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Abstract. Many image compression schemes perform the discrete cosine transform (DCT) to represent an image in frequency space. An
analysis of a suite of images confirms that the luminance AC coefficients can be modeled by a Laplacian distribution. The distribution
model can be used to drop the insignificant coefficients. In this paper we develop an image-adaptive JPEG encoding algorithm that incor-
porates global thresholding and near optimal quantization approach based on Lagrangian multiplier. Simulation results demonstrate that,
with our thresholding technique, we can improve the reconstructed image quality compared to the one provided by other DCT image
coding schemes without thresholding.

1 Introduction

The Discrete Cosine Transform (DCT) is used in
many popular still image compression schemes. In par-
ticular JPEG baseline coding algorithm [1] uses the DCT
to concentrate image information: JPEG partitions the
image into 8x8 blocks, transforms each block using an
8x8 DCT, and scalar quantizes the resulting DCT coeffi-
cients using an 8x8 matrix of quantizer step sizes. The
quantized coefficients are then entropy coded using zero
run-length Huffman coding. The key to good compres-
sion (in the rate distortion sense) when using DCT lies in
the quantizer selection. JPEG’s quantizer step sizes
largely determine the rate-distortion tradeoff in the com-
pressed image. Many algorithms [2], [3], (4] have been
proposed to optimize this tradeoff. However, even with
image-adaptive quantizer selection, JPEG must apply the
same quantizer to every image block. Thus, JPEG quanti-
zation lacks local adaptivity. To compensate this quanti-
zation inefficiency, intelligent adaptive thresholding of
the coefficients can be incorporated in the DCT coding
chain as shown in Figure 1. Thresholding strategy refers
to adaptively dropping some nonzero-quantized coeffi-
cients to zero, in order to improve the rate-distortion
tradeoff. This could refine quantizer scales for coeffi-
cients that are retained, without adding any complexity to
the decoder. Several approaches have been tried in the
literature in order to make zeroing decisions.

We mention the one found in [5], using a search
strategy within a rate-distortion (R-D) framework, for the
fixed scale quantization performed prior to thresholding.

Thus, starting from the “highest quality point” after
quantization at a fixed scale (for JPEG), one can sweep
the entire R-D curve over a continuous range of target bit
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Figure 1. Schematic of the adapted image céding
chain.

rates (or equivalently target coding qualities) by a prun-
ing operation, in order to threshold insignificant coeffi-
cients in the image. Such strategy lies in its combination
of R-D optimality and its complete compatibility with
standard decoder. However, it is computationally expen-
sive. Furthermore, the algorithm proposed in [5] needs to
be rerun, every time a new rate of compression is desired.

Later, Ratnakar proposed to produce the global
threshold tables [6] that decide the zeroing cutoffs levels
for each DCT coefficient based on the rate/distortion es-
timations.

The basic goal of our research is to find a fast and
simple thresholding strategy that speeds up quantizer
scales for the retained coefficients and reduce the de- .
quantization error. For simplicity, we only consider gray-
scale images, but the same method can be applied to
color images as well.

In this paper, we propose two global thresholding
techniques. The first one uses the information criteria



(IC) that consists in optimally classify the AC coefficient
distribution. Thereby, we select the dead-zone that repre-
sents the less significant coefficients..to be dropped to
zero. The second consists in the selection of the thresh-
olding table components based on theoretical coeffi-
cient’s model distribution.

To determine a near optimal quantization table over
a wide range of compression rates, we adopt RD-OPT
(R-D optimality) algorithm because of its simplicity and
performed results.

The organization of the remainder of this paper is as
follows: Section 2 recalls definition about local and
global thresholding and how they can be applied on DCT
image coding. Section 3 describes the modeling of AC
coefficients distribution. Section 4 gives the main notions
to understand the origin and the interest of the IC in the
modeling and parameter's estimation optimization. Then,
explains our use of these criteria in the selection of the
AC histograms bin numbers and the limit of zeroed class,
and section 5 provides our theoretical thresholding tech-
nique based on the coefficient distribution modeling.
Section 6 describes the RD-OPT algorithm [6], adopted
in the quantization step of our coding chain. Finally, sec-
tion 7 discusses experimental results.and draws some
conclusions about the thresholding techniques we have
developed.

2 Thresholding scheme applied on DCT coeffi-
cients

We represent an NxN image [ by a set of 1\'67:- blocks
each with 64 pixels, such that for 0<x,y<7, %,
denotes the pixel at spatial location (x, y) in block b (see
formula (1)), where the blocks are ordered in a raster scan
order. By applying a 8x8 DCT transform to each block,
we perform the block DCT:

N2 (nH

b =D b = RO S
c CTSXS[I lb 1,2, 7

where ¢t represents a vector of 64,DCT coefficients
from block b.

