NISVAS

Three-dimensional Interactive Visualization in Java3D

BRUNO CAIADO!
LUIS CORREIA!
JOAO BRISSON LOPES * .
Lic. Eng®. Informética e de Computadores, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
(currently at Megamedia, R. Anténio Pedro 111, 1°, 1150-045 Lisboa, Portugal)
{bruno.caiado, luis.correia} @megamedia.pt

Departamento de Engenharia Informética, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

brisson@ist.utl.pt

Abstract. This paper describes the design and implementation of NISVAS, an application for interactive
visualization of large three-dimensional datasets produced by scientific applications that was developed in
Java/Java3D. Data visualization with NISVAS maps dataset magnitudes into color, symbols and vectors. This
paper presents the concepts and requirements for NISVAS graphical processing and user interface. The user
interface is easy to use and learn, and supports different levels of user expertise. User reactions to NISVAS
showed that all objectives were met, especially those relating to application performance and ease of use.
Concluding remarks include directions for future development.

1 Three-dimensional Visualization

The analysis of results produced by the numerical
simulation of complex phenomena is very difficult because
of the large data volumes involved and the different
magnitudes (e.g., deformation, stress, temperature,
velocity and concentration fields) that must be
simultaneously analyzed. The solution is to visualize this
data, combining what is visible (e.g., a part that deforms)
with what is not (e.g., stress).

The number of scalar or vector magnitudes to
visualize can be very large. Therefore, engineers and
scientists need simple, yet powerful, interfaces to quickly
change the way a magnitude is represented or exchange
one magnitude by another. Moreover, users need to
identify very quickly the magnitudes he/she can
manipulate and which operations can be performed on
each of them. This sets special requirements to the user
interface, namely the presentation of the visualization

application status, operations available and error
prevention.
Traditional visualization applications were

specialized applications that depended on proprietary
technologies, operating systems and graphics hardware.
Such applications were developed for specific platforms
that, in a general way, were very expensive. Platform
dependencies also lead to windowing system dependency
and specific look and feel. This is the case of visualization
applications as Wavefront Data Visualizer, PV-WAVE or

1530-1834/01 $10.00 © 2001 IEEE

VIS5D. This was also the case of the ISVAS (Interactive
System for Visual Analysis, Karlsson [1-2], Haase [3])
visualizer that depended on SGI hardware and the GL. API
under the 4Dwm windowing system for visualizations, and
on Motif for the user interface.

The enormous increase of hardware capabilities, and
the emergence of new software construction paradigms
(e.g., Object Oriented design) and user interface design
methods has changed this scenery. Today, these
paradigms, together with programming languages and
APIs like C++, OpenGL, Java and Java3D, allow the
development of new visualization applications that are
simpler to build and whose interfaces keep the same look
and feel across platforms.

This paper presents an application for interactive
visualization of large datasets that was developed as a
graduation project of Information and Computers
Engineering at Instituto Superior Técnico (Caiado et al
[4]). The main objective was to make the existing ISVAS
vizualizer portable and significantly improve its usability.
The development of the new vizualizer, NISVAS (New
Interactive System for Visual Analysis), was a demanding
challenge because the project objective was to design and
implement a simple to learn and use user interface and, at
the same time, do it with a new API, Java3D, whose
definition had yet to stabilize. Moreover, NISVAS code
had to be written from scratch since ISVAS code, although
available, had become cluttered from many patches and
additions.

NISVAS usability was assessed by heuristic
evaluation methods (Nielsen [10]) and by comparison with
ISVAS.

2

NISVAS design started with the analysis of existing
scientific visualizers and user surveys that identified
problems of existing visualizers. This way, the objectives
for this project were:
Portability

User interface

Objectives

e Performance

e Documentation and on-line help

2.1 Portability

The great majority of interactive visualizers is not portable
and often relies on proprietary standards with heavy
historical backgrounds that limit their dissemination and
use. To avoid this pitfall, NISVAS had to be developed in
such a way that at least its source code could be easily
ported. This called for solutions based on tools like C++
and Java, and the OpenGL and Java3D APIs.

