Realistic Skeletal Muscle Deformation using Finite Element Analysis
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Abstract. We present a computational model to simulate the skeletal muscle deformation during muscle contrac-
tion. This modelincludes a detailed description of the skeletal muscle architecture, non-linear properties of muscle
tissue, novel features in the active muscle constitutive equations, and geometric constraints that can be enforced
through Lagrange multipliers. The proposed muscle model predicts fibre forces based on the principle of virtual
work, along with appropriate geometric constraints using a non-linear finite element analysis. This computational
model introduces methods to produce realistic skeletal muscle deformation to be used in computer animation ap-
plications, and to study muscle function in biomechanical applications. Our model is sufficiently general to be
applied in other non-linear soft tissues with different material properties. In order to exemplify its generality, the
model is applied to different structural arrangements of individual skeletal muscles.

1 Introduction

Skeletal muscles deform in response to contraction of mus-
cle fibres. The underlying structure of the skeletal muscle is
determined by the arrangement of the contractile elements
(muscle fibres) within a muscle (Figure 1). In nature, the ar-
rangement of muscle fibres within a muscle, and the defor-
mations during muscle contraction, have many variations.
For example, if muscle fibres are arranged in parallel to
the long axis of the muscle, contraction causes a bulging.
However, if muscle fibres are arranged at a distinct angle to
the long axis of the muscle, contractions causes no bulging
but a parallel sliding of the top aponeurosis (thin layer of
connective tissue within a muscle; Figure 1) relative to the
bottom one. The macroscopic arrangement of muscle fibres
makes up the architecture of skeletal muscle. According to
Lieber and Fridén [14], muscle architecture is a primary de-
terminant of muscle function, and the urderstanding of this
structure-function relationship is of great practical impor-
tance. The proposed muscle model takes into account the
mechanical aspects of this structure-function relationship in
order to produce realistic skeletal muscle deformation. In
this context, the main contribution of this research for com-
puter graphics is that we have developed a model of skeletal
muscle general enough to accommodate different muscle fi-
bres arrangements. With this model we can produce realis-
tic deformation of different muscle architectures of skeletal
muscles and deformation of other non-linear, soft tissues
with different material properties.

In this study, we introduce methods to produce realis-
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tic skeletal muscle deformation that are sufficiently general
to be used in computer animation applications, and suffi-
ciently accurate to study muscle function in biomechanical
applications. In computer animation, given the kinematics
of an articulated figure (e.g. forward kinematics or inverse
kinematics) and the percentage of activation of each skele-
tal muscle, the computational model can be used to provide
the deformation of a group of individual muscles. This re-

" sultant deformation can be transmitted to the animal or hu-
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man skin to produce body deformation. In biomechanics,
given a skeletal muscle with a detailed description of the
skeletal muscle architecture, the computational model can
be used to investigate how forces influence muscle defor-
mation and how deformation affects the contractile proper-
ties of muscle.

Previously, we developed a three-dimensional geome-
tric model of skeletal muscle [13] which consists of an as-
sembly of straight lines organized in brick-like elements to
represent the skeletal muscle architecture. However, this
previously developed model was not sufficiently general to
be applied to all possible structural arrangements found in
skeletal muscle. Here, we present a non-linear finite el-
ement model (FEM) of skeletal muscle based on the the-
ory of continuum mechanics. The model is more general
than previously described methods and can be applied for
structural arrangements of any shape, and may be applied
to other non-linear soft tissues (e.g. tendons) with differ-
ent material properties. For the geometric representation
of the model, we used an assembly of non-uniform brick-



like elements. In the nodes of these brick-like elements,
we can provide external forces. Muscle deformation can be
simulated using displacement control or force control. The
model includes the following features: a detailed descrip-
tion of the skeletal muscle architecture; non-linear proper-
ties of muscle tissue which allow for large deformations;
novel features in the active muscle constitutive equations
which may be associated with the percentage of activation
of the muscle during specific tasks; and geometric con-
straints, such as incompressibility and external supports,
that can be enforced through Lagrange multipliers.

2 Related Work

In anatomically-based modeling, individual muscles are mo-
deled in an anatomically appropriate way. Scheepers et al.
[21] presented three anatomy based muscle models, using
deformable ellipsoids, Wilhems and Van Gelder [24] used
a deformed cylinder model to represent individual muscles,
and Nedel and Thalmann [17] presented a model using a
line of action approach along with muscle shape, obtained
by fitting the surface to the boundary of medical image
data. Generally, the anatomy based models present good vi-
sual results. However, the proposed models are not robust
enough to produce generalized deformations during con-
traction because of the possible differences in architecture.

