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Abstract.

We present methods for synthesizing 3D shape features on subdivision surfaces using multiscale

procedural techniques. Multiscale synthesis is a powerful approach for creating surfaces with different levels of
detail. Our methods can also blend multiple example multiresolution surfaces, including procedurally-defined

surfaces as well as captured models.

1 Introduction

Synthetic surface representations can be created by data
capture, interactive shape modeling, or procedural synthe-
sis. Each has advantages. Procedural synthesis, however,
can also automatically generate surface details to modify
an arbitrary base shape. Multiresolution procedural models
add the capability to handle shapes that span a large range
of scales, since they can produce more detail where needed.

This paper describes a framework to integrate proce-
dural shape synthesis on a modeling system. We use mul-
tiresolution subdivision surfaces as a basis to do multiscale
surface operations. This framework allows us to mix to-

gether various techniques of interaction, procedural synthe-

sis and deformation. We show how these combined tech-
niques can be used at interactive rates, locally and globally,
to define surface deformations as well as to seamlessly fuse
together and reconcile models with different shape and tex-
tural characteristics. A key benefit of this approach is the
ability it affords to work within different levels of a multi-
scale representation. This provides the computational basis
that allows designers to work across many levels of scale.

1.1 Previous Work

Previous work on procedural shape synthesis is closely re-
lated to texture generation.

Procedural texture generation is a powerful method for
designing realistic textured image and volumes [5]. Per-
lin [10] showed that an expression language combined with
a few primitive functions can produce high-quality textures
with very little memory overhead. These techniques are be-
ginning to appear in commodity graphics hardware. Perlin
and Hoffert [11] extend these techniques to create volumet-
ric textures; procedural shapes can then be defined as a level
set or high-frequency transition within the volume. How-
ever, it is often more convenient and efficient to deal with
surface shape in terms of a local parameterization, rather
than as a function in 3D.
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Worley [17] demonstrates a cellular texture basis func-
tion that divides space into cells in a manner similar to our
use of “seed” points. Perlin and Velho [13] apply procedu-
ral textures at different levels of a multiscale domain in or-
der to create infinitely zoomable 2D texture painting. The
current work applies this multiscale notion to 3D surface
deformation.

The interactive techniques for shape feature specifica-
tion have many aspects in common with paint systems.

Digital paint programs (e.g. [1]) are a mainstay of 2D
image generation. Multiresolution image painting supports
arbitrary resolution images [12, 2]; Perlin and Velho [13]
provide the ability to paint with multiscale procedural tex-
tures. Haeberli and Hanrahan [7] introduced a paint pro-
gram for painting textures directly onto 3D surfaces (de-
scendents of this algorithms are available in many commer-
ical packages and are commonly used for feature film pro-
duction). We use similar techniques to interactively define
operations on surfaces.

1.2 Outline

The structure of the paper is as follows: First, we review
the principles of multiresolution surfaces that we use for
shape representation. Next, we show how to procedurally
define multiscale shape details, such as textures that re-
semble rock, berries, animated tentacles, and mushrooms.
Then, we discuss the various ways that multiscale details
can be applied to surfaces. Features may be placed at one
level or simultaneously at different scales. Finally, we show
how different shape details can be combined and blended
together, through a series of examples that include rust upon
a metal machine part, “mummification” of a human skull,
and a seamless blending of two types of planets. This last is
interesting because it involves a post-processing shader; the
multi-scale blending is done not as a final texture, but as one
intermediate step in a sequence of shape texture operations,
as will be shown in the planet example of Section 6.2.
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Figure 1: Synthesis and analysis diagrams for multiresolution surfaces.

2 Multiresolution Surfaces

Here we briefly review subdivision-based multiresolution
surfaces; details can be found in {9, 14, 18].

Subdivision surfaces can be viewed as generalization
of splines to arbitrary control meshes. Subdivision defines
a smooth surface recursively, as a limit of a sequence of
meshes.! Each finer mesh is obtained from the coarser
mesh by using a set of fixed refinement rules e.g. Loop [8]
or Catmull-Clark [4] subdivision rules. In our work, we use
Catmull-Clark subdivision.

