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Abstract. This paper presents a procedure to implement an automatic system for supervised pattern recognition
with an ongoing learning capability. The purpose is to continuously increase the knowledge of the system and,
accordingly, to enhance its performance in classification tasks. The Nearest Neighbor rule is employed as the
central classifier and several techniques are added to cope with the increase in computational load and with the
peril of incorporating noisy data to the training sample. Experimental results confirm the improvement in

classification accuracy.

1 Introduction

Learning algorithms and pattern recognition methods have

been sorted into two broad groups: supervised and

unsupervised (predictive and informative in Data Mining
terminology) whether training data is available or not, that
is, according to the level of previous knowledge about the
training instances identifications in the problem to be
solved. Supervised classifier’s design is based on the
information supplied by a training sample (TS), a set of
training patterns, instances or prototypes, that are assumed
to represent all the relevant classes and to bear correct
class labels. Violation of these assumptions may seriously
degrade the classification accuracy.

Supervised classification methods operate usually in
two chronologically non-overlapping stages:

a) the learning or training phase, for the system to
acquire the necessary knowledge from the training
sample (TS) to make itself able to differentiate
among the regarded classes

b) the classification or working phase, wherein the

system proceeds to identify new unknown patterns as
members of the considered classes. Second phase is
not started before completion of the first one and
thereafter no new knowledge acquisition is
attempted.

The present paper presents an idea to implement a
classification system with an ongoing learning capability.
That is, a system that not only can learn with the
manipulation of the TS but could also benefit from the
experience obtained when working in the classification of
new patterns. The approach for working with ongoing
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learning presents some advantages: the classifier is more
robust because errors or omissions in the training set can
be corrected during operation, and the system is capable to
continue adapting to a changing environment. In our
proposal, the Nearest Neighbor (NN) rule is employed as
the central classifier, mainly because of its flexibility. The
NN rule is also an incremental method since it requires
relatively little supplementary computer resources to
process one additional training pattern.

Because a basic goal is to make the procedure as
automatic as possible, it is designed to work by
incorporating new patterns to the TS after they have been
labeled by the own system. This way, however, presents
two important challenges. Firstly, the —possibly
unaffordable- increase in the computational cost of the
NN rule due to the steady rise in memory and running
time requirements. Secondly, the danger of performance
deterioration by the incorporation to the TS of potentially
wrong-labeled new patterns. The latter because these new
patterns are identified by the computer system instead of
by a human expert. '

The procedure proposed here attempts to handle these
difficulties with the help of some techniques that will be
explained hereafter. The aim is to create an environment
to facilitate the computer system to progressively increase
its knowledge and, consequently, to enhance its
classification accuracy. Experimental results with artificial
and real datasets are presented.



2 The NN rule and some related techniques

The NN rule is one of the oldest and better-known
algorithms for performing non-parametric classification.
The entire TS is to be stored in computer memory. To
identify a new pattern, its distance is computed to each
one of the stored training instances. The new pattern is
then assigned to the class represented by its nearest
neighboring training pattern. This definition implies a
main drawback: large memory -to store the whole TS (that
one wishes to be as big as possible)- and response time
requirements. This computational burden has been
considerably cut down by developing suitable data
structures and  associated non-exhaustive search
algorithms or by reducing the TS size. The idea of Hart
[7] in this latter research line has stimulated a sequel of
algorithms aimed at eliminating as many training patterns
as possible without seriously affecting the accuracy of the
classification rule. In the present work, a variant of Hart’s
idea, the Modified Selective Subset (MSS), has been
employed whenever advisable, given the available TS
size, because it provides a better approximation to the
decision boundaries as they are defined by the whole TS
(Barandela et al. [3]).

As any non-parametric classification method, the NN
rule is very sensitive to noisy or atypical elements in the
TS. The Edition technique of Wilson [15], removing those
training patterns that not coincide with the majority of
their k nearest neighbors, eliminates noisy as well as close
border instances, leaving smoother decision boundaries.
The algorithm has the following steps:

1. For every x; in TS, find the k (k=3 has been
recommended) nearest neighbors of x; among the
other prototypes, and the class associated with the
larger number of patterns among these k nearest
neighbors. Ties would be randomly broken whenever
they occur.

2. Edit the TS by deleting those training patterns X;,
whose identification label does not agree with the
class associated with the largest number of the k
nearest neighbors, as determined in the foregoing.

A modification of the Edition technique -the
Generalized Edition (GE)- was proposed by Koplowitz
and Brown [8] out of concern for the possibility of too
many training patterns being removed. This algorithm
produces not only elimination of some instances but also
re-identification (label change) of some others. In
Generalized Edition, two parameters must be defined: k
and k’, in such a way that:

(k+1)2<k’ <k
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For each prototype x; in the TS, its k nearest neighbors
are searched in the remainder of the TS. If a particular
class has at least k’ representatives among these k nearest
neighbors then x; is labeled according to that class,
independently of its original label. Otherwise, x; is edited
(removed). In short, the technique looks for modifications
of the training sample structure through changes of the
labels of some training patterns and removal of some
others.