In biomechanically-based models, some authors have
proposed geometric models of skeletal muscle to represent
a detailed skeletal muscle architecture, such as those cre-
ated by Otten [19], and Van der Linden et al. [23]. Other
authors have used physically-based models and finite ele-
ment models of skeletal muscle, and some other soft tis-
sues. There are many related references regarding biome-
chanical models for soft tissue simulation which can be
found in Maurel er al. [15]). Gourret and Thalmann [11]
presented a finite element method to grasping simulation,
including deformation of the skin of the fingers. Chen and
Zeltzer (6] developed a linear finite element model of skele-
tal muscle in which the simulation of the deformation was
performed in a prismatic bounding box embedding the mus-
cle. The resulting muscle deformations were mapped onto
the muscle using free-form deformation [22]. Ng-Thown-
Hing and Fiume [18] presented a musculoskeletal system
using physically-based muscle models along with B-spline
solids. Anton and Epstein [1] [2] used a non-linear finite
element analysis to simulate two-dimensional unipennate
skeletal muscles, including a detailed skeletal muscle ar-
chitecture. Meier and Blickhan [16] used a non-linear finite
element analysis to simulate a three-dimensional skeletal
muscle, but the skeletal muscle shape was simplified by a
square block. Since one of the goals of this study is to pro-
vide methods for the addition of visual realism to the FEM,
in order to combine visual and mechanical simulation for
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use in body deformation visualization, we implemented a
stand-alone computational model. This allows us to include
our own muscle fibre activation element [13] with novel
features in the active muscle constitutive equation.

The excellent early work done by Chen and Zeltzer [6]
also includes the twin goal of providing methods to produce
realistic skeletal muscle deformation to be used in com-
puter animation applications, and to study muscle function
in biomechanical applications. In our study, we include the
non-linear properties.ofimuscle tissue in the FEM. None
of the previous models include, simultaneously, a detailed
description of the three-dimensional skeletal muscle archi-
tecture, and a physically, consistent model to simulate the
deformation behaviour.during muscle contraction.

3 Skeletal Muscle Architecture

In order to obtain a detailed.description of the skeletal mus-
cle architecture, the geometric representation of the muscle
has to support skeletal muscles with different structural ar-
rangements. The structural arrangement of skeletal muscle
may be classified.into two basic groups according to shape
[9]: Parallel-fibred muscles (muscle fibres oriented in pa-
rallel to the muscle line-of-action) and pennate-fibred mus-
cles (muscle fibres oriented:at a distinct angle relative to the
muscle line-of-action). .In-addition, according to the num-
ber of distinctly different fibre directions, pennate muscles
are further classified.into unipennate muscles (one distinct
fibre direction), bipennate muscles (two distinct fibre direc-
tions), and multipennate muscles (more than two distinct
fibre directions) (Figure 1).
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Figure 1: Skeletal muscle shapes. (a) parallel-fibred mus-
cle. (b) unipennate-fibred muscle. (c) bipennate-fibred
muscle. (d) multipennate-fibred muscle.

The principal elements of this structural arrangement,
which compose the skeletal muscle architecture, are known
as the tendon-aponeurosis-fibre complex (Figure 1). The



structural arrangement of this complex describes the me-
chanism of load transmission, and therefore, muscle defor-
mation during contraction. For example, the force from ac-
tive contraction elements (muscle fibres) is transmitted to
the bone by elastic and viscoelastic tendons and aponeu-
roses. In addition, the direction of this force is situated in
an imaginary straight line (muscle line-of-action) that con-
nects the attachment of the muscle in the bone and the in-
sertion of the tendon in the bone.

For the geometric, three-dimensional representation of
skeletal muscle architecture, we adopted an assembly of
eight-node brick-like elements. We chose eight-node brick-
like elements because in future implementations they will
be used as non-uniform hexahedron primitives to generate
a polygonal-mesh skin. The model allows for the assem-
bly of brick-like elements next to one another and on top of
one another to represent parallel-fibred and pennate-fibred
muscles. This structure forms the basis for the non-linear
FEM.
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Figure 2: Assembly of brick-like elements. (a) parallel-
fibred muscle. (b) unipennate-fibred muscle.

The structural representation of the muscle architec-
ture was obtained through the association of each brick-like
element with the biological information that it represents.