Multiresolution surfaces extend subdivision surfaces
by introducing details at each level. Each time a finer mesh
is computed, it is obtained by adding detail offsets to the
subdivided coarser mesh. As details can be specified only
at a finite number of levels, the process reduces to stan-
dard subdivision once we run out of details. The process
of reconstructing a surface from the coarse mesh and de-
tails is called synthesis (Figure 1). The inverse process of
converting the data specified on a fine resolution level to
the sequence of .detail sets and the coarsest level mesh is
called analysis. For analysis, we need a way of obtaining
the coarse mesh from the fine mesh. This can be done in a
number of ways: simple Laplacian smoothing or Taubin’s
smoothing [15], quasi-interpolation or fitting. For our pur-
poses, quasi-interpolation appears to be the most suitable
approach.

An aspect of multiresolution surfaces important for mod-
ification operations is that details are represented in local
frames, which are computed from the coarser level; this is
analogous to representing detail surface in the frame com-
puted from the base surface. Note also, that when we in-
clude procedural shape synthesis into this model, it is pos-
sible to generate an arbitrary amount of detail on a smooth
surface.

'More precisely, the limit surface is the pointwise limit of a sequence
of piecewise linear functions defined on the initial control mesh.
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3 Computational Framework for Multiscale Synthesis

In this section we describe the computational framework
behind multiscale procedural shape synthesis. We exploit
the fact that subdivision surfaces make shape information
available for display and for editing as a sequence of sep-
arate differently scaled level-of-detail components. This
structure gives us the opportunity to mix data with proce-
durally generated synthetic deformation textures. The basic
paradigm is to express a procedural displacement as a sum
of scale-limited components. Then each component can be
used to modify the equivalent level of detail of a subdivision
surface.

There are two spatial domains in which the procedu-
ral deformation data can be defined: (i) In the underlying
3D Euclidean volume (as in [10]) and (ii) over a paramet-
ric coordinate system imposed within the surface manifold.
We will demonstrate the ability to mix these two together
in useful ways.

The computational framework (Figure 2) starts with a
set of shape definitions. Each of these is either an acquired
and stored shape description (e.g. a digitized skull mesh),
or a synthesized shape signal (e.g. a torus).

Each shape definition takes as its domain either an
(z,y, 2) coordinate location, or a (u,v) parametric loca-
tion on a base surface. The output of each shape definition
is a set of displacement control points at each scale, The
constructed shape is defined as a smooth reconstruction of
the displacement control points at every scale, followed by
a sum over all scales of the reconstructed signals.

These shape definitions are blended together via an al-
pha signal. The alpha signal may either be interactively
“painted” by a user, or defined procedurally. The result of
the blending is a detailed surface definition. This can be
post-processed via a shader, to produce a final detailed sur-
face definition, which is then rendered.

A animation time parameter can feed into: (i) any syn-
thesized shape definition, (ii) the synthesized alpha, and
(iii) the post-processing shader.
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Figure 2: Diagram of computational framework.

4 Defining Multiscale Shape Detail

In this section we describe the principles of procedural gen-
eration of shape features on surfaces and give examples of
procedural shape models.

4.1 Basic Principles

Our multiscale procedural shape synthesis is accomplished
through the addition of geometric details at the various lev-
els of the multiscale shape model.

For this, we design a procedural definition of the basic
shape feature that we want to paste on a surface at some
scale level. This procedure is a function F' that synthesizes
the difference between the feature at two successive scale
levels. The input of the function is a point p on the sur-
face and a scale level . The output is a displacement d
to be added as a detail at that level, d = F(p,l), where p
is a point given either in local intrinsic surface coordinates
(u,v) or in global extrinsic coordinates (x,y, 2); and d is a
displacement relative to the surface at level [.

‘We have designed and experimented with a few shape
detail procedural models. These models exploit the two ba-
sic characteristics of the procedural definition: (i) the type
of coordinates and; (ii) the magnitude of displacements rel-
ative to the level.

Models based on global coordinates lead to volumetric
shape definitions, i.e. features are taken from the three di-
mensional space in which the surface is embeded. Models
based on local coordinates lead to surface shape definitions,
i.e. features are “grown” on the surface. Some of our mod-
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els are based on intrinsic coordinates and some on extrinsic
coordinates.

