1530-1834/01 $10.00 © 2001 IEEE

Procedural Models on Image Synthesis for Ocean Animation

CESAR TADEU POZZERl , SERGIO ROBERTO MATIELLO PELLEGRINO2
L2JTA - Instituto Tecnolégico de Aerondutica, Pg. Mal Eduardo Gomes, 50, Sdo José dos Campos, SP, Brasil
’ 1pozzer@inf.puc-rio.br, 2pell@comp.ita.br

Abstract: This paper presents image-synthesis techniques to define, animate and visualize scenes simulating
the behavior of the open-sea surface. Wave modeling is obtained by means of the bump mapping technique.
Wave texture, defined by noise functions, is applied by means of a solid-space animation technique to generate
surface animation. An implementation based on the Phong model is used to determine diffuse and specular
reflections. As a result of the synthesis process, a set of frames is obtained, to be used to compose the

animation.

1 Introduction

Modeling natural phenomena is, beyond doubt, one of the
most complex tasks in the Image Synthesis field. This can
be justified by observing the physical rules and properties
that dictate the behavioral aspect of such phenomena.
Since most of them are asymmetric and non-rigid
elements, they add great complexity to the model. Both
their definition and their behavior in time result from
external factors such as wind, temperature, etc.

The correct evaluation, or emulation, of such external
factors is the key to obtain an image or animation with a
high degree of realism, which in this case refers to visual
aspect and level of detail. In an accurate representation of
a natural phenomenon, the use of complex equations is
made necessary — in this case, relative to Fluid Theories.

Commonly adopted solutions employ approximate
equations, such as those presented in Max [1]. His wave
model consists of several superimposed linear sinusoidal
waves simulating low-amplitude ocean waves. However,
the high periodicity of the obtained surface is a downside.
TS’0 [2] uses wave refraction to determine wave behavior
and direction. The surface is represented by beta-splines
and is rendered using texture mapping [13], which
simulates light reflection and refraction.

Attempting to simulate fog and foam, Peachey [3]
and Fournier et al. [4] employ particle systems [5]
combined with simple hydrodynamic equations. In
Fournier et al. [4], the sea surface is considered as a set of
particles performing circular or elliptical stationary orbits,
which can simulate wave breaks.

In order to abstract the complexity of the equations,
Perlin [6] simulated surface perturbation by using noise
functions combined with Blin’s [7] bump mapping
technique. One can notice that this method works well
when the observer is far enough from the surface for the
sea to seem flat. Other recent works refer to the use of

130

procedural methods, such as the fractal method [8],
combined with the bump mapping technique.

In the present paper, sea-surface definition is
achieved by means of procedural methods similar to
Perlin’s [6]. Solid-space animation techniques [8] are
employed in the animation process, and illumination
techniques based on the Phong model [9] are applied to
the scene-visualization process.

This paper is organized as follows: Section 2 presents
the techniques developed for defining the surface. In
Section 3, solid-space definition and animation is
discussed. Section 4 deals with illumination techniques.
The results are presented in Section 5, and final
conclusions are drawn in Section 6. All image results are
shown in the last page.

2 Surface Modeling

The ocean surface is defined by a flat plane. To achieve
the irregular 3D appearance of the waves, the bump
mapping technique [7] and a noise function [6] are used,
producing values employed in the perturbation of the
surface’s normal vector. In this paper, such values are
considered as texture values and are used in the definition,
disposition and motion of the waves.

2.1 Noise-Function Definition

A feature of the noise function is that it generates values
with no correlation with any previously generated one. In
the scope of this work, the generation of random values
prevents controlling the transition among animation
frames, as well as the shape, size and disposition of the
waves. A two-dimensional matrix of pseudo-random
numbers (PRN) is then used. It is defined solely by integer
coordinates, reflecting the characteristics of the ocean
surface, and its size influences pattern repetitions on the
surface. This matrix is a height field and its values are
used as control points during the scene rendering process.

With the PRN matrix, the noise function is then
defined as an indexing function of PRN relative to the
coordinates associated to the real scene, which are defined
by means of a sampling process using ray casting.

A crucial point is defining the matrix values, as the
matrix is to determine the ocean shape during the
animation. Depending on the ocean’s behavior (wave
perturbation, speed and shape), different texture
configurations must be obtained. For non-regular surfaces,
a good solution is to use the following algorithm:

responsible for block size definition, as shown in
Algorithm 2.

value = random{)*perturb
lenght = random{() *multiplicity
for count = 0 to lenght

texture [x+count] {y] = value

for each texture pair (x,y)
texture [x] [y] = random()} *perturb

Algorithm 1: Simple noise function

where the perturb variable is used as a perturbation
limiter. An example of a result of this algorithm is shown
in Figure 1(a), obtained by means of the biparametric
interpolation.