The geometric representation of muscle architecture
consists of an assembly of four main elements (Figure 2):
muscle tissue, aponeurosis tissue, tendon tissue, and muscle
fibre tissue. All these separate tissues may be considered as
a particular case, represented by a unified brick-like ele-
ment, which contains an underlying passive tissue matrix.
This matrix can be interpreted as a three-dimensional grid
with some material inside that provides the internal stabil-
ity for the muscle fibre assembly and allows for force trans-
mission across muscle fibres. This unified brick-like ele-
ment can be represented with or without a distribution of
unidirectional active muscle fibres, with or without internal
incompressibility constraints, and with or without external
support constraints. Thus, the elastic material properties
[26] can be used to naturally fit the material behaviour.
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4 Computational Mechanics Methods for Soft Tissue
Simulation

In order to obtain realistic muscle deformations, we for-
mulated a non-linear finite element analysis taking into ac-
count experimental data [26] [3] [9] to approximate the be-
haviour of the materials involved. Following the standard
theory of continuum mechanics [5], the formulation con-
sists of three parts: a geometric description of the defor-
mation (or kinematics), a formulation of the equations of
motion (or dynamics), and a statement of the behaviour of
the materials involved (or constitutive theory). We briefly
discuss some aspects of each of these components.

4.1 Kinematics

Adopting, for simplicity, a common global Cartesian coor-

dinate system «, y, and z for both the reference and spatial

configurations, and denoting the corresponding displace-

ment components by u, v, and w, the deformation gradient
[ F ] is given by the components:

Uz

[F]=[1]+ [ Ve

= (1)

W Wy

Uy Uz ]
U,y U,z
where [ I ] is the unit matrix and commas indicate partial
differentiation.

From the deformation gradient we can extract all the
information needed about the state of strain by eliminating
the rotational component. One way to do this is by calcu-
lating the right Cauchy-Green tensor [5] as:

[C]=[F][F] )
A commonly used strain measure [5], sometimes called
the Lagrangian strain [ E ] is defined as:

(Bl=3([C]-[1]) )
which reduces to the ordinary strain measures of the in-
finitesimal theory when the displacement gradients appea-
ring in equation (1) are small.

In the FEM approach, the continuum is divided into
polyhedral elements and the displacement field is approxi-
mated by means of nodally-controlled shape functions. In
the isoparametric formulation [7], which we adopt, all ele-
ments are obtained by mapping a simple prototype repea-
tedly into the reference configuration. In our treatment, we
adopt a cubic prototype with eight nodes located at its ver-
tices (“eight-node brick-like element”; Figure 3). Denoting
by &, n, and ( the natural coordinates of the prototype. The
shape functions are given by [7]:

1

8
C))

Ni=3(1 £ & £ nin)(1 £ G¢) i=1,-,



where &;, 7; and (; are the fixed coordinates of the nodes.
By construction, these coordinates can have the values +1
or —1 only.

Figure 3: Brick-like element with nodal coordinates.

In terms of given global nodal coordinates X *,Y"?, and
Z* (i = 1,---,8) in the reference configuration, and given
nodal displacements, U%,V?, and Wi (i = 1,---,8), the
global coordinates (z, y, and z), and the displacements (u,
v, and w) of a point (within the element) with natural coor-
dinates (¢, 1, and (), are obtained as:

8
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To calculate the interpolated deformation gradient, we
use the chain rule of differentiation as:

T =
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Note that, by virtue of equation (5), the right side of

equation (6) is ultimately a well defined function of &, 7,
and (.

4.2 Dynamics

The dynamical laws governing the motion of the system are
essentially an expression of Newton’s second law, except
that we have a system with distributed mass rather than just
an idealized material particle. In addition, since the inter-
nal forces arise from the deformation itself, and since we
are not restricting the magnitude of the displacements or
rotations, the equations of motion involve angles and dis-
tances measured in the unknown deforming configuration.
As a result, the equations of motion are highly non-linear.
Besides that, geometrical constraints (such as muscle volu-
me preservation) must be respected, and the internal forces
necessary to maintain such constraints cannot be easily in-
corporated into a Newtonian framework.
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The non-linear equations of motion are formulated,
therefore, by means of the principle of virtual work [9].
For an unconstrained system, this principle states that the
equations of motion are equivalent to the satisfaction of the
following simple scalar equation:

IVW -EVW =0 )

identically for all virtual displacement fields du, dv, and
éw. Here IVW and EVW stand, respectively, for inter-
nal and external virtual work. The virtual displacement
field can be interpreted as a small arbitrary perturbation of a
given displacement field, satisfying the support conditions.
The internal virtual work within a referential volume V' is
the work of the internal forces, or stresses, and is given by:

VW = [, trace ([ T ]" [ 6F ])ay - ®
where [ T ] is the first Piola-Kirchhoff stress, equation
(10), and [ 6F ] is the variation of the deformation gra-
dient produced by the virtual displacement [5].

