borders between
distinct regions.

The work developed by Terman and Wang includes
applications of LEGION network for segmentation of
signals of diverse natures, including medical images,
images of remote sensing and signals of speech, having
been found favorable results. In this work, the application
of the LEGION network in the segmentation of TEM
images to estimate the volume of helium in silicon
samples, qualitatively shows that this network presents
itself as a singular tool for applications that requires
simultaneously both spatial and temporal image
segmentation. The procedure of interactive indication of
leaders, proposed in this work, forces the LEGION
network to segment only the respective regions, avoiding
undesirable segments to appear as outputs of the network.
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