2.2

The user interfaces of many visualization applications are
non-intuitive, inconsistent and difficult to learn and use.
For instance, the ISVAS user interface requires some user
expertise with ISVAS, even for simple commands. It also
presents many inconsistent user dialogues, with different
layouts for similar situations. Users complained about the
memory effort required to use the interface and that they
are frequently lost in the interface. Another user complaint
regarded the mandatory file loading order and the need to
individually pick and load all files of a dataset.

User Interface

These comments lead us to define as an objective that
NISVAS user interface should rely on simple and
consistent dialogues, should be easy to learn and use and
should also provide an easy way to display the status of
the application. The interface should provide shortcuts to
commands (e.g., menu navigation and shortcut keys) and
command redundancy so that both newcomers and expert
users might use the interface. Lastly, tasks like loading a
dataset should be performed with a single command.

23

Performance is a critical factor in visualization
applications that must be kept in mind at all times, since
performance depends heavily on the resources required by
graphical data processing. This means that all design
options, especially the architecture, should assess their

Performance

321

consequences in terms of performance and that it was
necessary to balance ease of implementation and usability
of the user interface with performance.

24

Most applications for interactive visualization come with
large complicated manuals. At the same time, on-line help
is either scarce or cryptic. NISVAS objective was to
provide contextual on-line help and full documentation to
ease and reduce the time to learn how to use NISVAS.

Documentation and On-line Help

3

NISVAS architecture has two main subsystems, the user
interface and the graphical processing core, that
communicate through communication modules. The user
interface subsystem interacts with the user and passes user
commands to the graphical processing subsystem after
checking for errors (error prevention). The graphical
processing subsystem executes all graphical commands,
creates and destroys visualization windows and manages
events on those windows.

Architecture

The concrete architecture depended on the way
communication between the two subsystems would be
implemented. One solution would be to have the two
subsystems communicating via sockets. This would ensure
source code portability of a graphical processing core
written in C++ (and OpenGL) and total portability of a
Java coded user interface subsystem. This solution
required a very clear definition of the communication
protocol. However, socket programming is not easy to
port. Moreover, tests showed that the expected intense
communication between the two subsystems would
degrade overall application performance.

The solution that was adopted for the architecture
consisted on developing the two subsystems in Java
(Arnold {5]), and on using the emerging Java3D API
(Bouvier [6]) in the graphical processing core. Use of the
Java3D API was a challenge, but it allowed an object
oriented approach and total portability of the application.
It would also allow easy functionality upgrade and
simplification of the communication between the two
subsystems. The only disadvantage was that Java
programs must run under a Java virtual machine, which is
slower than C or C++ compiled code.

With this solution, the graphical processing core is an
object that graphically processes the datasets and presents
a well-defined interface whose public methods are invoked
by the user interface. Each dataset can be realized as an
object that the graphical processing core manipulates.

NISVAS was developed on a Pentium III PC running
at 500 MHz under Windows 98 and 128 MB of RAM.

The development tools used were JDK1.2.2,
Java3D 1.1.3, JavaHelp 1.1 and Forte for Java CE 1.0.

4 NISVAS Functionality
NISVAS operates on geometry-based datasets where
scalar and vector magnitudes refer to geometries

assembled from elements used by Finite Element methods.
NISVAS supports several element geometries. Figure 1
shows some of these. Elements may be placed together to
create a single object or as several separated objects, as
figure 2 shows.

Datasets can be loaded and unloaded with a single
user command. Loaded datasets can be copied and
renamed. New magnitudes can be added to an existing
dataset or removed from it.

Loading a dataset opens its visualization window and
shows the dataset geometry under a uniform light source.

3 2 3 6 2
7¢ 1}5
4 1 4 *
8 1
PLATE4 PLATES
14
7 6 7 1326
3’19 10
3 2 15¢ 2 413
) 24
8 s 11 3 16 5
4 0. 1 17
4 1 12
BRICKS BRICK20
Figure 1 Finite Elements supported by
NISVAS, showing node placement and
numbering.

Figure 2 Two datasets geometries.

322

The user can then change object color or, through
user selectable transfer functions and color scales, map
scalar magnitudes to focal color of the objects. Magnitudes
can be mapped into symbols and vectors, their color and
size, and vector direction in the case of vector magnitudes.
Deformations can also be applied to the geometry of the
objects.

NISVAS allows users to change illumination, make
objects transparent (with transparency level control) and
define cut planes that can be precisely positioned.