The external virtual work consists of two parts: the
work of external forces over the virtual displacements of
their points of application, and the work of the distributed
inertia forces:

EVW =Y. febii — [,, pii « biidy ®

Here, the summation extends over the number of exter-
nal forces. For convenience, we have employed a vectorial
notation for the forces and the displacements. A dot re-
presents the ordinary inner (“dot”) product of vectors. The
mass density in the reference configuration is denoted by
p, and the acceleration vector by a. Currently, the inertia
contribution is disregarded, but will be included in future
implementations.

In the FEM, expressions such as (8) and (9) can be
evaluated element by element. For the eight-node brick-
like element, the values of each of these expressions will be
controlled by exactly 24 degrees of freedom (3 per node).
The principle of virtual work can be modified to take into
account geometric constraints by the addition of new vari-
ables (“Lagrange multipliers”). Let ¢(u’, v!, w!, -- -, u®,
v8, w®) = 0 represent a geometric constraint for a given
element (e.g. external support constraint or volume preser-
vation constraint) and let A denote the corresponding La-
grange multiplier. The internal virtual work of that ele-
ment is then modified to IVW —§(\¢), where the variation
of ¢ is expressed in terms of the nodal displacements and
their variations by taking the differential of the constraint
function. Thus, the constrained problem is reduced to an
unconstrained counterpart but involving more independent



variables (A) and their corresponding variations (6A). The
physical meaning of the Lagrange multipliers is roughly
that of forces necessary to maintain the constraints. The
variational method, thus, delivers these forces accurately,
avoiding the danger of intuitive considerations.

4.3 Constitutive Behaviour

For the purpose of this paper, we will limit ourselves to gen-
eral elastic response and disregard viscoelastic effects. For
a general elastic material, the constitutive response is ex-
pressible as a function relating stresses and strains. A con-
venient stress measure is the second Piola-Kirchhoff stress
represented as:

(10)

-1
[s]1=[F][T]
A possible constitutive equation consists of relating
[ S ] with [ E ],by means of the linear law:

[S]=2u] E]+Atrace([ E])[ 1] 11
where A and p are the Lamé constants of the infinitesimal
theory of elasticity [7]. This law is not without problems
[10], but is a useful approximation to materials (such as
muscle tissue) for which reliable experimental data are not
readily available in the very large deformation regime. For
the purposes of this paper, we have adopted this constitu-
tive law for all passive tissues (muscle tissue, tendon and
aponeurosis) with different values of the Lamé constants.
Recall that in infinitesimal elasticity [7], the Lamé constants
are related to the Young’s modulus, ¢, and Poisson’s ratio v
by:
AT 12)
Adopting specific values of these constants for each
passive tissue, the contribution for the IVW for a given
elastic material element is obtained by plugging equations
(10) and (11) into equation (8). We would like to emphasize
that any other non-linear elastic constitutive law (such as
those of rubber-like materials) can be easily implemented.
As mentioned in Section 3, the active elements are dis-
tributed unidirectionally within the muscle tissue. For con-
venience, this distribution is expressed in terms of a number
of fibres per element, so that the number of fibres in con-
tiguous elements can be easily enforced if so desired. Start-
ing from a basic quadratic force-length relationship [9]:

b= aae AT

f(r) = =0.772r% + 1.544r — 0.494 13)
expressing the normal stress in M pa as a function of the ra-
tio r = L/L0 between current, L, and optimal fibre length,
L0, the force per fibre is assumed to be obtained by:

N =a[f(r0) + k(r0)(r — r0)]

where a is an activation parameter (0 < a < 1) and 70 is
the value of r upon first activation. The stiffness K (r0),
representing the behaviour for active elongations beyond
the initial length, is still a matter of controversy, particularly
when r0 falls on the descending limb of the force-length re-
lationship [8] (Figure 4). The contribution for the IlVW of
a given active element is obtained by:

(14)

IVW =3 N ée (15)

where de is the small variation in the elongation produced
by the virtual displacements of the end points of the active
element [13].