To simplify the notation, we order the 8x8 set of
spatial frequencies into a 1-D array of 64 coefficients
indexed by n with using the zig-zag scan. Then, the block
components through the transformed image are denoted by

¢k, where b is the block indice and ne {0,,---,63} the

coefficient indice location.

Let us recall that JPEG allows the encoder to opti-
mize both the Huffman table and quantizer step sizes.
However, these latter are not the only available degrees
of freedom. An extra degree of freedom involves the co-
efficients themselves, since certain DCT coefficients may
be dropped before the generation of the quantization table
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in an R-D sense. It has been shown that for JPEG with
fixed quantizer step sizes Q, thresholding approximates
the performance of finding the best quantization level for
each coefficient [7].

We mention two thresholding types in the literature:
The local and global thresholding.

The local thresholding process consists in making
the zeroing decisions separately for each image block. It

uses a set of binary thresholding values T,,b that signal

whether or not the transform coefficient ¢? must be

thresholded, i.e.,
<
Q.
Ab

with ¢, the. thresholded-quantized coefficient to be
transmitted through the entropy encoder.

The global thresholding is specified by a table of 64
non-negative:real components called the threshold table
T164]. We define global thresholding as follows: if Q is
the quantization table to be applied on each DCT block,
then the combined result of quantization and thresholding
is represented as follows,

! c?
~b: | Round| =~ |if
C)l = Qn

0 otherwise,

Th = 2)

= &= Round[

0=¢ =0

3
2T,

b
Cp n

where Round(x) is the closest integer to x. The table T
does not.need to be included with the compressed image,
as the decoder does not need to know the thresholds. The
decoder. simply multiplies each thresholded-quantized
coefficient by the quantization table entry, to calculate its
approximation of the original DCT coefficient.

Through preliminary results, it has been confirmed
that the' benefit of using local thresholding for JPEG
application is unprofitable in the complexity-performance
tradeoff.sense, since the zeroing decision is made through
all the: transform image coefficients. For this reason, we
adopt the global thresholding in our work.

3. Modeling of DCT coefficient distribution

For DCT image coding schemes, there have been
different assumptions concerning the distribution of the
transform coefficients. Reininger [8] and Bellifemine [9]
use the Kolmogorov-Smirnov goodness-of-fit tests in or-
der to conclude that the AC transform coefficients can be
better modeled as Laplacian than as Gaussian, Rayleigh,
or Gamma distribution.

Other approaches propose a coefficient model based
on the Cauchy law [10], or a mixture of Gaussian laws



[11]. Under these assumptions, Eude [11] concludes that
a mixture of 1, 2 or 3 Gaussian laws is the best model of
AC coefficients distribution.

Nevertheless, we retain a Laplacian model because
of its reliability and simplicity. In fact, the distribution
model can be readily matched by finding a single pa-
rameter (the Laplacian parameter ¢). In Figure 2, the
plots depict the actual data against the model of coeffi-
cients in the space location (n = 30) of Boat image (see
Figure 5.a).
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Figure 2: The model Laplacian distribution with o=
0.1244 (curve), and the actual distribution of the DCT
coefficient (drash).

A sample Laplacian distribution is characterized by
its probability density function (pdf) defined as follows:

px)=Z el @

Fitting the distribution to a particular coefficient re-
quires finding Laplacian parameter o. The simplest way
is via the standard deviation, ©.

Thus,
o =

z ®
o

This calculation must be performed through the 63
AC coefficient frequency location because they have dif-
ferent distributions. The parameters for DCT coefficients
of Boat image are shown in Table 1.

Next, we explore the DCT coefficient model to solve
the thresholding problem.
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DC 0.0065 0.0105 0.0146 0.0261 0.0401 0.0667 0.0787
0.0067 0.0129 0.0167 0.0252 0.0393 0.057 0.0866 0.1041
0.0143 0.0212 0.0289 0.0348 0.0477 0.0736 0.1006 0.1185
0.0249 0.0339 0.0437 0.0574 0.0767 0.0881 | - 0.1244 0.143

0.0445 0.0557 0.0604 0.088 0.1141 0.127 0.1384 0.1396
0.0687 0.0912 0.104 0.1268 0.1655 0.1851 0.1853 0.1648
0.1242 0.1734 0.1759 0.1911 0.2162 0.2302 0.2079 0.1821

0.2062 0.2498 0.2702 0.2514 0.2742 0.2587 0.2215 0.1913

Table 1: Laplacian distribution parameters "o for AC
coefficients of the Boat image.

