Enhancing the Volumetric Approach to Stereo Matching
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Abstract. We propose techniques to enhance the volumetric approach to stereo matching [9, 10, 11], with which
to obtain dense disparity and detect occluded zones. The volumetric approach works on the row x column x
disparity space initializing the voxels with a measure of the similarity between the stereo pair that they represent
(Similarity Phase). In this phase, we propose a function Lg that provides a better initial estimation for disparity.
Then, these values are refined through an iterative process which inhibits all but one voxels placed along the same
line of sight (Competition Phase). In this phase, we propose to use a Dynamical Programming technique for faster
converging to the final solution and producing smoother maps. We substantially reduce the proportionality constant
of the original algorithm complexity, enhancing time without strongly influencing the results.

1 Introduction

Reconstruction of “’shape from stereo” consists on the de-
termination of depth from two (or more) images of (almost)
the same scene obtained from imaging sensors with differ-
ent spatial positioning. Of course, the images should have
a common covering area (the “almost” meaning). The fun-
damental basis and also the bottle-neck for stereo recon-
struction, a problem that remains until today, is the match-
ing process. The matching result is known as the disparity
map, that is, a map containing, for each pixel in one image,
the displacement in image coordinates to the corresponding
pixel in the other image. In general, it is desired for a stereo
matching algorithm to produce a dense disparity map, also
smooth and detailed. The Marr and Poggio [5] paradigm
states the uniqueness of disparity and its continuity within
a segment, that is, each position of a disparity map has a
unique value defined (this somewhat depends on the opacity
of the scene) and the values along the map are continuous
(almost everywhere). In the volumetric approach to stereo
matching proposed in [9, 10, 11] (from now on we cite only
[11]), uniqueness is obtained through a competition process
between all voxels that project onto a same pixel. Smooth-
ness is improved by using a smoothing filter in the eval-
uation of iterative functions employed in the competition
process. In the current work, we propose ways to enhance
the volumetric approach as proposed in [11]. In the same
way, we try to find regions in which disparity can be well
defined, then to use an iterative function to generate correct
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matchings. The two hypothesis (uniqueness and continuity)
are used in the same 3D space (row x column x disparity),
but with a different strategy for faster converging. We basi-
cally introduce two contributions: a better function for es-
timating initial disparities and the use of a Dynamical Pro-
gramming (DP) technique to get faster and smoother solu-
tions. As we will demonstrate, the algorithm presented here
takes a substantially smaller time than the one presented in
[11] while maintaining coherence and precision in the de-
termination of occluded zones. A comparison of both ap-
proaches performed in number of iterations shows that we
get an algorithm almost five times faster than the original
one [11]. Also, it will be shown that the lost in precision is
very small, what can be used to justify the gain in time.

2 Related works

In the last decades, several works were guided by the clear
perception of completely filled surfaces noted when one
looks to random dot stereograms, even if the points are
sparse. Julesz [3] used stereograms containing acute edges
(with big depth differences along them), conjecturing that,
in this case, the reconstruction process is performed at a
very fine resolution. A substantial amount of works fol-
lowed this approach, trying to produce a dense disparity
map from fewer determinations of disparity in well defined
positions as corners and edges. It is not clear from those ex-
periments that humans have a completely filled representa-
tion. Also, this is not the unique approach to stereo match-



ing problem. Nishihara [7, 6] adopted an opposite position.
He concluded that humans has a, surprisingly, poor spatial
resolution, however a great tolerance.to noise. In his model,
filled perception of acute edges can:be explained as an il-
lusion created by the presence of frontiers with different
luminance. It seems that a flag of consistency indicates the
presence of a filled surface. It is not necessary a filled rep-
resentation to justify human performance. This assumption
reinforces the idea of matching in sparse positions, using
area based methods, resulting in a minimum measurement
tool [6]. Note that in certain cases, these minimum mea-
surements would be enough (as in robotics).

