Handling Ambiguity and Errors: Visual Languages for Calligraphic Interaction

JOAO PAULO PEREIRA
MANUEL JOAO FONSECA 2
JOAQUIM ARMANDO PIRES JORGE]
!ISEP — Instituto Superior de Engenharia do Porto, Porto, Portugal
jppereira@mail.telepac.pt
?INESC — Instituto de Engenharia de Sistemas e Computadores — Rua Alves Redol, 9, 6° 1000-021 Lisboa, Portugal
{mjf.,jaj} @inesc.pt

Abstract

This paper describes error handling and ambiguity in a
class of applications organized around drawing and
sketching, which we call Calligraphic Interfaces. While
errors and imprecision are unavoidable features of human
input, these have long been considered nuisances and
problems to circumvent in user interface design. How-
ever, the transition away from non-WIMP interface styles
and into continuous media featuring recognition requires
that we take a fresh approach to errors and imprecision.
We present new tools and interaction styles to allow de-
signers to develop error tolerant and simpler interaction
dialogues.

1 Introduction

Recognition-based interfaces have made significant pro-
gress over the last few years due to advances in affordable
computing power. The advent of mobile devices and new
interaction modalities looks poised to provide viable al-
ternatives to pervasive WIMP-based desktop applications.
Nevertheless, integral use of sketches, pen strokes and
gestures in computer interfaces is still restricted, because
gestures are difficult for computers to analyze. While
handwriting and speech recognition have been active
research topics for thirty years, they still pose serious
problems. Gestures are so different from conventional
input modalities that they demand radically new methods
for input handling and dialogue design. Pen stroke data
are hard to classify due to noise and user variations, re-
quiring pattern recognition techniques to convert them
into more tractable form. Even the best recognizer will
sometimes give different interpretations of input that
human observers perceive as similar. This problem is
compounded by the difficulty in using contextual infor-
mation (other than a dictionary) to aid in recognition.

To overcome these limitations, new approaches, which
we call Calligraphic Interfaces, use sketching and draw-

1530-1834/01 $10.00 © 200! IEEE

ing as the main organizing paradigm. Such applications
rely on continuous input modalities rather than discrete
interactions characteristic of WIMP. The word “calligra-
phy" comes from the Greek kalligraphia formed by the

-composition of kallos (= beautiful) and graphein (= to

scratch, draw or write). It stands for beautiful or expert
handwriting, or simply handwriting, and in a broad sense,
denotes the art of fine hand drawing. :

However, replacing direct manipulation by sketching does
not provide a definitive answer. While the temptation to
follow the paper-and-pencil metaphor is great, free-hand
sketch recognition remains an elusive goal. Further, using
gestures and sketches to enter commands and draw shapes
requires users to learn a command set — sketches do not
enjoy the self-disclosing characteristics of menus. More-
over, the imprecise nature of interactions presents addi-
tional problems that are not adequately addressed by
present-generation multimodal interfaces.

In this paper we address the three problems outlined
above through a combination of different paradigms: a
sketching metaphor provides a paper-and-pencil like in-
teraction. Special dynamic menus — expectation lists — try
to expose the application state without interfering with the
task. Finally, an incremental drawing paradigm based on
visual languages allows precise drawings to progressively
evolve from sketches through constraints and parsing.

We present our work on two different domain areas to
support our points. In the first section we describe Doc-
Sketch, a calligraphic interface to input document layout
by means of freehand sketches. Next, we present our
work on Gesture-based Incremental Design Systems
(GIDeS), which embodies the incremental drawing ap-
proach coupled with expectation lists. Both systems ex-
tend the paper and pencil paradigm in novel and interest-
ing ways. While these are still emerging applications,
suffering from many infancy troubles, they differ suffi-
ciently from the current paradigm to allow us a glimpse at

what we think are some fundamental traits of post-WIMP
applications.

2 Related Work

The idea of calligraphic interfaces is not new. In fact,
communication through sketches and planar diagrams
precedes the invention of writing by more than 30
centuries. Also, using pen-based interfaces in tasks related
to the automatic recognition of hand written or drawn
information is an idea over a generation old. However, it
did not make significant inroads for three major reasons:
early gesture recognition systems had had low recognition
rates; dealing with the ambiguity inherent to human-
provided information was not easily solved; and the ad-
vent of easy-to-use direct manipulation WIMP interfaces
led to a widespread lack of interest for gesture-based
interfaces.