All information on a dataset is kept in a coherent way
and it is possible to store dataset views. Loading a view
loads its dataset and presents it with the magnitude
mappings and the illumination that were set when the view
was saved.

NISVAS uses Java3D behaviors. A behavior is a link
between an event and an action. NISVAS uses Java3D
predefined behaviors and implements new ones to perform
object rotation, panning and zooming in visualization
windows.

4.1

NISVAS maps scalar and vector magnitudes to object
color, symbols and vectors. The user can also control the
color of objects such as light sources and the background
with color values specified in RGB or HSV.

Mapping Magnitudes onto the Geometry

Scalar magnitudes are mapped onto color by
transforming magnitude ranges into 4 color scales: Physics
(visible light color spectrum), Hueramp (from red to red
through all saturated colors of the HSV color model),
Grayscale (from black to white) and Hotiron (red to white
through orange and yellow). Mapping vectors containing
RGB color components can also set object color.

Vector magnitudes can be interpreted as node
displacement to visualize objects that are submitted to
deformations. Displacements can be scaled and can even
be animated if several displacements with timing
information are loaded into NISVAS.

Users control the visualization of the geometry and of
NISVAS predefined global objects (coordinate axes,
geometry bounding box, light sources and window
background). Users can make these objects invisible to
remove cluttering when too many objects, symbols or
vectors are displayed. Dataset geometry is usually shown
as oriented polygons, but the user can choose to display it
in wireframe mode.

4.2

Users can choose to display magnitudes as symbols and
vectors, as figure 3 shows. Symbols can be two-

Symbols and vectors

dimensional (circles, triangles or squares) or three-
dimensional (spheres, octahedrons or cubes). Vectors can
be displayed as simple lines, flat or smooth pyramids, and
detailed vectors. Symbol and vector color can be set like
geometry color. Symbol and vector size can be scaled
in the datasets

according to scalar magnitudes

ol

Figure 3 Display of a scalar magnitude with
symbols and a vector magnitude with vectors.

4.3 Global Objects and Light Sources

NISVAS defines global objects (coordinate axes,
geometry bounding box, labels, background color, cut
planes and light sources) that can be visible or invisible.

In addition to the default ambient illumination,
NISVAS allows users to control illumination by means of
light sources whose location is predefined. These can be
directional, point or spot light sources and their color and
intensity can also be set. NISVAS also allows users to
change the diffusiveness and opacity properties of the
surfaces of the objects.

4.4

NISVAS users can define and position cut planes. On top
of this, NISVAS users can also select to see only the front
or back faces of the objects, view objects on full screen
mode and turn light sources off and on. By default,
NISVAS uses perspective projection to display objects.
However, the use can select parallel projection or selected
views (front, side or top), either one at a time or
simultaneously.

Visualization Options

5 NISVAS User Interface

NISVAS user interface was carefully designed and
implemented to meet requirements and make all the above
functionality available to the user. Interface design was
based on task analysis and prototype heuristic evaluation.

The goal was to maximize direct manipulation of the
objects and provide a coherent and easy to learn user
interface. Starting at the main window, users should be
able to reach all dialogues within two clicks. There should

323

not be more than 6 options at any one level (Mayhew [7],
Preece [8]). There should also be several ways to reach a
dialogue (redundancy) in order to support new or
infrequent users as well as expert users. Commands should
be easy to identify and should not required any memory
effort.

At the same time, the user interface should present
the application status in a clear and simple way, without
too much detail that might confound the user. All
application status details should be presented according to
dialogue context.

NISVAS has two types of windows: the main
window, from which all commands are available to users,
and visualization windows, one per dataset. Figure 4
shows a screenshot with the main window on the left and
two visualization windows.

Figure 4 NISVAS main window (left) and two
visualization windows.

5.1 Direct Manipulation in Visualization Windows

When NISVAS loads a dataset, it immediately opens the
dataset visualization window and presents the dataset
geometry with a uniform color. Users map dataset
magnitudes by means of specialized dialogues.

Users can directly manipulate (Schneiderman [[9]) all
objects in the visualization window. Moving the mouse
with the left button pressed rotates the objects. Moving the
mouse with the middle button pressed zooms in and out on
the scene. Panning is achieved by moving the mouse with
the right button pressed.

Moving the mouse in the opposite direction reverses
the current action. The user can reverse all previous
actions by pressing the left mouse button for a time
without moving the mouse.