In general, it is not trivial to establish a complete (den-
se) disparity map, due to occlusions, systematic errors and
also depending on the method used to calculate disparity
(e.g, “element” based methods determine a sparse map). In
practice, the matching process can be used to determine the
maximum as possible number of correct matches and then
other methods (as relaxation) used to spread (or interpolate)
disparity to other points. The algorithm offered by Zitnick
and Kanade [11] follows this approach. Basically, a raw

map calculated by a simple correlation approach is used as

the starting point for their algorithm. We note that this ini-
tial map should provide a good estimation for the matching
confidence, mainly in non occluded zones. In general, this
is not trivial because of problems inherent to the existing
correlation approaches. From this initial map, a relaxation
rule is used to spread correct matches to other positions,
finding a complete map with explicit detection of occluded
zones. The time spent in this iterative phase to generate
the final disparity map is the main problem with their algo-
rithm. It is reported in [11] that the algorithm takes around
15 iterations. In this way, our proposal is to introduce im-
provements in that time, with a minimum (acceptable) lost
in precision, carrying out an efficient and robust approach.
Some experiments demonstrate that the modified version
takes some few (3 to 7) seconds in the whole process (raw
map plus 2 or 3 iterations to get the final map) for images
of 300 x 300 pixels.

3 Understanding the LC' D space

In order to better understand the LC'D coordinate system,
we present some concepts and the basic idea on how to rep-
resent a line in this system. When working in XY Z co-
ordinate system, in general, the origin lies in the center of
projection of left image. In the LCD system, each cen-
ter of projection lies on the vertical line passing in the im-
ages center. Considering that this center has coordinates
(X/2,Y/2), these values can be used to establish relations
between z, y, I and c. The voxels of the cube LC D having
coordinates (I = L/2,c¢ = C/2,d) project in the left im-
age center. Using an ideal model for stereopsis (Figure 1),
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where f is the focal distance, b is the baseline, z is depth,
L the displacement in X (no Y displacements), it is pos-
sible to rewrite the equations of a straight line from LCD
to XY Z system (and vice-verse). Let r an oblique straight
line described in XY Z system and let k its corresponding
in LC D system as seen in Figure 2. Figure 3 shows that an
oblique line represented as a raster may intercept more than
one pixel in a same column. In this way, the line (I,¢) = k
expressed in XY Z system, has parametric equation given

by:
(2(X _k)+lk ¢
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Figure 1: An ideal model for stereo
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Figure 2: Straight line in LC D system

Figure 3: Raster representation of a straight line

Considering stereopsis Equations [1], the line where a
point (ky, k¢, kq) lies is given (in XY Z) as:
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Note that c and z relates to each other by:

(5

So, in LC D system, the Equation of a straight line can be
given by: ’
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4 The (cooperative) volumetric approach

In the volumetric approach to stereo, given two images in
a 2D space (L x (), disparity is considered as the third di-
mension, constrained in a sub-space of dimension D, that
is, d = 0,...,dmaz. Without loss of generality, it can be
assumed that the images are rectangles. Each voxel (I, ¢, d)
from the space LCD projects on the pixel (I,c) in the left
image and on the pixel (/, ¢+ d) in the right image. A func-
tion defined in the LC'D space is used to refine the disparity
values. Let L, (1, ¢, d) this updating function in a given iter-
ation n and its value attributed to the voxel (I, ¢, d). Initial
values for Ly(l, ¢, d) can be calculated using any function
that measures similarity as for example normalized corre-
lation used in [11]. Ideally, this function should produce
an initial disparity map with confident (high) values for
the matchings determined for actually corresponding pix-
els. Besides, note that what we also hope for the opposite
may not occur, that is, many non corresponding points will
have a high similarity value, given by the above function.
This depends on the images, on how to choose parameters
as the local support and search window dimensions, and
also on system acquiring errors. Further, it is necessary to
normalize the above values of Lg. Here we introduce the
first improvement over the original algorithm. We use a
simple summation of absolute differences (SAD) function
as Lo and a different normalization function, given by:

Ima:v
Lo(l,C, d) = LO (5)