4 Information criteria and DCT coefficient
thresholding

4.1 IC definition

Information criteria (IC) are some tools for the pa-
rameterized model estimation, as well as the model se-
lection (clustering). Initially proposed to obtain the AR
model order by Akaike [12], their usual form is:

I1C(k)=- 2ilogf(x,.|ék )+ c(yxk (6)
=

where X" = {X,,.... Xy} is the sequence of observations that
are supposed to be independent and:
* ¢, is the maximum likelihood estimator of the theo-

retical model 6;;of order k.
. f(X,-lék) is the likelihood term.

® C(N) is the penalty term which depends on the obser-
vation number N. It differs according to the chosen cri-
terion.
We regard a model with a smaller IC as the better
one:

lgzarg min IC(k) @]
k

IC-type criteria take into account simultaneously both the
goodness-of-fit of the model and the number of parame-
ters used to achieve that fit. The different criteria differ
by the penalty term, C(N).

Initially, the AIC (Akaike Information Criterion)
(C(N) =2) results from the minimization of a cost, the
Kullback-Leibler information between the original model
and an approximated one. Theoretical research on this
criterion gave matter to many works to palliate its incon-
sistency. Schwarz proposed a new criterion for an expo-
nential family founded on a Bayesian justification. He
suggested the BIC (Bayesian Information Criterion) [13]:

Bm(k):—zilog x| )+ k10gN @8)
=

In a different way, Rissanen came up with an
equivalent criterion MDL (Minimum Description Length)



[14] using a coding technique (minimizing the codelength
in relation to the observations) for a parameterized den-
sity. This criterion is asymptotically convergent, i.e., it
helps in finding the appropriate model when
N — o (strong consistency). Note that the latter criterion
penalizes more stringently the log-likelihood as the num-
ber of observations increases in comparison with AIC.

A third criterion ¢ was introduced by Hannan and
Quinn [15] in the case of an autoregressive process. This
criterion leads to convergence in probability of the order
estimator (weak consistency) and stands as a compromise
between AIC and BIC. Its penalty is fixed as follows:

olk)=-23 10g £(X, /8, )+ k logliog N) ©
i=1

Finally, we state El Matouat and Hallin’s generali-
zation [16] drawn on Rissanen’s works on stochastic

complexity [17] succeeded to ¥B criterion written as
follows:

0,()=-23 log (X, /6, )+ kN° loglogN)  (10)
P

where f is selected such as:

log(log N) _ <1_-log(logN) .
logN  ~ 7 7 log N (11)

Pp criterion is characterized by its strong consis-
tency. The ¢ criterion can be seen as a borderline case of
the @p criterion (i.e. §=0).

The C(N) penalties, indicated above correspond to
the most traditional case (the parameterized model). In
the very particular case of the histograms, those are

slightly different (see section 4.2 for the retained 93 crite-
rion).

4.2 IC for optimal classification

We use the 98 IC criterion to optimally classify AC
DCT coefficients. We note that the objective aimed of is
the selection of the less significant coefficient class.

The use of IC was extended to determine the number
of equal or variable width bins (classes) of histogram, we
refer to [18] for more theoretical details. We use this
principle to optimally model the histogram built with N
values of the AC coefficients (N is the number of blocks
in the image sequence), in order to determine the limit
(threshold value) of the class with low amplitude coeffi-
cients to be droped. Initially, the coefficients are merged
in equal m classes. In [19], Sakamoto fixed the m value
to:
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m=0(2x N-1]) 12)

Let E be the random variable corresponding to the
AC coefficient histogram and (2 the set of all the real val-
ues taken by E.

To find the best sub-partition (the optimal number ¢
of classes), the sub-partition should optimally approxi-
mate the real probability law 71 of E to a priori law called
U (a Laplacian law in the case of AC coefficient distri-
bution), in a cost sense. In the case of histogram, based
on the works described in [20], the ¢ criterion will have
the following expression:

(pﬁ(c)=c(1+Nﬁ loglogN))

-2NY"_6.(B,) 10‘{%(%7)j

(13)

where 6, is the maximum likelihood estimator of 7. It is
represented by the histogram with ¢ classes {B,},
r=1,...c. On any sub-partition C of Q, {8.(B,)} is

r=1,.., '
equal to:
Number of coefficients in Br (14)

0.(8,)= 4

We observe that the penalty term differs from the
formula (10), since the objective is to find the optimal
number of histogram classes and their borders not the
number of model parameters and their corresponding
values.