© @

Figure 1: Texture examples: (a) random values
and B-spline interpolation; (b) exponential
interpolation; (c) multiplicity = 6; (d) two
texture layers

For generating waves with a more controllable shape, an
adaptation of this method was developed in which data
blocks with the same value are defined, thus generating
the desired aspect for the local surface. Such data can
even be easily modified by manipulating the PERTURB
and MULTIPLICITY parameters, the latter being

131

Algorithm 2: Regular wave generation

Figure 1(c) illustrates the effect value multiplicity has
over wave definition, in contrast to the surface generated
by Algorithm 1. The light and dark longitudinal regions
represent the wave’s crest and trough, respectively. One
can notice that the wavelength, given by the distance
between two crests, is not homogeneous in every region of
the surface, thus producing more random results,
especially during the animation.

2.2 Texture Evaluation

Since texture is defined only by integer coordinates, some
interpolation techniques are necessary to evaluate the
texture at any position. The kind of interpolation used
affects the visual aspect obtained, and can generate
surfaces with smooth or rough transitions.

Figure 1(a) and 1(b) shows 3-degree polynomial
interpolation and exponential interpolation examples,
respectively, for the same control points. The exponential
interpolation is local to the control points and uses only
four neighboring control points, forming parallel lines
with rough variations (lighter regions). Discontinuities can
be noticed, which on the one hand can simulate the
agitated sea but on the other hand make some regions
prone to the appearance of alias.

Using B-spline interpolation (Figure 1(a,c,d)),
smoother surfaces are obtained, representing little-
perturbed water without highlighting the presence of
control points. Its disadvantage is the great processing
time needed for evaluating it. This kind of interpolation is
prone to generating alias only when the samples are taken
from points near the horizon (far from the observer).

When the surface has been created, the perturbation
value is computed taking the direction of the normal
vector in each point in the texture. Assuming T determines
a texture patch, the normalized perturbation vector Py is
given by

aTxaT
P.T= ox dy
ar . or
dx oy

To reduce the problem of an over-smooth
perturbation, two texture layers, T; and T, are evaluated
in different scales. Usually a 1x4 scale relation was
adopted. The larger the scale, the smaller the wave. As a
result, textures such as the one illustrated in Figure 1(d) —
which derives from Figure 1(c) — are obtained.

At each texture layer, the multiplying factors M; and
M, are also associated. They allow controlling the
perturbation degree without the need for generating new
control points. The resulting perturbation vector P, is
given by the equation below and is used to change the
direction of the normal vector in directionsx and y.

P=P*M+P *M,

The new normal direction, to be used in the diffuse
and specular illumination computation, is given by

N, =N+

a1}

r

3 Surface Animation

Due to the fact that surface animation is associated to
texture, the latter must undergo changes through time to
better represent wave motion on the ocean. These changes
must affect not only wave disposition, but also their
shape.

Wave disposition is based on texture displacement
along axes x and y. With this strategy, only wave
dislocation can be simulated, in a specific direction. Shape
variation is a more complex task that requires smooth
transition between every animation frame. Simply
generating a new texture at each frame would result in
rough transitions, which would not represent a realistic
behavior.

The solution developed consists in generating a solid
(three-dimensional) texture [10] composed by a set of
two-dimensional texture layers (Figure 2), independently
generated by Algorithm 2.

In the present work, the use of solid texture has a
slightly different focus than the original proposition, for
two reasons:

1. The rendered object (water) is not considered three-
dimensional, but rather a flat plane on which bump
mapping is applied,

The solid texture’s values are used as a perturbation
function (Blin’s [7] bump function).

2.

132

Object
displacement

directions

“~~>4 simetric control points

' [! relative to the object on the
! ! current z position
v v
Cubic Interpolation

i 2D texture

Figure 2: 2D texture generation from a solid texture

There are two approaches for animating a solid texture:
changing its value in time or moving the object being
rendered along its space. In this work, the object is
represented by the shaded plane illustrated in Figure 2,
which moves along the z axis inside the solid texture. As
the plane moves through the solid texture, a two-
dimensional texture is extracted, to be used in frame
generation. This texture is actually de PRN described in
Section 2.1.

The extraction follows an interpolation process
among these layers and is closely related to the animation,
which is based on the solid-space animation concept. Each
element in this plane is computed by interpolating the four
neighboring control points (2 above and 2 below) located
on the solid texture along the z axis, whose x and y
coordinates are equal to the point on the plane being
computed. As this is a reticulate plane, only integer
coordinates can be defined. The interpolation technique
employed is 3-degree Catmul-Rom [8]. The number of
points to be defined depends on the texture dimension,
which is the same as the solid texture’s.

With this animation technique, 3 parameters are used
in the animation: x and y for wave displacement (speed
and direction) and a z parameter (shape change) that
determines which solid region in the 3D texture will be
used to define the control points for the 2D texture.