(l7 c’ d) + Imaz
where I, is the maximum intensity (gray level) value of
the image (that is, 255). In practice, this normalization pro-
duces values in the interval [0.1, 1.0]. Values close to 1.0
means a good match, while values close to 0.1 can be dis-
carded from next iterations. In the experiments performed
in this work, we get good results by setting the parame-
ters of Ly to give at least 40 % of initially correct values
of similarity. The practical result of applying Ly can be
seen in Figure 4. Each cut ’plane is parallel to the planes
formed by the rows and columns that contain the result of

- the similarity function L¢(l, ¢, d) in that plane. The value
of disparity is kept constant for all voxels in the same plane,
that is, the first plane corresponds to d = 0, the second to
d =1, and so on until d = D,,;4, — 1. Ideally, for a given
pixel (I, ¢), the values of Lo(l, c,d) are defined in a unique

§

C

Figure 4: L for a given pixel (I,c¢) in the 3 first planes
(d=0,d=1,d=2)of LCD space.

plane d = constant in which similarity is maximum. As
said above, in practice, that does not happen due to errors
and occlusions. The volumetric algorithm try just to discard
these false matchings using the unicity hypothesis.

4.1 The local support

The continuity hypothesis implies that neighboring voxels
have consistent similarity values. In [11], an average of
neighboring values in a 3D space is used to augment consis-
tency. The average is calculated inside a volumetric region
called local support (5). It determines what neighboring
voxels should contribute to the average. Actually, the local
support should include only voxels that may contribute with
correct similarity values. The local support dimensions in-

- fluence in the final results because it averages neighboring
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values for a given voxel. Note that a huge local support
could include wrong values as well as a small one. Several
approaches were proposed using 3D support (see [2, 8, 4]).
In [4], a detailed analysis of the several relations including
their main differences is presented. Here, as in [11], we use
a fixed size for the local support. We get good results with
a local support of 5 X 5 x 3, thatis, 5 voxels in L, by 5in C'
by 3in D. In [11], the value S, ({, ¢, d) of the local support
for each voxel (I, ¢, d) of the LC'D space is given by the
summation of all similarity values in a region Q) as:

2

(V,¢',d"eQ

Sl e, d) = Ly(I+U,c+c,d+d)) (6

4.2 Competition between voxels

The uniqueness hypothesis implies that only a matching oc-
curs for each pixel. Let P(l, c,d) the inhibition zone, that
is, the set of voxels superposed to an element (I, ¢, d) when
projected in the image (remember each voxel in P(l, ¢, d)
projects in the pixel (I, ¢) in the left image and in the pixel



Figure 5: Local support

(I,c¢ + d) in the right image). As given in [11], the av-
erage R,(l,c,d) resulting from inhibition in elements of
Sn(l, ¢, d) in function of the elements in P(l, ¢, d), is:

)) N

Also, in [11] the match value relative to the image similarity
is constrained by the pixel (I, ¢) in the left image and by the
pixel (I, ¢ + d) in the right image, given by:

Sn(l,c,d)
Z(i:‘c',d')ep S, (U, c,d

R.(l,c,d) = (

Tn(lv c, d) ='L0(l’ c d) * Rn(l)c7 d) (8)
So, the final updating function, as given in [11], is a combi-
nation of equations 6,7,8:::
[e3
)>

€)
Based on the initial proposal of Marr and Poggio, in [11]
Equation 9 is rewritten as:

Sn(l, e, d)
2w ayepSnlld,d

Ln+l (la C, d) = Lo(l7 c, d)*(

Lomi(led) =0 [ Sallic,d)—e > Su(l',c,d)
(U',¢',d)EP

(10)
where ¢ is the sigmoid function and e is the inhibition con-

stant.
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Figure 6: Taking slice [ = 0 for DP.
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5 Enhancing the volumetric algorithm with DP

The use of DP to improves the algorithm convergence and
also produces a smoother map. Basically, the cube LCD
is divided into slices having L constant, as seen in Figure 6
for I = 0. Over each plane of line [ = constant, we com-
pute a minimum cost function (M CF’) taking into account
the similarity value. DP explores the smoothness and con-
tinuity restrictions assumed for the disparity map, avoiding
the creation of holes in the resulting map. The 3D prob-
lem is broken into sub-problems in the 2D space. In each
slice, we try to keep differentiability of disparity from a
pixel to its neighbor. That is, we consider that L1 (I, ¢, d)
and L,41(l,c+ 1,d) varies smoothly or, given a limit e for
smoothness:

|Lp1(l,¢,d) = Lppa(l,e+ 1,d)] <€ (11)

Figure 7 exibit the optimal path of disparity in a 2D slice.