In 1963, Sutherland presented Sketchpad [19] the first
interactive system that used one light pen to draw
diagrams directly over the screen surface. The main
limitation of this system was in the recognition
capabilities, limited resources and high cost of the
computer used. Landay [13] describes a sketch-based
approach to the early stages of user interface design. His
work uses electronic sketching to allow designers to
quickly record design ideas in a tangible form, obviating
the need to specify too much detail too early in the
process. His electronic sketches possess the advantages
normally associated with computer-based tools, making
them well suited to user interface design.

Sketch [21] is an example of a system that allows users to
create 3D scenes based on CSG-like primitives instanti-
ated by 2D strokes. All interaction relies on a three-button
mouse, occasionally combined with modifier keys on the
keyboard. Sketch uses two types of gestural elements —
five classes of strokes (drawn while pressing the first
mouse button) and two classes of interactors (made with
the second button). Camera manipulation is performed
with the third mouse button. Another feature of Sketch are
direction dependent gesture strokes to infer CSG opera-
tions. Zeleznik’s et al. work has proceeded with Jot [8],
an extension to Sketch’s interface that relies not only on
pen input but also on immersive virtual reality technology
such as six-degrees-of-freedom physical props and stereo
glasses.

Encarnacdo et al. developed [5,7] a system that combines
traditional desktop metaphors with a virtual reality inter-
face. This allows the user to directly create simple objects
in true 3D, through the use of iconic gestures that resem-
ble the contours of the top-down projections of objects.
Their system uses very sophisticated equipment such as

313

transparent pen and pad, shutter glasses, magnetic trackers
and a virtual table display device.

Igarashi et al. developed Teddy [10], a system that allows
modeling of freeform 3D objects from sketched 2D out-
lines. However, resulting models are constrained to a
sphere-equivalent topology and Boolean operations were
not taken into account.

The same authors describe a technique for rapid geomet-
ric design called interactive beautification [11]. Freehand
strokes drawn by users are converted by their system —
Pegasus — in line segments that must satisfy certain geo-
metric constraints such as perpendicularity, congruence
and symmetry amongst others. Pegasus also uses context
information to deal with ambiguity. It generates multiple
candidates by combining inferred constraints appropri-
ately and evaluates them in order to find the most plausi-
ble ones and reject the others. The user is then allowed to
select the candidate that meets his or her wishes by tap-
ping on it directly. The procedure is completed as soon as
the user taps outside the candidates or draws the next
stroke. As the authors say, the problem with this way of
handling ambiguity is that it is difficult for users to per-
form the selection they want amongst a large number of
overlapping candidates.

Mankoff et al. [14] survey interfaces that use various
forms of recognition such as gesture, handwriting and
speech interpretation. Their work also focuses on the
problem of handling recognition errors and ambiguity by
means of dialogues between the system and the user - a
process they call mediation. The same authors developed
a user interface toolkit called OOPS - organized option
pruning system [15]. OOPS consists of a library of reus-
able mediation techniques combined with architectural
solutions to model and provide support for ambiguity at
the level of user input events.

Gross et al. [9], Back of an Envelope project applies pen-
based interfaces to a wide range of domains such as data-
bases, simulation programs and 3D modeling. Their ap-
proach tries to combine the virtues of highly structured
interfaces for creating accurate drawings and models with
the benefits inherent to freehand drawing interfaces.

Turner et al. [20] designed Stilton, a sketch modeling
system that resembles a desktop VRML browser, allowing
users to interact with a 3D model in perspective projec-
tion, or panoramic photographs mapped onto the scene as
a “floor” and “walls”. The system can be used to recon-
struct geometry from panoramic images or to add new
objects to an existing scene. Object creation relies on
geometric information sketched by users on an imaginary
2D drawing plane.

S Rt
QO OO
Joal g
[ZZV | W2 =
A Y N
| e sun

Figure 1: Multi-stroke and uni-stroke shapes.

While most of the approaches outlined above explicitly
use sketches and drawing as a novel organizing paradigm,
abiguous input and recognition errors are considered
nuisances and hurdles to overcome. In most approaches,
explicit formal syntactic analysis is not addressed.
Ambiguity is handled for misrecognized constituents
through hard-coded confidence values in some cases and

in ad-hoc manner in others, with the notable exception of

Mankoff’s work. Visually ambiguous arrangements
concerning spatial relationships are also not treated. Error
recovery is user dependent and requires dialog boxes not
consistent with the hand-drawn philosophy of most
approaches. The hard-coded nature of the rules also limits
the system flexibility in extending and changing the visual
language.