The magnitude of the displacements is usually related
to the scale level. Models in which displacement is in-
versely proportional to scale lead to fractal-like features.
Models in which displacement is directly proportional to
scale lead to morphogenic-like features. When the magni-
tude of the displacement is independent of scale, the fea-
tures are essentially arbitrary. This is appropriate for man-
made shapes or even physical phenomena, such as small
waves. We experimented with all these kinds of displace-
ment.

Below we present a chart relating the above classifica-
tion with some procedural models that we created, and are
illustrated by examples in the next section.

I | Fractal | Morphogenic ]
Global 3D) | “rock” | “mushroom cloud”
Local 2D) | “berry” “tentacle”

4.2 Examples

Here we show some results of using our multiscale proce-
dural shape synthesis.
Rock is an example of a volumetric—fractal shape model.
The spatial coordinates of the reference surface are used as
the input of a noise function generator. The displacements
are given in a 1/ f fashion, where f is related to the scale
level.

Traditionally a procedural “rock” shader is defined as a
sum of Perlin Noise functions [10]. However, if one works



within a multiscale framework that ¢ ontains a B-spline re-
construction filter at every successive scale level, it was
demonstrated in [13] that it'is only necessary to specify a
random value at every control point.

The algorithm is then done in two successive passes,
in the first pass, the surface points at each level are given a
random perturbation value, based either on the (z,y, z) lo-
cation or on the (u, v, level) coordinates of the base surface
(which acts a reference shape).

init_rock(}
for (level = 0 ; level < nLevels ; level++) do
for all (u,v) on this level do
P(u, v,level) = random()

In the second pass the stored displacement values are re-
trieved from the parametric domain:

Vector rock_detail(u, v, level)
value = 0 '
for 1=0;1< level ; 1++) do
value += reconstructleve]@’u, 2y, 1)
return value

In practice we set the details for a surface point at all levels
in one pass. This makes the evaluation of this procedure
O(N), where N is the number of mesh vertices.

The rock texture is used in some of the examples in
Section 6, and shown in Figure 3.

Figure 3: Fractal Rock.

Berry is an example of a hybrid surface/volume—fractal
shape model. The initial seed to the cell features is a set
of points placed on the surface according to a Poisson-disk
distribution. From these initial points at a base level, spheri-
cal domes are grown recursively on the surface at each level
of detail.

In this example, we define a coherent procedural tex-
ture within a surface, by spreading a set of equally spaced
seed points, as in [16]. This allows us to define a base level
texture. Then we create each successive recursive detail
level by defining a volume texture around each seed point
from the previous level, to define the positions of a cluster
of seed points.

.~ We use this structure to modify control points on the
surface. At every level, each control'pbint on the surface
will be closest to one seed point. We use the Euclidean
distance from the control point to that seed point to weight
a perturbation of the control point into the surface normal
direction. In order to shape the detail into a section of a
sphere (to create the bulging “berry” feature), we use the
seed’s radius of influence R. Given that the surface point is
a distance r from the seed point, we define a perturbation
into the surface normal direction of magnitude:

R (1 —r2/R2)V?

The surface normal direction is redefined at each scale level,
based on the perturbation that had been applied on the pre-
vious scale level. For this reason, the cluster features at
each level grow outward, not from the original surface, but
perpendicularly to the evolving detail surface. Figure 4
shows the construction process for the berry shape.

(@ (b) ©

Figure 4: Berry; (a) Base domes.from initial seed points —
level 1 of detail; (b) first recursion added to domes — level
2 of detail; (c) final berry — 3 levels of detail.

Tentacles is an example of surface—morphogenic shape model.
From initial seed points on the surface tentacles are grown
outward. The direction and lenght of the displacements
vary at each level. The displacements are directly propor-
tional to scale.

Below we give pseudo-code of the shape detail proce-
dure. ’

Vector tentacle_detail(Point2 seed, int level)
Scalar magnitude = reference_lenght * level
Scalar p = (PI/3) * level
Vector displacement=(sin(é + p), cos(é + p), 1)
if (is_even(level)) then

displacement *= -1
return displacement * magnitude

(Note that the intrinsic coordinates of the seed point must
correspond at all levels.)



Figure 5 illustrates the growth process of the tentacle
for 4 levels of detail, as the feature grows from a seed point.

I

Figure 5: Growth process of the tentacle. Levels 1 to 4.