4 Rendering Issues

Since the three-dimensional characteristic of the ocean’s
surface is not determined by a geometric model,
illumination techniques are needed to give the waves a 3D
aspect.

Specular and diffuse reflection factors are associated
to each light source, and not to the surface. Therefore,
different light sources, which are considered as a point
source, may have different behaviors over the same
surface.

Scene rendering follows a sampling process in which
each point is computed independently from its neighbors,
and plane-ray intersection operations, adaptive sampling
and other point-driven methods [11] can be directly
applied to the surface. The present work employs ray
casting with uniform sampling or regular supersampling.

4.1 Illuminat'ion Geometry

The influence of the light sources on the generated image
is given by angles o7 Band y(Figure 3). Angles cxand 3
represent the incidence and the reflection angles of the
light ray, respectively, and determine the elevation of the
source and the observer in relation to the synthesis plane.
The value of % which relates source alignment to the
observer, is given by the angle between N; and N,. These
three angles are used to compute the diffuse reflection
(DR) and specular reflection (SR) parameters, whose
purpose is to -attenuate the reflected light, whose
maximum value occurs when o= Band y=0.

Light Source

Observer

Figure 3: Illumination geometry

4.2 Specular Reflection

Since the Phong model presents smooth color transitions,
we developed a similar specular-reflection model which

133

attempts to break this smoothness by varying the light-

incidence angle. This model is divided in two stages:

1. Computing the & factor, which represents the
attenuation of the reflected light, according to of Sand
Y

2. Using this factor as an index in a lookup table
representing the specular intensity distribution.

For computing § the specular-reflection coefficients
Spcyand Esp of3associated to each light source are used.
They attenuate reflection, taking into account angles (cc-
P and 7 respectively. & varies between 0 and 90, and is
defined by equation

8 = cos(abs@e— B)) 57 * cos(p) =

With this equation, reflected light can be
concentrated on a section relative to the longitudinal and
transversal axes that will represent the region with
maximum reflection, as illustrated in Figure 4. In the
results, the effect these parameters have on the image are
shown.

Influence of parameter Esp o3

1
\
\

Influence of parameter Spcy ~ Regionwith greatest

specular reflection

Figure 4: Areas of specular reflection concentration

The & factor having been defined, it is used as an index in
the lookup table presented on Figure 5. This table is
divided into three sections (represented by numbers 1, 2
and 3), parallel to axis y. Sections 2 and section 3
represent the conventional Phong model each. Both the
curve and the distances are given by parameters lim;, lim;,
n;, n;. The two latter represent specular-reflection
coefficients, similar to the Phong model, and influence the
shape of the curve for each associated section.

SR (brightness)
A

Phong Model

1

Figure 5: Lookup table of specular intensity

Depending on & different SR values are obtained. If
&lim;, SR will have maximum reflection, represented by
the white color. Other values of & are mapped between
[lim;,lim;] or [lim;, 90] and rescaled between [0, 90], so
that the curve will have a correct interpretation — which,
as in the Phong model, varies between [0, 90]. The SR
coefficient is used for computing the color specularly
reflected by the surface.
Some further observations can be drawn about the

model:
1. It can be converted to the conventional Phong model if

lim; =0, lim; = 90 and height =0,
2. The minimum specular-reflection value can be height

if limy = 90;
3. The maximum specular-reflection value can be height

lfllml = llmZ = 0,
4. It will not have maximum reflection if /im;= 0.

Based also on the SR value, the diffuse-attenuation

coefficient (KDiffuse), to be used in the diffuse-reflection
model, is computed by equation

KDiffuse = (1 - SR)

4.3 Diffuse Reflection

The contribution of diffuse reflection (DR) is similar to
that of specular reflection, being given by the following
equation, which does not consider the observer’s position:

DR =cos(B)"™ *cos()®" + Ia* kdDiffuse * Kd

where Diff3and Difyare diffuse-reflection coefficients,
with the same effect as specular coefficients. Ja represents
ambient illumination, and Kd represents the diffuse-
reflection coefficient of the surface. Diffuse-reflection
distribution is also similar to that of specular reflection
(Figure 5). Therefore, using coefficients Dif3and Difyone

134

can concentrate diffuse light around the specular
reflection.