We will present several avenues to attack this problem in
what follows. At the lowest level we present Call, a set of

software components to address stroke recognition. At a
level above we discuss ambiguous visual arrangements
and present fuzzy visual languages used in DocSketch
[17] a page composition program. Finally, at the three-
dimensional level we discuss expectation lists, reduced-
instruction set interfaces and the judicious use of
constraints to transform imprecise input into rigourous
three-dimensional drawings using GIDeS.

3 CALI -A Library for Gesture Recognition

In this section we present CALI [3], a software library for
the development of Calligraphic Interfaces, centered
mainly on a simple Shape Recognizer.

The Recognizer is a fast, simple and compact approach to
identify Scribbles (multi-stroke geometric shapes) drawn
with a stylus on a digitizing tablet. We are able to identify
shapes of different sizes and rotated at arbitrary angles,
drawn with dashed, continuous or overlapping strokes.

The recognition process is based on three main ideas.
Firstly, it uses entirely global geometric properties ex-
tracted from input shapes. Since we are mainly interested
in identifying geometric entities, the recognizer relies
mainly on geometric information. Secondly, to enhance
recognition performance, we use a set of filters either to
identify shapes or to filter out unwanted shapes using
distinctive criteria. Finally, to overcome uncertainty and
imprecision in shape sketches, we use fuzzy logic to asso-
ciate degrees of certainty to recognized shapes, thereby
handling ambiguities naturally.

This algorithm recognizes elementary geometric shapes,
such as Triangles, Rectangles, Diamonds, Circles, Ellip-
ses, Lines and Arrows, and five gesture commands, De—
lete, Cross, WavyLine, Move and Copy, as depicted
in Figure 1. Commands are drawn using a single stroke,
except Cross, which requires two. The recognizer

innsbruck, Austria
Salzburg, Austria
Vienna, Austria
Ponta Delgada, Azores

Figure 2: Sketched document layout example.

314

Figure 3: CNN weather forecast page.

works by looking up values of specific features in fuzzy
sets associated to each shape and command. This process
yields a list of plausible shapes ordered by degree of cer-
tainty. The set of shapes selected and presented in Figure
1 are basic elements to construct technical diagrams, such
as electric or logic circuits, flowcharts or architectural
sketches. These diagrams also require distinguishing be-
tween solid, dash and bold depictions of shapes in the
same family. Apte et al [1] noted that the majority of
diagrams use mostly ellipses, rectangles and lines. Ellen
Do [2] found that designers tend to use a small set of
symbols and share drawing conventions. The net effect is
that different designers are consistent in their choice of
visual notations.

Our recognizer has a classification rate of 96%. It is fast:
each scribble requires, on average, less than 50 ms (using
a Pentium II @ 233 MHz) to be recognized, from feature
vector computation to final classification. The fast re-
sponse characteristic makes it very usable in interactive
applications. This approach extends and improves Ki-
mura’s work [1], which recognizes a smaller number of
shapes and did not distinguish rotated, open/closed,
dashed and bold styles.

4 Example Application: Document Layout

This section describes an example interaction scenario
using the DocSketch system to design a document layout.
Figure 2 shows an example that can be used to produce an
HTML page like that in Figure 3. In Figure 2 the user has
drawn five types of design elements: three headers, one
scrolled window witha vertical scroll bar
to the right, one image, one label and several but-
tons. These are the main construction elements and
respective spatial arrangements shown in this example.
The system is responsible for inferring the most likely
document layout, an example of which appears in Figure
3. This way, DocSketch enables the designer to focus on
the exploration of design ideas and not on details.

The interaction sequence starts when the user sketches
shapes to compose a document layout, using a pen on a
digitizing tablet. The system tries to identify each shape as
soon as it is drawn, using the recognizer described above.
After identifying a shape, the system tries to combine it

Figure 4: Ambiguous visual arrangements

315

with previously inserted shapes, using basic spatial and
adjacency fuzzy relations. This information about shapes
and relations is then fed to a rule--based system, which
uses basic knowledge about the structure and patterns of
document layout to infer, which design element was in-
tended. The inference rules of this system are grouped
into a grammatical specification of a visual language for
document design. Since each rule also gets associated
degrees of certainty computed from its components, the
system is naturally guided to infer the most likely docu-
ment design constituents.