The shape feature model has two parameters: refer-
ence length and rotation angle . These two parameters
can be used for modeling purposes. The parameters can be
time-varying and be used for animation

‘We remark that the basic structure of the tentacle shape
detail model can be used as the basis to create many types
of models such as the submarine explosive mine shown in
Figure 6.

Figure 6: Submarine explosive mine.

Other variations of the growth model are possible. One
ideia is to use L-Systems to create branching structures. For
this type of model, in addition to the feature grown from
the inital seed point, branching features are grown at higher
levels of detail.

Mushroom Cloud is an example of hybrid surface/volume—
morphogenic shape model.

The features grow from seed points on the surface, but
are based on the 3D coordinates in the neighborhood of
each seed point. The displacement is directly proportional
to scale. Figure 7 shows an example of mushroom cloud
features placed on a spherical shape.
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Figure 7: Mushroom planet (inspired on the planet from
The Little Prince of Saint-Exupery).

5 Applying Multiscale Detail to the Surface

Once we have defined a repertoire of multiscale shape de-
tail procedures, we can use them to create new shapes from
base shapes. These procedures can be applied globally to a
surface, as shown in the examples of the previous section.?

We can also apply the shape detail procedures as a lo-
cal operation to construct a single feature at a given seed
point of the surface. This can be a very powerful modeling
tool if applied interactively. Our software implementation
is fast enough to enable interactive modeling on a Pentium
III 800Mhz class machine with 512Mbytes of memory and
an OpenGL graphics card.

In this section, we describe some results of interactive
modeling using local multiscale detail operations. We have
experimented with two kinds of operations: feature place-

ment and local shape modification.

5.1 Feature Placement

A local feature placement operation consists of the applica-
tion of the shape detail procedure at a single seed point of
the surface.

There are two ways to implement the local feature place-
ment operation: subordinate or independent of the parametriza-
tion of the subdivision surface.

In this work we adopted the first option, where fea-
tures are placed only at the control points of the subdivision
surface. This option relies only on the basic subdivision
surface structure. For this reason, it is simpler and more ef-
ficient, but has the disadvantage that when the parametriza-
tion is not uniform some distortions could happen.

Note that features can be placed at any arbitrary inter-
mediate level of scale of the subdivision surface. Below we
give some examples of applying the feature placement at a
single level and at multiple levels.

2Note that, in some cases, this uniform global placement relies on the
a set of seed points evenly distributed on the surface.



Placement at the Same Level

When features are placed at the same level, they all
have the same size and usually they do not interfere with
each other.

Figure 8 shows three examples of feature placement at
the same level of the manequin head and skull models.

Figure 8: Local feature placement at the same level.

Placement at Different Levels

When features are placed at different levels, they have
different sizes and usually interfere with each other. This
enables a very powerful modeling framework.

Figure 9 shows one example of feature placement at
different levels. In Figure 9(a), we applied a “spur” shape
detail procedure to several points only at level 1 of a spher-
ical surface. In Figure 9(b), we applied the same local
feature operations only at level 3 of the surface. In Fig-
ure 9(c), we applied the local feature operations at both
levels. Note that we obtained a combination of features at
different scales.

(a) (b)
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Figure 9: Combination of features at different levels.

5.2 Local Detail Modification

A local detail modification operation consists of the appli-
cation of a signal processing operation to details in a small
neighborhood of a point of the surface. The operation can
attenuate or enhance the details as some levels. This is very
much in the spirit of [6], where a range “frequency bands”
of the surface features are modified. The local method has
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the advantage that, if applied interactively gives a much
finer control of this technique to the user as a modeling tool.

To implement this operation is important to have two
components: a distance function from a point on the sur-
face that extends over the neighborhood where the modi-
fication is applied; and a smooth drop-off function of dis-
tance. These components together provide a way to apply
the modification without creating discontinuities on the sur-
face. In our implementation we currently employ a topolog-
ical distance function with a cubic drop-off kernel.

Figure 10 shows an example of surface local signal
processing applied to the skull model. In Figure 10(a) we
present the original skull model and in Figure 10(b) we
present the modified result. We smoothed the nose area and
enhanced the jaw and details on top of the head to create a
horny carnival mask. The interactive edit session took less
than 5 minutes.

(@) (b)

Figure 10: Local signal processing for meshes.