To find this path, the following methodology is applied:
e determine the voxels which have the highest values of
L,+1(,¢,d), in a certain column;
e calculate the minimum cost function from columns ¢ =
luntile = C; '
 in each column, voxel (!, ¢, d) chosen determines the
pixel (I, ¢) in the resulting map.

vy

Figure 7: Minimum cost function on slice [ = K.

5.1 The complete algorithm and its complexity

By introducing the above technique in the original approach,
the whole algorithm for determining the dense disparity can
be summarized as:

1. Prepare a 3D array and set initial values of similarity
Lo(l, ¢, d) for each voxel (I, ¢, d) (Equation 5);
iteratively update the values for L, 1 (1, c, d) using ex-
pression 9, until all voxels satisfy the termination rule;
voxels whose matching values get too low are no more
updated,;

. use DP over the values L, 4,(l, ¢, d),in a network in-
cluding only the voxels with highest values that deter-
mine a voxel V*(I, ¢, d) in the 3D array corresponding
to pixel (I, ¢);

. if the matching value for voxel V* is too low, classify
the corresponding pixel as being occluded; otherwise,
its output generates the disparity d for that pixel.

2.



The complexity of the above algorithm is N2DI, whe-
re N2 is the image size, D is the maximum interval for dis-
parity adopted and I is the number of iterations performed.
The size of required memory is N2D. In practice, the pro-
posed modification makes the algorithm substantially faster
than the algorithm proposed in [11]. In the experiments, the
algorithm converged to final values with 2 iterations in av-
erage (one experiment had 3 iterations). This time is some 5
to 7 times faster than the original one [11], even considering
the cost for calculating the M CF in each slice.

5.2 Occlusion detection

We identify occlusion by applying the unicity restriction
on the final values in the disparity map. The function pro-
posed for calculating the initial values for Lo(l, ¢, d) allows
substantial elimination of false correspondences. Note that
if no false matchings occur (low similarity value for oc-
cluded pixels) the algorithm works better. Thus, in some
images the threshold for a pixel to be occluded could be a
little higher, but to attend the general case, we consider this
threshold as being 0.11. We remark that the initial values
in Ly gives already a good prediction if a pixel tends to be
occluded. So, in general, occlusion areas are represented in
the function L, (l, ¢, d) as regions having intensity values
not similar in the interval D of disparity considered. So,
after the similarity values being converged, one can deter-
mine if a pixel is occluded by trying to find an element with
greater value in its line of site. In this way, we note that
the above DP technique allows the detection of occluded
zones. Besides, the main objective of its use is to accelerate
processing time and produce a smoother final map.

6 Experiments and results

The main proposal in [11] was the explicit detection of oc-
clusion. Our main proposal is to accelerate the whole pro-
cess while maintaining a certain coherence in occlusion de-
tection and to get a better suavization of the final map. In
this section we show results and compare them with Zit-
nick’s algorithm considering these aspects. We used a PC
with a Pentium II processor (300 Mhz), with "OpenGL”
plus ”C” language for graphical interfaces. The images
used were gently offered by Zitnick from [9, 10, 11] and
by Gongalves [1]. We selected three distinct pairs to visu-
alize our results. The occlusion threshold was set around
0.111 and the convergence factor (o) varied from 1.01 to
1.05 in the experiments. In almost all tests, the factor  has
not influenced the convergence because of using DP, which
was used in all iterations from L; to L,, (highest n was 3).