DocSketch allows users to manage design components
through the usual commands Delete, Move and Copy,
which are supported and recognized as gestures.

The visual elements used to define the types of typo-
graphic operators, their positions and dimensions, as well
as other visual characteristics make up a visual language
for document design. In this visual language symbols are
sketches built by composition of simple shapes from a
subset of those presented in Figure 1. A visual grammar
defines rules of composition of individual elements as
described in [12].

5 Visual Ambiguity

One of the problems with identification of hand drawn
sketches is the ambiguity between visually related shapes.
Ambiguity exists, for instance, between Rectangles
and Diamonds, Ellipses and Circles, Lines and
Text (WavyLines), as exemplified by Figure 4.

Ambiguous arrangements can also happen with visual
relationships between shapes. One example is the Near
relation used to assess proximity. This example shows
how expressions in visual languages may be ambiguous.
When building up visual arrangements composed upon
shapes closely located it is often difficult to know which
ones are to be combined when more than one combination
is possible. Figure 5 shows a scroll bar that can be associ-
ated either with the left window or with the right window.

Humans solve the natural ambiguity associated with indi-
vidual visual symbols, its properties and arrangements, by
identifying more than one possible characterization and
using context or feedback from other people to select one
interpretation.

Figure 5: Ambiguity in sketched shapes.

Our approach deals with visual ambiguity in a similar
way, i.e. when it is not possible to identify univocally a
shape or a composition, the recognition subsystem returns
a list of possible candidates. The application can then
choose the “best” candidate using context information.
When identifying geometric shapes, our stroke recognizer
models classification ambiguities between shapes using
fuzzy logic to associate degrees of certainty to each shape
according to its attributes.

In what concerns spatial relations and arrangements, we
handle visual ambiguity through Fuzzy Relational Adja-
cency Grammars [12] that combine fuzzy logic with spa-
tial relations. This allows us to assign degrees of likeli-
hood to each spatial arrangement and decide on the “best”
candidate.

6 Error Handling

When recognizing shape composition, we use a compati-
bility matrix that lists compatible types of simple shapes.
This way we provide a simple and effective error recovery
mechanism. While this is an approach to produce docu-
ment designs, not to draw geometric shapes, document
design support depends on simple geometric shape recog-
nition. Therefore, errors produced by the shape recognizer
will have to be corrected so the process can continue. We
can handle misrecognized symbols either by requiring
users to manually input the correct classifications or by
trying alternate likely variations automatically.

We decided to address error situations using the latter
approach. Still, users can delete non-recognized shapes or
ask for the “next most likely candidate” by issuing a
Cross gesture. The stroke recognizer provides an or-
dered list of candidates for this purpose. While this solu-
tion has proven to be effective, it is less usable than ex-
pectation lists, which we will discuss in what follows.

7 GIDES: Sketching in Three Dimensions

In the previous section, we described grammatical, visual
and heuristic ways to handle visual ambiguity in two-
dimensional compositions. In the following sections we
will present GIDeS, a calligraphic interface to create
three-dimensional models. GIDeS’ architecture consists of
three gesture recognition subsystems, an expectation list
generator and a set of constraint-based interaction modes
that allow users to perform geometric transformations and
cuts on objects.

8 Gesture Recognition

Command gesture interpretation relies on two recognition
subsystems. The first is an improved version of Rubine’s
trainable recognizer [18], combined with ours [3] to add
some new features:

Figure 6: Primitives in GIDeS

» Support for multiple-stroke gestures. The sequence in
which strokes are drawn is irrelevant.

* Recognize strokes regardless of direction.

» Force recognition to depend on context information not
necessarily restricted to gesture geometry.

 Support for handling ambiguity.

Three-dimensional primitives rely on a second recognition
subsystem that takes into account both the topology and
geometry of gestures. A detailed description of this rec-
ognizer can also be found in [16].

The third recognition subsystem interpreting linear
strokes and decides whether these strokes should be inter-
preted as polylines or curved (smooth) drawing elements.
It can recognize line segments, polylines, circles, ellipses
and generic curves represented as cubic splines. The rec-
ognition system is capable of learning and adapting to a
user’s drawing style, since the distinction between smooth
and non-smooth strokes relies on parameters that change
dynamically according to the success or failure of previ-
ous interpretations.