In the following section, we describe the merging
algorithm used in our first thresholding technique.

Merging algorithm

Starting with m classes, a first histogram is built
giving a partition M. The merge of classes is done: ac-.
cording to an iterative process characterized by the: IC
variation. At a given iteration, let us suppose that we have
a histogram with k classes B,, r=1,...,j,....k. If two. adja-
cent classes B; and B;., merge so that B, = B, UB ,,, we

obtain a new histogram with (k-1) classes. Among all
possible merges with (k-1) classes we keep the one that
minimizes @g(k-1). We thus obtain the number of classes
¢ and the associated optimal partition {(6.(B,)},-; .-

5 Theoretical thresholding

Referring to Eude's works [11] on distribution sta-
tistics modeling applied on baseline JPEG, we propose a
second technique for global thresholding table genera-
tion. In this context, we take into account the probability
density function of each AC coefficient through all the
DCT blocks. Since the information worth differs from
one coefficient to an other, the zeroing of coefficients in



high frequencies space does not involve deterioration as
much as the zeroing of coefficients in low frequencies.
Thus, given the probability density function of the trans-
form coefficients, we can define the limits over which
they have low probability to appear. Thus, they should be
retained to avoid considerable quality deterioration in the
reconstructed image. This idea can be formulated as fol-
lows :

An AC coefficient ¢, has a low probability if its ab-

solute value is superior to a limit value S, defined by :

5, (15)
[ (e, =0.95

—oo

where u, is the probability density function of the
distribution model which fits better to the real coefficient
distribution (Laplacian law). Thus, through the 63
Laplacian models, we determine the thresholding table
components T, ne {0,...,63}, such as :

(16)

Fe if n 20

n
0if n=0

T =

n

with F, a scaling factor (here F,=50).

After computing the adequate S, values for each AC
coefficient, we perceive a low magnitude of S, in high
frequencies (see table 2) involving high threshold mag-
nitudes (see Figure 3.a). So, only the high coefficients
amplitude values are retained in high frequencies. How-
ever, in low frequencies the S, magnitudes are high. Con-
sequently, the corresponding threshold values are small
(see Table 3), and most coefficients are conserved (see
Figure 3.b).

DC 354.2 219.2 157.7 88.2 574 34.5 29.2
343.6 178.4 137.8 91.3 5.8 40.3 26.5 22.1
161 108.6 79.6 66.1 48.2 31.2 22.8 19.4
92.4 67.9 52.6 40.1 30 26.1 18.5 16.1
51.7 41.3 38.1 26.1 20.1 18.1 16.6 16.4
335 25.2 22.1 18.1 13.9 12.43 1242 13.9
18.5 13.2 12.04 10.65 10 10 11 12.6
i 9.21 8.52 9.15 8.39 8.¢ 10.3 12

Table 2: the obtained S, values for Boat image.
DC 0.140 0.227 0.317 0.567 0.870 1.449 1.709
0.144 0.279 0.362 0.546 0.854 1.238 1.879 2.260
0.309 0.460 0.626 0.754 1.035 1.598 2.183 2.573
0.541 0.735 0.949 1.247 1.665 1912 2.702 3.104
0.966 1.208 1.312 1.910 2477 2.758 3.005 3.031
1.492 1.981 2.259 2.753 3.594 4.019 4.022 3.578
2.696 3.766 3.819 4.150 4.694 4.998 4.514 3.955
4.477 5.424 5.867 5.459 5.953 5.618 4.810 4.153

Table 3: the obtained threshold values for Boat im-
age.
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Figure 3: thresholding process according to coeffi-
cient location in the frequency space: (a) threshold and
S, values of DCT coefficient in the space location (n =
62); (b) threshold and S, values of DCT coefficient in the
space location (n = 1);

6 DCT quantization approach

Within the framework of our research, the coding chain is
separated in two parts:
- Global thresholding table generation (by IC appli-
cation and theoretical thresholding).
- Quantization tables generation by the RD-OPT al-
gorithm.

In the following, we give an overview of the RD-
OPT quantization algorithm.

As described in {21] the RD-OPT algorithm is an ef-
ficient algorithm for sub-optimal quantization table de-
sign. It produces quantization tables optimizing the trade-
off between quality and compressed size. For each coef-



ficient ¢, and for each possible quantizer scale g, the con--

tribution to total rate of the n™ coefficient ¢, is calculated
as R[n]lq], and the contribution to total distortion as
DlnJlg]. To estimate R{n]g] and D[n]ig] for each pos-
sible g, a preliminary pass through the image is run to
gather DCT statistics which are used to predict rate and
distortion accurately.