Stress (r)

0.27
024
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04 o.so‘.s 1.0 ro 1.6 r=L/L0

Figure 4: Force response to a stretch upon full isometric
activation.

4.4 Computing the Finite Element Scheme

In Figure 5 is shown the pseudocode for computing the fi-
nite element scheme for a single skeletal muscle. Numer-
ical solution of the system of non-linear equations derived

- from the principle of virtual work is achieved by using the
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Newton-Raphson method [20]. Denoting by {p} a vec-
tor specifying all positions in the reference configuration
of the nodes of the assembly of eight-node brick-like ele-
ments, and denoting by {u} and {du} a vector specifying
all the unknowns (nodal displacements and Lagrange mul-
tipliers) and their variations, respectively, the main routine
computes the function:

VW ({u}, {ou}) = IVW ({u}, {ou}) - EVW ({u}, {éu})

(16)
where IVW contains the contribution of all brick-like ele-
ments for the internal virtual work of a given elastic ma-
terial element, of a given active element, and of the forces
necessary to maintain the constraints (§(A¢)). EVW con-
tains the contribution of all brick-like elements for the ex-
ternal virtual work.

To obtain the residual ; ({u}) associated with the equa-
tion corresponding to the degree of freedom u ;, the function
VW is evaluated with all entries for {du} equal to zero, ex-
cept the entry du;, which is set to 1. The number of entries



We want to compute, for a given. {p}, the new
{p}' to establish the new configuration of
the geometric skeletal muscle

1. Given

(a) The degrees of freedom of the nodes of

the brick-like element that are

associated with the external supports

Either, the position of the external

supports as the goal or the load of the

external supports as the goal

(¢) The percentage of activation of the
skeletal muscle

(d) The initial guess {u}

(%)

2. Compute {Au} until the residual {r} is lower
than a pre-specified admissible exrroxr or
the maximum number of iterations is reached

(a) For each it* entry

(a.1) Set {du} equal to zero except the
entry du;, which is set to 1

(a.2) For each brick-like element compute
IVW and EVW (only if the
current it* entry is associated with

that brick-like element)

(a.3) Ccompute r;{{u})
(b) For each it* entry

(b.1) set {du} equal to zero.except the
entry éu;, which is set to 1
(b.2) For each jt* entry

(b.2.1) set {u} as before except

the entry u;, which is set
to u; =uj+h

For each brick-like element
compute [VW and EVW (only
if the current it* and jth
entries are bhoth associated
with that brick-=like element)
Compute n({u}’)

Compute

Jij 2 Eri({u}) = ri({u})

(6.2.2)

(6.2.3)
(b.2.4)

(¢) Solve the system of linear equations

[F1{au}=-{"}

(d) compute {u} = {u}+ {Au}

3. compute {p} = {p}+ {u}

Figure 5: Pseudocode for computing the finite element
scheme.
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is always equal torthe number of unknowns. The Jacobian
matrix J'needéd. for the Newton-Raphson procedure is ob-
tained numerically by the formula:

Tiy =& (ri({u}) —ri({u}))

where {u}' is obtained by changing the j* entry of the cur-
rent vector {u} from u; to u; + h, h being a small number
(h = 0.001).

The system of linear equations to be solved at each
step can be expressed in matrix form as:

[J]{Au }=~{"7} (18)

The current displacement vector is updated to {u} +

{Au}, and the procedure is repeated until the norm of the

residual vector { r } is lower than a pre-specified admis-
sible error.

an

5 Skeletal Muscle Deformation

The computational model was used to simulate muscle con-

traction of two ankle extensor skeletal muscles of the cat

hindlimb (Figure 6). These muscles are the cat soleus (SOL),
a nearly parallel-fibred muscle, and the cat medial gastroc-

nemius (MG), a perfect unipennate-fibred muscle [12] .

In the computational model, we can specify whether
an external support is fixed, partially fixed or free, and whe-
ther it is-displacement controlled (the goal for the posi-
tion of the support is specified) or force controlled (the
goal for the.loads of the support is specified). For the pur-
pose of illustration, we adopted the values € = 250M pa,
g€ = 1.7TMpa, and € = 0.075M pa, respectively, for the
tendon, aponeurosis and muscle tissue [26]. We assumed
v = (.49 forall materials, a value which represents volume
preserving materials. In order to model other non-linear
soft tissues with different material properties, we can sim-
ply change the values ¢ and v, equation (12).