9 Expectation Lists

For gesture recognition systems to work adequately we
need to strike a compromise between two extremes. On
one hand the interpretation of strokes must be flexible
enough to deal with uncertainty, otherwise the rate of
incorrectly rejected gestures (false negatives) will be high.
On the other hand, recognition must be selective enough
to reduce the rate of erroneously interpreted gestures
(false positives).

Our approach combines gesture recognition with expecta-
tion lists to change this paradigm. Instead of trying to find
some fallible heuristic that selects the most probable can-
didate and rejects all others in order to avoid ambiguity,

Figure 7: Expectation Lists

we made our recognition systems more tolerant to uncer-
tainty and use expectation lists as dynamic menus to allow
users to exercise control and choose amongst the most
likely candidates. In other words we have significantly
reduced the false negative rate and, since the options
presented to users by expectation lists are mere sugges-
tions, the corresponding increase of false positives is not a
problem, because users can simply ignore these sugges-
tions in the same way they ignore other unwanted options.
That is, instead of trying to avoid ambiguity, we encour-
age its occurrence and explore it to user’s benefit.

We have tried to extend expectation lists to all levels of
user interaction. With the exception of command expecta-
tion lists that use icons to make suggestions, all lists
prompt the user with small-scale models of the objects
that can be created in relation to the existing context. For
example, Figure 9 shows how expectation lists can sig-
nificantly reduce the number of needed command ges-
tures, thus minimizing cognitive load on users. In this
case two commands — delete and apply texture — share the
same “‘scratch” gesture. The difference is that the delete
stroke must cross the object boundary (Figure 9a), while
the rexture stroke must be entirely drawn over the object’s
surface, i.e. inside its two-dimensional projection (Figure
9b). The user may also opt to delete or conversely, to
apply a texture to a previously selected object. In that case
GIDeS does not have enough contextual information to
identify what command to apply. Therefore, the applica-
tion generates a command expectation list and prompts
the user to select a command (Figure 9c).

Figure § shows an example of a 3D primitive expectation
list. Again notice how our interface explores ambiguity in
order to reduce the required repertoire of recognized ges-
tures. In this case the same idiom can instantiate four
distinct objects, namely a truncated cone, a surface of
revolution — the most obvious choices — and two less
evident kinds of cylindrical sections with different orien-
tations. The designer may also ignore the suggested op-
tions and continue drawing, in which case no implicit
commands will be performed. This is consistent with the

Figure 8: Drawing Expectation List

317

principle of least intrusion and user control.

As we have seen in this section, our system presents an
innovative approach as compared to traditional CAD
systems by using a mixed metaphor — while we try to stay
close to interaction modalities evocative of the paper-and-
pencil organizing principles, we use an incremental draw-
ing approach to allow draftspeople to use sketching ges-
tures to construct rigorous models through a judicious
combination of simple, yet powerful commands and con-
straints to allow users to perform more complex opera-
tions with fewer commands.

While some of the techniques developed here have been
tried in other contexts, we believe that combining these
interaction paradigms bears the promise to provide highly
flexible and powerful design systems. In developing our
approach we have applied a consistent set of organizing
principles throughout the drawing application:

a) Calligraphic Recognition is a foundation to our draw-
ing paradigm. This allows draftspeople to apply the pen-
cil-and-paper metaphor for creating base objects. Calli-
graphic recognition combined with incremental, drawing
can allow powerful operations to be carried out through
sketching on objects as illustrated by Figure 13.

b) Expectation lists make the system state and function-
ality self-disclosing. Moreover, expectation lists make it
possible to deal with imprecision and recognition errors in
an elegant and graceful manner.