6 Combining Multiscale Details

In this section, we describe mustiscale shape blending. This
is a powerful shape combination operation, that can be ei-
ther applied locally or globally. We remark that there are
other multiscale combination operations for shapes, which
we didn’t consider, and remain as a topic for further re-
search.

The blending operation between two multiscale shapes
is done in the same way that Burt [3] defined a multi-scale
blending between two images: at each scale level, a transi-
tion occurs which is proportional to the size of one sample
at that scale level. As Burt demonstrated for images, the
result is a surface definition that does not have an explicit
visual transition. Instead, the effect is that one type of sur-
face is gradually and naturally transformed into the other.
This step involves only a linear combination of the two sig-
nals.



6.1 Blending of Different Procedural Models

The rusted fuse is an example of a multiscale blending of
two shapes generated by different procedural models. One
model is a rock and the other is a fuse.

The fuse shape is a surface of revolution whose profile
is defined by sin(3 1/2%sin(t?')).

Figure 11 shows the result of blending between these
two shapes. The blending is specified by a plane oriented
in the (1, 2,0) direction. In order to avoid aliasing a “soft”
transition region is used to blend between the the detail co-
efficients of the two models. This region changes from level
to level according to ¢ * 1/2“1, where ¢ is a constant that
depends on the size of the object. Note the while the tran-
sition is sharp at the finest level, the coarse level features of
one shape influences the other beyond the dividing blending
plane.

Figure 11: Blending between two procedural shapes.

6.2 Combining Instances of a Procedural Model

The planet is an example of combining the same procedural
multiscale shape model with different parameters.

The procedural model used for the planet is the one
defined for the rock. The difference is that instead of gen-
erating a displacement of the surface we generate an scalar
function that is fed into a post-processing operation.

The result of shape blending is that two values are de-
fined at every detail point: (i) a multi-scale blended scalar
function value, and (ii) a blend parameter, between 0.0 and
1.0, which indicated the relative influence of each sub-planet
on the final scalar value.

Post-processing

Once the blending is complete, there will be a sin-
gle scalar value defined at every detail point on the sur-
face mesh. This scalar value represents information from
all scales that can be used to generate features requiring
non-linear shader operations, such as snowcaps, mountains,
lowlands, lakes, oceans. The post-blending procedural shader
uses this scalar value, together with the blend variable, in
arbitrary ways to generate the various terrestrial features.
The blend parameter is used to influence the color produced
by this procedural shader.
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Figure 12(c) shows a synthetic planet which is the re-
sult blending in multiscale an “earth-like” planet, shown in
Figure 12(a), with an “alien” planet, shown in Figure 12(b).
Note how the different characteristics of the coastlines and
topography blend seamlessly. One can see, scanning across
individual features which straddle the transition region, that
they gradually change their (statistically defined) appear-
ance. For example, a single lake that appears jagged, with
high fractal dimension, on one side of the transition, gradu-
ally turns into a smoothly contoured lake.

(a)

©)

Figure 12: Planet.



Importance of post-processing: It is important that some
portion of the procedural shading can be done after the mul-
tiscale blending has occurred. This allows the features cre-
ated by that shader, which may involve non-linear opera-
tions, to be visually coherent across the transition created
by the linear multi-scale blending operation.

7 Conclusions and Future Work

We have demonstrated how multi-scale representations can
enable acquired shape data and synthetic procedural tex-
ture generators to:be used together as a powerful and gen-
eral shape modeling paradigm. These techniques can be ap-
plied locally and interactively to parts of a model, and can
be used to seamlessly fuse together and reconcile models
which have different shape and textural characteristics. The
ability to work within different levels of a multi-scale rep-
resentation allows a designer to interactively make changes
at very different levels of scale, as well as to rapidly shift
between large scale and detail work.

In future work, we plan to use these techniques to
build a fully-featured procedural shape painting and edit-
ing system. We plan to incorporate infinitely zoomable
surface representations, in a extension of the representation
schemes that were presented for zoomable textural painting
in [13]. This will allow designers to create procedurally-
enhanced details of arbitrary scale. These surface represen-
tations can rely on lazy evaluation, so that the finest visi-
ble details of procedurally enhanced multiscale shape and
displacement textures need ever be evaluated only when
closely viewed.
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