Just as in specular reflection, DR is used to compute
the texture’s color contribution to the final image. By
summing specular and diffuse reflections, the final
intensity of the image is obtained:

Finalcolor = DR*WaterColor +
SR*SpecularLightSourceColor

4.4 Results

The images presented in this section show how the
variation of perturbation and illumination parameters
affects the generated image. All these images, in color,
can be found at
http://www.inf.puc-rio.br/~pozzer/ocean/index.html
http://www.comp.ita.cta.br/~pell/ocean/index.html

Image 1 uses one texture layer with high
perturbation, and though there are no hidden waves the
bump mapping method generates a good 3D effect.
Maximum specular reflection can be seen on the brighter
regions, which tend to appear as light blue when specular
reflection decreases. Specular and diffuse reflections are
shown in Images 2 and 3. The yellowish regions represent
specular reflections, while the others represent diffuse
reflections. The remaining images illustrate scenes with
horizon. Image 5 shows horizon color transitions and
sunlight reflection on the ocean. Specular reflection is
concentrated near the direction of the sun. Diffuse
reflection is blue. On Images 2, 4, 5 and 6 two texture
layers are used. Images 4 and 6 display night scenes.
Image 6 is a fictitious scene with two moons, and it shows
the different specular and diffuse reflections associated to
each light source.

All images were generated on an IBM PC Pentium
II1 600 Mhz with 128Mb RAM, using a JDK 1.2.1
compiler. Image 2 took 21 seconds to be generated and
image 5 took 14 seconds, both at a 290x260 pixel
resolution.

5 Implementation Details

An application was developed in Java 1.2 that implements
visual resources such as synthesis-plane orientation, light-
source specification (position, intensity, color) and an
automatic animation method. Specific detail on this
implementation, as well as illumination and animation
techniques and results, can be found in Pozzer [12].

The source code of the application, configuration
files used for generating the images presented in this work
and the images and animations themselves are available at
http://www.inf.puc-rio.br/~pozzer/ocean/index.html
http://www.comp.ita.cta.br/~pell/ocean/index.html

6 Conclusions

IMumination has clearly the most important role in
defining the details that provide realism to the images.
With a correct parameter configuration, the illumination
techniques developed were shown to be very generic in
the definition of different kinds of scenes. Specular
reflection, which is the most complex type of reflection to
simulate, presented color variations in the provided
images that generated good results, especially when the
horizon is defined.

The bump mapping technique has fulfilled our
expectations. Though it is a simplified technique, it was
able to simulate the surface with some degree of realism,
even without hidden surface detection.

Concerning texture definition, using the original and
the modified noise function we were able to define several
behaviors and shapes. With relatively small matrices a
non-repetitive aspect was obtained which is similar to a
real surface. The animation technique for such surface
also proved to: be very efficient, since it was able to
perform smooth and continued transitions between
animation frames.

On performance evaluation, both the techniques used
and the Java language were efficient, since the processing
time for the images did not take longer than 30 seconds.

Acknowledgments

We would like to thank Mr. Andrew Glassner for the
discussions on illumination. This research was supported
by CAPES.

References

[1] MAX, N. L. Vectorized Procedural Models for Natural
Terrains: Waves and Islands in the Sunset. Computer
Graphics, v.15,n.3, Aug. 1981, pp. 317-324.

[2] TS’O, P. Y., BARSKY, B. A. Modeling and
Rendering Waves: Wave-Tracing Using Beta-Spline
and Reflective and Refractive Texture Mapping. ACM
Transaction on Graphics, v.6, n.3, Jul. 1987, pp. 191-
214.

[3] PEACHEY.,, D. R. Modeling Waves and Surfaces.
Computer Graphics, v.20, n.4, Aug. 1986, pp. 65-74.

[4] FOURNIER; A., REEVES, W. T. A Simple Model of
Ocean Waves. Computer Graphics, v.20, n.4, 1986,
pp. 75-84.

[5] REEVES, W. T. Particle Systems - A Technique for
Modeling a Class of Fuzzy Objects. Computer
Graphics, v.X7,n.3, Jul. 1983, pp. 359-376.

[6] PERLIN, K. An Image Synthesizer. Computer
Graphics, v.19, n.3, Jul. 1985, pp. 287-296.

135

[7} BLIN, J. F. Simulation of Wrinkled Surfaces.
Computer Graphics, v.12, n.3, Aug. 1978, pp. 286-
292.

[8] EBERT, D. et al. Texturing & Modeling. 2.th. San
Diego: AP Professional, 1998, 415 pp.

[9] PHONG, B. Illumination for Computer-Generated
pictures. Communications of the ACM, v.18, n.3, Jun.
1975, pp. 311-317.

[10] PEACHEY, D. R. Solid Texturing of Complex
Surfaces. Computer Graphics, v.19, n.3, Jul. 1985, pp.
279-286.

[11] COOK, R. L. Stochastic Sampling in Computer
Graphics. ACM Transactions on Graphics, v.5, n.l,
Jan. 1986, pp. 51-71.

[12] POZZER, C. T. Uso de técnicas de sintese de
imagens aplicadas a um ambiente de representagdo de
superficies liquidas estdticas e dindmicas. MSc
Thesis, Computer Science Department, ITA, Feb.
2000.

[13] BLIN, J. F. Texture and Reflection in Computer-
Generated Images. Communications of the ACM, v.19,
n.10, Oct. 1976, pp. 542-547.

136

137