Figure 8 shows the coal mine pair. Initially, we used a
local support of 5 x 5 x 3, and a window size of 3 x 3 for
determination of Ly (left of Figure 9). By using DP, in only
two iterations we got the result shown in right side of Figure
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Figure 8: Coal mine pair.

i

Figure 10: Lj on the left, Ly on the right.

Figure 11: Lo on the left, L on the right. (Local support
3x3Jx3.



Figure 12: Difference between two iterations.

a3 xDavio

Figure 15: Reconstruction from disparity map.

223

9, very close to the one shown in [10], and, in this particular
experiment, 7 times faster (in number of iterations). We got
Lo in 1.93 seconds and the final result in 6.91 seconds. For
the MCF used in DP, we used a cut point of 0.75 for simi-
larity values. Here, the DP technique, besides accelerating
the process, also presents a smoothing effect producing a
disparity map with noted continuity from point to point.

The process can yet be accelerated by augmenting the
cut point for the DP, but this could loose details and gen-
erate false matchings, concequently false oclusions. Figure
10 illustrates this effect. The left image is Lg and the right
image is the final map L,. The local support and window
size are the same as above and the number of iterations (n)
is only two. The time spent was 1.93 sec for determination
of Ly and (counting Lo time) 5.76 sec for L,. The cut point
for DP was 0.93. The total time spent is more than one sec-
ond faster, but we can see the presence of false matchings
and false occlusions. Another way to speed up the process
is decreasing the dimensions of the local support. In Figure
11, the local support was reduced to 3 x 3 x 3. The time for
calculating Ly was 1.93 sec. Again, with two iterations and
overall of 5.02 sec, we got the result shown in right side,
with a cut point of 0.90 for faster converging. We gain in
time by decreasing local support dimensions, but one can
see that appears false matchings and false occlusions.

In Figure 12, we show variations from iteration L, to
Lo (left image) and from L, to L; (right image) as a means
to see the gain in convergence. We calculated the standard
deviation from the above maps as being 9.79 in the first one
and 6.14 in the next, shown in Figure 13. This illustrates
the fast convergence of the algorithm to final values, once
we have fast decreasing deviations. Following, we compare
our algorithm (left of Figure 14)with an ideal result (right),
also used in [10]. It can be explicitly noted the occlusion
zones, given by the small dark regions. In this case, we used
a window size of 9 x 9 for determination of Ly and further
a local support of 7 x 7 x 3. With only 3 iterations, we got
the result shown in the right side of Figure 14, with a total
time of 13.02 sec. We used 0.88 as the cut point for the DP
convergence. We can see that the final result is very close
to the ideal one. We note that appears some false matchings
due to the cut point used to calculate the MCEF. It is valid to
comment that the significant increasing on time (13 sec) is
due to the augment in the local support dimensions and in
the window size used to calculate Ly. However, this time
is far below the one spent in [11], which has used around
15 iterations. In the Figure 15, we show the tridimensional
reconstruction performed using the resulting map shown in
Figure 11.

Other experiments were performed to validate our pro-
posals. Figure 16 shows the stereo pair of an indoor scene (a
room). We note several objects in the background, making
it hard to represent the scene in details in the final dispar-



ity map. Due to the continuity hypothesis, several objects
will agglutinate in a same disparity range. We used a mor-
phological operator to decrease or avoid the effects caused
by object edges and the several different textures noted in
the scene. Figure 17 shows Lo(l,c,d) and L, (l,¢,d). As
above, we used a window of 3 x 3 for Ly and a local sup-
port of 5 x 5 x 3, and only two iterations. The time for Ly
was 3.91 sec and final time was 8.82 sec, with a cut point of
0.9. In the same way, we augmented cut point while keep-
ing window for Lo in 3 x 3 and local supportin 5 x 5 x 3
(Figure 18) with lost in precision (note erroneous horizon-
tal dark bar due to cut point used). We also decreased local
support, as shown in Figure 19. This improves the time, but
also generates false correspondences and false occlusions.
Figure 20 shows a comparison with an ideal result (left im-
age is for our method). In this case, We can see that the
precision of both results is almost the same.