Then, for any quantization table Q, the rate of com-
pression is :

RO)= £ Rinloll, an

and the distortion is

D)= io[n][g[nn (18)

After calculating the contributions of individual co--

efficients to the total rate and total distortion, the RD-

OPT runs the bit allocation algorithm by merging rate and:

distortion through the Lagrangian multiplier A, in order to
determine the quantization table components, which re-
sult in the minimum total Lagrangian cost.

For a more mathematical formulation, the RD-OPT.

principle can be stated as follows:
Given a target rate Ryydger find

D = inn D(Q)subject to R(Q) < Riygger (19)

by introducing J(A)=[D(Q)+AR(Q)] representing the
Lagrangian cost of Q associated with the quality factor A

and solving the following equivalent unconstrained
problem

T B)=min J()=min[DQ@)+AR@)]  (20)

The desired optimal constant slope value A" is not
known a priori and depends on the particular target
budget or quality constraint. But, it is obtained using a
fast convex search using the bisection algorithm (for
more details we refer to the works presented in [22]).

Jmin (/’L* ): inn[Jmin (l)_mbudget ] (21)

Note that the algorithm described above is near op-
timal, since the minimum-Lagrangian cost operating
point are not found independently for each block of the
image sequence but only by considering a single block.

It is possible to improve the performance (i.e , the
rate and distortion tradeoff), by selectively setting some
coefficients to zero. This allows finer quantizer scales
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for the retained coefficients, and does not add any com-
plexity to the decoder. In the following section, we pres-
ent the results of our tests by using two global thresh-
olding techniques (with IC approach and the coefficient
distribution statistics), coupled with RD-OPT quantiza-
tion algorithm.

7  Experimental results

The performance of our global thresholding tech-
niques applied to JPEG baseline using compression re-
sults are given for two images. These are the well-known
grayscale images, called Lena and Boat (see Figure 4. a
and Figure 5. a). In Figures 4. b and 5. b are plotted the
PSNR (Peak Signal to Noise Ratio) versus rate for these
images compressed using our thresholding strategies
coupled with RD-OPT quantization. Moreover, the
PSNR-rate plots for these images compressed using the
“default JPEG” quantization tables are depicted. In addi-
tion, PSNR-rate plots are also shown in the case of RD-
OPT without thresholding, i.e., just quantization table
optimization. The rates shown in these plots are the actual
rates resulting from JPEG compression with Huffman
coding, and not entropy estimates.

For each image, theoretical thresholding with quan-
tization table in the rate-distortion sense results in PSNR
gains of up to 2 dB (decibel), compared to RD-OPT algo-
rithm without thresholding and 4 dB compared to JPEG
with “default” quantization table. In the case of thresh-
olding by IC, we find that our algorithm achieves nearly
the same PSNR as unthresholded RD-OPT coding
scheme in low bit rates. However, there is a point for
both test images beyond which the performance starts to
degrade. Intuitively, the use of the thresholding table
generation by IC is inadvisable beyond a point.

CONCLUSION

We have proposed an image coding technique based
on the DCT coefficient statistic distribution. Our algo-
rithm uses simply a global thresholding pass to approxi-
mate the zero set model and then completely quantizes
the remaining coefficients in a second pass. Two thresh-
olding strategies have been tested.

The first one is based on the IC application to opti-
mally optimize the DCT coefficient histogram classes in
maximum likelihood sense, in order to select the limit of
zero coefficient class, this limit corresponds to the
threshold value. The second strategy consists in the
threshold table generation by using the theoretical model
distribution (Laplacian). We note that unlike local thresh-
olding, zeroing decisions are not made separately for
each image block which simplifies the use of threshold-
ing.

The coding results show that by incorporating the
theoretical global thresholding in the coding chain, we



can improve the performance (R-D tradeoff) of DCT-
based image compression. However, the IC application
for the thresholding table generation does not bring any
improvements for the coding results in spite of its effi-
ciency in image segmentation and optimal entropy cod-

ing.
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Figure 4: (a) 512x512 grayscale image of Lena; (b) Com-
parison in performance of global thresholding with ¢ versus
global theoretical thresholding, unthresholded RD-OPT algo-

rithm and classic JPEG for Lena image.
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Figure 5: (a) 256x256 grayscale Boat image; (b) Com-
parison in performance of global thresholding with @3 versus
global theoretical thresholding, unthresholded RD-OPT algo-
rithm and classic JPEG for Boat image.
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