¢) Incremental Drawing allows users to gradually refine
drawings by implicit constraint satisfaction. To this end
we replaced explicit placement and adjustment commands
by approximate manipulations afforded by gestures and
using constraints to achieve final (rigorous) placement.
Moreover, constraints also determine geometric attributes
of newly created primitives if those can be obtained from
context. For example, sketching an ellipse on top of a
cylinder automatically makes the ellipse take on the cyl-
inder’s diameter. The user can then validate this option
interacting with the dynamic expectation list that ensues.

d) Using constraint satisfaction enables us to replace
explicit commands with approximate manipulation opera-
tions. Constraint satisfaction is a powerful control mecha- -
nism. We use it implicitly on the constrained positioning
(adjust) and assembly (glue) command modes described
above. We believe that matching on approximate con-
straints and then incrementally adjusting the image so that

TR e
[

a) erase b) color

<) ambiguous

Figure 9: Command Expectation List

Figure 10: Implicit Coplanar constraints

these can be met can replace many explicit commands
commonly used in CAD systems for the same purpose.
Often, designers spend precious time adjusting details in
technical drawings to ensure that certain constraints are
met. Constraint satisfaction, coupled with sketched inten-
tions, makes it possible to achieve the same result in a
simpler manner. Figure 12 illustrates this point where the
system applies coaxial and coplanar constraints to adjust
the cylinder just created to an existing object.

e) Reducing instruction set and command usage. Com-
bining the mechanisms outlined above can result in more
concise and expressive user interfaces. Reducing instruc-
tions can in theory improve learnability and minimize
cognitive load. However, we need to use expectation lists
judiciously to expose functionality in a flexible manner.

Figures 11 and 13 illustrate this principle. Instead of
requiring the user to enter special modes, GIDeS tries to
interpret user sketches in context, to allow complex ac-
tions via simple commands. In the case depicted in Figure
11, we save entering some special mode to correct a curve
already entered. Just drawing over suffices to change the
contour, sparing the user from complicated interactions.
While some of the techniques developed here have been
tried in other approaches, we believe that combination
these basic interaction paradigms bears promise to provid-
ing highly flexible and powerful design systems.

As we have seen in this section, our system presents an
innovative approach as compared to traditional CAD
systems by using a mixed metaphor — while we try to stay
close to interaction modalities evocative of the paper-and-
pencil organizing principles, we use an incremental draw-
ing approach. This enables draftspeople to construct rig-
orous models through a judicious combination of simple,
yet powerful gestures and constraints to perform more
complex operations with fewer commands. Figure 14
exemplifies reasonably complex objects drawn using

(o (o
~ ~
))

—

Figurell: Change contour by sketching over

318

Figure 12: Coplanar and coaxial constraints

GIDeS.

While some of the techniques developed here have been
tried in other contexts, we believe that the combination of
three basic interaction paradigms bears the promise to
provide highly flexible and powerful design systems.

10 Preliminary Evaluation

We asked five users familiar with traditional CAD sys-
tems to draw some objects using our system and their
system of choice with direct manipulation commands,
using a mouse rather than a tablet and stylus due to logis-
tic problems. Table 1 below shows measured times, num-
ber of commands, strokes (mouse clicks) in GIDeS as
compared to a conventional CAD system in creating one
of the objects depicted in Figure 14a (Task 1), after a brief
tutorial describing the functionality of our system. Task 2
consisted in drawing the object depicted in Figure 14b.

Task CAD GIDeS
Time Cmds Time | Strokes

Task 1 407,5 73 225 48

Task 2 190 45 223 22

Table 1: Empirical evaluation results

The results show mixed performance of our sysiem rela-
tive to a more mature product. While drawing objects
with axial symmetry seems the kind of task where GIDeS
has the potential to excel, using a mouse greatly limited
performance and had a negative impact on user satisfac-
tion. In this light, results seem moderately encouraging.
Users pointed out several limitations such as the lack of
an undo command (not available then) but the calligraphic
model of interaction elicited enthusiastic responses from
participants except one who stated a strong preference for
the conventional CAD approach.

Figure 13: Rounding corners on 3D objects

11 Conclusions and Future Work

We have presented an approach for creating geometric
models and 2D drawings from sketches through Calli-
graphic Interaction. Our goal is to improve on the usabil-
ity of current WIMP systems at the early stages of design.
To this end we have proposed to combine Calligraphic
Interfaces, Reduced Instruction Set and Constraints, mix-
ing metaphors to model objects by incremental drawing.
We introduced expectation lists to make our interfaces
easier to learn while exposing more of the system state to
users. We believe this approach is highly suited for de-
signing complex shapes and are expanding and augment-
ing expectation lists to make our interface more self-
disclosing. Preliminary results show a positive attitude
from users and the promise to improve on traditional
approaches via more flexible and expressive commands.
We plan to explore more natural ways of combining con-
straints and error handling to improve dialogues in the
near future.