52

The visualization windows and the main window show the
general application status. Visualization windows impart
on the user the current viewing transformation of the
geometry and magnitude mappings that have been set,
together with illumination and global objects settings.

Application Status

NISVAS main window (see figure 5) has three areas:
the menu bar, the tool bar and the explorer area. The
explorer area shows the status of the application relative to
the datasets that are currently loaded. At any one time
there is one active dataset whose name is highlighted.
Clicking on the name of a dataset in the explorer area
makes it the currently active dataset.

By default, each dataset is shown in expanded mode
(all magnitude names are shown) in the explorer area
(dataset cabecote). Clicking on the - icon on the left of a
dataset name collapses the dataset, while clicking on a +
icon expands the dataset and shows all its magnitudes.
Magnitudes that span several moments in time (e.g., the
mises, deform and stress magnitudes of the cabecote
dataset) can be expanded or collapsed in the same way.

5.3

NISVAS provides redundancy of dialogue selection to
support users of different expertise levels. NISVAS user
interface presents up to 5 different ways to select a
dialogue. In general, a dialogue can be selected using:

Redundancy and User Adaptation

e The menu bar

e The tool bar

¢ PopUp menus in the explorer area
e Menu navigation keys

e Shortcut keys

To unload a dataset one can use NISVAS menu
(Files, Unload Dataset), the tool bar (second icon from the
left), a PopUp menu (right mouse button click on the
dataset name in the explorer area, followed by clicking on
Unload Dataset), menu navigation keys (Alt+F, U) or a
shortcut key (CTRL-U). An inexperienced user can select
a dialogue through a step-by-step procedure with the
menu, while an expert user can do the same either through
the tool bar or a shortcut key.

54

The main menu organization in just two levels reflects the
task analysis that was carried out during NISVAS design,
which defined a task hierarchy organized in 3 categories:

Dialogues

e Files - dataset and views loading and unloading,
exit from the application.

324

ISVAS - Cubes

1@ [cabecote
- B8] Nodes
- [IR] Elements { PLATE4)
@ & mises
o @4 deform
© @Y stress

Figure 5 NISVAS main window showing the
menu bar (top), the tool bar (middle) and the
explorer area (bottom).

e Options — magnitude mapping, and light sources,
viewing options and animation control.

e Help — access to on-line help and documentation
(includes index, an introduction, how to use
NISVAS and dataset formats).

Figure 6 shows all options available from each of the
menu groups (users can also access the Help menu group
by clicking on the rightmost icon on the tool bar). Note the
small number of options in each menu group.

The Options menu group is the most complex menu
group. Task analysis showed that there were 4 types of
tasks (Mapping, Lights, Viewing Options and Animations)
and that each task’s dialogue could be very simple, as
figures 7 to 10 show. All dialogues show a Close button
on the left and a Help button on the right. The Help button
provides contextual help.

55

The Mapping dialogue is the most important dialogue of
NISVAS user interface since this dialogue controls how
magnitudes are mapped into color, symbols, vectors and
displacements. This dialogue also controls the presentation
of global objects (geometry bounding box, etc). There are
4 groups of objects: geometry, symbols, vectors and global
objects. Figures 11 and 12 show the dialogues for two of
these groups.

Files Mapping Dialogue

¢ @]

B Nodes
B} Elements (PLATE4)
o 2

o --

- Nodes
" [Elements (PLATE4)

v [- PO i
Figure 6 Options available from the menu groups.

The Mapping dialogue is as a Java Tabbed Panel that
allows users to identify all available options very quickly
since all options are simultaneously presented. Table 1
shows how Mapping options are organized.

. Global
Group Object Symbol | Vector Objects
Color Color Color | Bounding Box
_E Deformation | Size Length | Labels
3 | Details Details | Details | Coordinate Axis
N Background
Color

Table 1 Mapping dialogue hierarchy.

325

il Mopyry - Lub

Figure 9 Viewing Options control dialogue.

e Animations - Cub

s i S

Figure 10 Animations control dialogue.

iDefauit Color

Figure 11 Mapping dialogue to map magnitudes
onto the geometry of the objects.

Figure 12 Dialogue to control NISVA global
objects.