Figures 7(a) and 8(a) show the initial geometry in the
relaxed state that was used as input. Thus, we impose a
2mm displacement at the tendon with the muscle fully ac-
tivated. The result of the displacement controlled simula-
tions are-shown in Figures 7(b)(c) and 8(b)(c). SOL con-
traction causes a bulging, Figure 7(b)(c), and, MG contrac-
tion causes a parallel sliding of the top aponeurosis relative
to the bottom one, Figure 8(b)(c).

As a result of the simulation, we can measure fibre
lengths, angles of pinnation (angles between the muscie
line-of-action and the direction of the muscle fibres), inter-
nally developed forces by the muscle fibres and the external
force of the whole muscle.

For the case of the SOL model (Figure 7), fibre length
at maximal :isometric force and muscle length, including
the tendon, were assumed to be, respectively, 38.5mm and
807 (derived from Herzog et al. {12}). And, the maximal



tendon force developed for SOL was 25N. For the case of
the MG (Figure 8), we used the same initial muscle archi-
tecture as specified in our previous work [13]. Fibre lengths
at maximal isometric force and muscle length, including
the tendon, were assumed to be, respectively, 24.5mm and
120mm (derived from Carvalho et al. [4] [3]). Compar-
isons of external muscle force, fibre lengths, and angles of
pinnation were made between theoretically predicted and
experimentally measured values [3]. Our previous results
[13], and the present results, showed that fibre lengths be-
came smaller (up to about —25%) and angles of pinnation
increased (up to about +20°) when going from the relaxed
to the activated state in the experiment and the model. The
maximal tendon force developed for MG was 128 N. There-
fore, since the theoretically predicted results agree with the
experimentally measured values the conceptual predictions
of the computational model are correct.

In the third example (Figure 9), we used the same con-
ditions as specified in the previous two examples. However,
for computer animation purposes or for structure-function
relationship explanation purposes, we fully activated only
the left side of the muscle. As a result, we obtained a
strange deformation. SOL contraction causes a bulging in
only half of the muscle, Figure 9(a)(b), and, MG contrac-
tion causes torsion and sliding of the top aponeurosis rela-
tive to the bottom one, Figure 9(c)(d).

Insertion

points o
N/
We joint
Calcaneus \_/

Figure 6: Cat hindlimb.

6 Discussion

The model can be applied to different classes of skeletal
muscles according to shape such as parallel-fibred muscles
(Figure 7) and pennate-fibred muscles (Figure 8), and may
be applied to other non-linear soft tissues with different ma-
terial properties.

We can experiment with the model in order to dis-
cover what happens to it in particular conditions such as
to fully activate only the left side of muscle during the mus-
cle contraction (Figure 9). And, the model can be used to
investigate how forces influences muscle deformation and
how deformation affects the contractile properties of mus-
cle. This investigation is done by taking into account the

~ > e
Figure 7: SOL skeletal muscle architecture (a) relaxed state

and (b) activated state; SOL polygonal surface (c) activated
state.

> e

(@)

~ (a (©)
Figure 8: MG skeletal muscle architecture (a) relaxed state
and (b) activated state; MG polygonal surface (c) activated

state.

(a)

S

Se

So S

Figure 9: Left side of the muscle activated (a) SOL and
(b) SOL polygonal surface; (c¢) MG and (d) MG polygonal
surface.
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initial geometry of a particular skeletal muscle architecture,
experimental data about the behaviour of the materials in-
volved, and initial conditions about the muscle attachments
and tendon insertions.

7 Conclusions and Future Work

We developed a model of skeletal muscle that can be ap-
plied for underlying structural arrangements of any shape.
The model is sufficiently general for applications in com-
puter animation, and sufficiently accurate to study muscle
function in biomechanical applications.

The principle of virtual work, in the presence of geo-
metric constraints, represents a physically consistent model
to simulate the deformation behaviour of skeletal muscles.
The implementation of a stand-alone computational model
in combination with the finite element analysis allows for
the inclusion of novel features in the active muscle consti-
tutive equations that eliminate potential instabilities on the
descending limb of the force-length relationship in skeletal
muscle.

For computer animation, the next steps include realis-

tic modeling and visualization of the skeletal muscle archi-

tecture and of the transmission of the resultant deformation,
of a group of muscles, to the human or animal skin to pro-
duce body deformation. In order to do that we will use
implicit and subdivision surfaces modeling techniques [25]
[27]. For simulation, the next step includes the implemen-
tation of a strategy for the recruitment of groups of muscle
fibres during the activation process.
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