Acknowledgements This research was supported in
part by the Portuguese Foundation for Science and Tech-
nology under grant POSI/SRI/34672/1999 and by the
European Commission grant IST-2000-28169.

Figure 14: a) Example scene b) Object used in tests

12 References

[1] A. Apte, V. Vo and T. Dan Kimura, Recognizing
Multistroke Geometric Shapes: An Experimental Evalua-
tion, Proc. ACM Symposium on User Interface Software
Technology (UIST), pp 121-128, 1993.

[2] Ellen Y. Do, The right tool at the right time, PhD
thesis, Georgia Institute of Technology, Sept. 1998.

[3] Fonseca, Manuel J. and Jorge, Joaquim, CALI: A
Software Library for Calligraphic Interfaces, available at
http://immi.inesc.pt/~mjf/cali/, February 2001.
[4] Fonseca, Manuel J. and Jorge, J., Using Fuzzy Logic
to Recognize Geometric Shapes Interactively, Proc.9”
IEEE Int. Conf. on Fuzzy Systems, San Antonio, TX 2000.
[5] Bimber O., Encarnacdo L. M., Stork A. A multi-
layered architecture for sketch-based interaction within

virtual environments. Computers & Graphics, V24, N6,
pp. 851 — 867, Elsevier, Dec. 2000.

319

[6].Branco V., Ferreira F. N., Costa A. Sketching 3D
models with 2D interaction devices. EUROGRAPHICS
'94 Conference Proceedings, Oslo, pp. 489 — 502, 1994,
[7] Encarnagdo L. M., et. al. A Translucent Sketchpad for
the Virtual Table Exploring Motion-based Gesture Rec-
ognition. Computer Graphics Forum, V18, N3, pp. C277
— 285, 1999.

[8] Forsberg A. S, et al. Seamless Interaction in Virtual
Reality. IEEE Computer Graphics & Applications, V17,
N6, pp. 6-9, 1997.

[9] Gross M. D., Do E. Y.-L. Drawing on the Back of an
Envelope: a framework for interacting with application
programs by freehand drawing. Computers & Graphics,
V24, N6, pp. 835-849, Dec. 2000

[10] Igarashi T., Matsuoka S., Kawachiya S., and Tanaka
H. Interactive Beautification: A Technique for Rapid
Geometric Design., ACM UIST, 1997.

[11] Igarashi T., Matsuoka S., and Tanaka H. Teddy: A
Sketching Interface for 3D Freeform Design. ACM SIG-
GRAPH ’99, 1999.

[12] Jorge J. A. Parsing Adjacency Grammars for Calli-
graphic Interfaces. PhD Thesis, Rensselaer Polytechnic
Institute, Troy, New York, 1994.

[13] Landay, James and Myers, Brad, Interactive Sketch-
ing for the Early Stages of Interface Design, 4CM
CHI’95, 1995.

[14] Mankoff J., Hudson S. E., Abowd G. D. Providing
integrated toolkit-level support for ambiguity in recogni-
tion-based interfaces. 4CM CHI’00, pp. 368 — 375, 2000.
[15] Mankoff J., Abowd G. D., and Hudson S. E. OOPS:
a toolkit supporting mediation techniques for resolving
ambiguity in recognition-based interfaces. Computers &
Graphics, V24, N6, pp. 819-834, Dec. 2000.

[16] Pereira J. P., et al. Towards Calligraphic Interfaces:
Sketching 3D Scenes with Gestures and Context Icons.
The 8th International Conference in Central Europe on
Computer Graphics, Visualization and Interactive Digital
Media, Plzen, Czech Republic, Feb. 2000.

[17} Albuquerque M, Fonseca M, Jorge J, Visual Lan-
guages for Sketching Documents, IEEE Symposium on
Visual Languages and Computing, Seattle, Sep. 2000.

[18] Rubine D. Specifying Gestures by Example, S/G-
GRAPH 91, V25, N4, pp. 329 — 337, 1991.

[19] Sutherland, Ivan Sketchpad: A Man-Machine
Graphical Communication System, AFIPS Spring Joint
Conference on Computer Systems, 1963.

[20] Turner A., Chapman D., Penn A. Sketching space.
Computers & Graphics, V24N6, pp. 869-879, Dec. 2000.
[21] Zeleznik R. et. al. Sketch: An Interface for Sketching
3D Scenes. ACM SIGGRAPH'96, V30N4, pp. 163-170.