326

6 Example

Figure 13 shows the visualization of the deformation of a
railway carriage part that protects carriages against strong
impacts. The geometry of the part is made from 1452
nodes assembled as type PLATE4 elements (see figure 1).
The dataset includes deformation, local stress and the local
values of the von Mises criterion at 21 different times
during part deformation under impact.

The visualization was animated. Figure 13 shows part
deformation (scaled on purpose) at 2 times in the process.
Wireframe visualization mode was used to avoid screen
cluttering. Figure 14 shows the part as a solid deformed
object with the local stress modulus mapped into the color
of the geometry.

Figure 13 Visualization of a part deformation
under a violent impact at 2 times in the process.

Figure 14 Part deformation with local stress
modulus represented by local color.

7 Concluding Remarks

The development of the NISVAS visualizer for three-
dimensional visualization of large datasets generated by
numerical simulation of complex phenomena required
special care in the design of the architecture, choice of
development tools and, above all, in the design and
realization of the user interface. The project faced several

challenges. One was the use of Java3D technology that
was the object of several upgrades and corrections during
the project’s lifetime. Parts of the source code had to be
rewritten several times in order to use new functionality
and dispose of code that had been written to workaround
problems of earlier versions of Java and Java3D.

However, it was the design and realization of the user
interface that constituted the most difficult challenge since
the success of applications such as NISVAS resides more
on the ease of use of the user interface than on application
functionality. The design methodology based on task
analysis and the evaluation of prototypes that was adopted
was essential for the excellent results that were achieved.

One of the most important results is the simplified
command hierarchy that was achieved without sacrificing
functionality. The simplification of the user interface
allows users to have a clear view of all the commands
available and to invoke commands in several ways
(redundancy and adaptation to the user). This allows users
to make the most of NISVAS powerful commands through
a user interface that is easy to use and learn, without the
need to build complex mental models of the application.

_Heuristic evaluation of the application showed user
positive reactions to NISVAS and confirmed that all the
objectives set at the beginning of the project were met.
Users stressed the functionality available, the ease of use
of the user interface and the good performance of
NISVAS.

7.1 Future Developments

User reactions to NISVAS show that the solutions that
were implemented constitute a sound base to continue
NISVAS development. This will be the subject of more
detailed and formal usability studies to be carried out in
the next development phases, as new functionality is
added.

In response to users request, NISVAS will be able to load
datasets using data formats other than the current format
used by NISVAS. Moreover, ISVAS will also be able to
receive on-line data from simulation applications.

327

Future work will also address the upgrade of NISVAS
animation capabilities and the introduction of functionality
to visualize stationary or time-dependent flows of particle
systems (e.g., atmospheric, river and sea flows with
particle transport or virtual wind tunnels).

Another upgrade that is planned is the possibility to
manipulate magnitudes of the datasets using the pocket
calculator metaphor. This way, users will be able to, e.g.,
combine scalar magnitudes into vector magnitudes and
apply transformations to magnitudes.

8 References

[1] K. Karlsson, ISVAS 3.1 Interactive System for Visual
Analysis User’s Guide, Fraunhofer Institute for Computer
Graphics, 1993.

[2] K. Karlsson, Ein Interaktives System zur Visuellen
Analyse von Simulationsergebnissen, PhD diss., THD,
Darmstadt, 1994.

[3] H. Haase et al, ISVAS 3.2 Interactive System for
Visual Analysis User’s Guide, Fraunhofer Institute for
Computer Graphics, 1995.

[4] B. Caiado, L. Correia, Visualization of Large Volume
Datasets (in Port. Visualizagdo de Dados de Grande
Volume, Trabalho Final de Curso), Graduation in
Information and Computers Engineering Final Project,
Instituto Superior Técnico, 2001.

[5] K. Arnold, J. Gosling, The Java Programming
Language, Addison-Wesley, 1996.

[6] D. J. Bouvier, Getting Started with Java3D API, Sun
MicroSystems Inc., 1999.

[7] D. J. Mayhew, Principles and Guidelines in Software
User Interface Design, Prentice Hall, 1992.

[8] J. Preece, Human Computer Interaction, Addison-
Wesley, 1994.

[9] B. Shneiderman, Designing the User Interface,
Addison-Wesley Longman, 1998.

[10] J. Nielsen, R.L. Mack, Usability Inspection Methods,
John Wiley and Sons, New York, 1994.