[ lmmim [om [eine [ermain].

Figure 17: Ly on left, L, on right.

Figure 18: Increasing cut point.

Finally, we select the stereo pair of the Santa Helena
volcano to show the algorithm applied to natural outdoor
scenes. We note a texture that is a little different from
the previous images texture, composed of repetitive stripes.
Also, the projection distance is greater here. These aspects
may introduce problems in the algorithm (for example, the
window size for determination of Lg shall be bigger). Fig-

Figure 20: Comparing with an ideal result.

ure 22 shows results that we got using a 5 x 5 window for
determining Lo, in the left. We used a local support of
5 x 5 x 3 and a cut point of 0.9 for the MCF in the DP
convergence. The final result for this experiment is shown
in the right of Figure 22. We note that false matchings and
false occlusions appears. It was possible to predict these
problems, in function of the parameters used. In [1], using
the same images, Gongalves and Oliveira describe exper-
iments using windows varying from 12 x 12 to 32 x 32.
They got best results for matching with images of 24 x 24.
In this way, we next augmented these parameters. We used
a window of sizes 9times9 for determining Lo and the lo-
cal support was augmented t0 9 X 9 X 3. As a result, the

" function Ly and the final results, both shown in Figure 23,
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were significantly improved. We can observe some occlu-
sions correctly detected in the final images (due to shadows
over the mountains).

Figure 21: Santa Helena volcano (256 x 256).

7 Discussions, conclusions, and future work

The modifications introduced in Zitnick’s algorithm makes
a balancing between robustness, precision, and processing
speed. We introduced basically two main improvements.



Figure 22: With local support of 5 x 5 X

3.

Figure 23: With local support of 9 x 9 x 3.

First one is choosing a better.initialization and normaliza-
tion function. In the initial tests, we got several problems-
with this function as suggested in [9, 10, 11]. With our nor-
malization function, we get at least 50a better manipulation
of the other parameters. The second improvement is using
DP that considers the uniqueness and continuity (smooth-
ness) restrictions to accelerate. the iterative process. With:
some lost in precision in the determination of occluded ar-
eas (suavization implies in lost-of details), we get final re-
sults in a much faster time. Our final results close to the
“ideal” one was obtained in three iterations, while Zitnick
and Kanade got their best results in some 15 iterations [11]:
Finally, a better choosing of the local support dimensions:
also accelerates the final map convergence. It is impor-
tant to remark that the gain in time can justify some lost
in precision. In other words, to detect occlusion in the same
level, perhaps some few more iterations would be neces--
sary. Besides, note that in some applications as robotics a
faster approach (as the one provided here) is necessary. Ati
this point, we can enumerate the main advantage and dis-
advantage of using DP. The main goal of this work was to
improve time performance, so, for sure, the advantage is the
substantial reduction in time. The disadvantage could be
related to the lower level for detection of occlusions. How-
ever, that can be noted only in images with certain amount
of noise or else if we use a small local support and/or a big-
ger cut point for the minimum cost function. Moreover, the
proposed enhancement in Zitnick’s algorithm yet maintain
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consistency in the determination of occluded zones and the
use of DP proved to be helpful to get smoother results.

The first and exhaustive tests were dedicated to find
the best parameters to be used by the algorithm to avoid
primary errors. If we augment local support, execution time
also augments. We note that the size of the local support is
a function of the amount of texture (discriminability) in the
images. As another good result, we reduced the amount of
memory due to best exploring the Marr and poggio restric-
tions. In this way, we can finally state that our algorithm
produce results very close to the one in [9, 10, 11] and that
the best improvement was the gain in time by using DP.

To. increase efficiency in the processing time, the al-
gorithmcan be adapted to fit in a distributed or parallel
scheme. The use of distributed processing can yet allow
it to be applied to sequences of stereo images, to be used
in robotics applications. Another improvement that can be
tried is:to enhance the robustness of the DP technique. We
used ‘a simple approach here. Other approaches that con-
sider discarding false matchings could be tried. This could
improve detection of occlusions.
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