These two techniques together, GE applied repeatedly
and Edition, perhaps also reiterated, shape a methodology
—Depuration- that has proved profitable by correcting the
TS and cleaning errors both in the input features and in
the class labels (Barandela and Gasca, [2]). This
Depuration methodology is to be regarded as a cleaning
process. It removes some suspicious instances from the
training sample and corrects the class labels of some
others prototypes while retaining them. Accordingly, it is
designed to cope with all types of incorrectness in the
training instances: mislabeled, noisy and atypical or
exceptional cases. The methodology involves the
application, several times, of the Generalized Edition and,
afterwards, the employment of Wilson’s Edition, perhaps
also reiterated.

Reject options have been implemented in several
classification models for reducing the misclassification
rate of the system. In these cases, the error-reject relation
is very important because of the relative amount of both
costs. The best choice depends on the particular pattern
recognition being handled. In our procedure, we have
included a reject option for the Nearest Neighbor rule

- (Barandela, [1]). This implementation has the advantage

to permit the user to adjust the error-reject relation to suit
it according with his/her problem. This reject option
works as follows:

a) For every new pattern X to be classified, its two
nearest neighbors are searched into the training
sample. If these two neighbors are both from the
same class, assign X to that class.

b) If the two NN’s labels do not coincide, then
compare the rate of these two neighbors’ distances
to X (distance of X to its first nearest neighbor /
distance of X to its second nearest neighbor) with
a predefined (by the user) threshold value. If
smaller, then classify X as member of the class of

its first nearest neighbor. Otherwise, reject X.

In this manner, the error-reject relation can be
regulated, within certain limits or bounds, shifting
conveniently the threshold value. The best value for this
threshold can be estimated by working with the training



sample and with the leave-one-out method for
misclassification probability estimation (Hand, [6]).

It is important to note that, as will be explained in the
next Section, in our procedure the reject option is not
employed to influence in the classification decisions. It is
only used to filter the new patterns after they are identified
for the system and before they are accepted for their
incorporation into the training sample.

3 Procedure with the Ongoing Learning Capacity

As already mentioned, the system proposed here is based
on the widely popular nearest neighbor rule, because of
the flexibility and other properties of this classifier, and is
designed with an on-line learning capability for
progressively increasing the knowledge and the
classification accuracy of the system.

Since we intend to develop a procedure that works as
automatically as possible (that is, without human
participation), it is necessary to cope with two potential
dangers. The system is to enrich its knowledge by
incorporating to the training sample those patterns
identified by the own system during the classification
phase. However, it is evident that this method can be self-
defeating. These new training elements would have the
class label assigned by the classifier. Therefore, there is
the risk to incorporate several wrong labeled patterns to
the TS and, consequently, to degrade the system accuracy.
The present procedure attempts to overcome this difficulty
by employing two complementary automatic tools: a
reject option and the Depuration methodology, both
outlined in the preceding Section. Reject options have
been proposed for reducing the number of classification
errors and, recently, to detect new patterns that belong to
classes not represented in the TS (e.g., Tax and Duin
[11]). However, in our procedure the reject option has the
goal to restrict incorporation of new patterns to TS and
does not take part in the classification decisions. That is,
although every new pattern is a candidate to become
member of the TS after being identified by the system,
only those that are not refused by the reject option are
accepted for updating the knowledge of the classifier. This
is the first resource against the possible contamination of
the training sample. After incorporation of some of the
new patterns to the TS, the Depuration is applied as a
second filtering step, to amend (by removal or re-
identification) labels that could have been incorrectly
assigned by the system to those new patterns that were not
detected by the reject option.

The other problem is related with the possibility for the
training sample size to become so big as to make it
impractical to be handled. As for this concern, it is to
remark that the Depuration methodology has the property,
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as a byproduct, of reducing the training sample size
(although in a not considerable amount). The MSS
algorithm is employed when, even after the Depuration
application, the TS size is still a too high number.

In summary, the procedure consists of the following
steps (see also Figure 1):

D

2)

Initial TS is stored in memory.

Classification phase starts (1-NN rule, not reject
option). After identification of a number (for
example: 100, as we have implemented in the
case of the Landsat dataset, see below) of new
patterns, this process is temporarily stopped.

The just identified new patterns are assessed for
being incorporated to the TS. To minimize the
risk of introducing contamination (by wrong
labels) into the TS, the reject option filters the
candidates to decide which of them are worthy to
be joined. Then, Depuration is employed as a
second filter to re-label or remove some of the
incorporated patterns. When the TS size is too
high, reduction algorithm (MSS) is applied.

If no new pattern remains unidentified, end.
Otherwise, the procedure goes to step 2.

3)

4)

Filtering by the
Rejoct Option

=

< N <
) ()

ize Reduction
(Optianal)

Figure 1. The ongoing learning procedure.

4 Experimental Results

To gain some initial insight, an assay was carried out with
simulated data (a two-class problem with bivariate data
pseudo-randomly generated according to Gaussian
distributions). Three different sizes for the training sample
were assessed. The ongoing learning capability allowed
lowering the classification error in more than 20% when



compared to the obtained by the traditional alternative.
See Table 1.

Training sample size

Variant 20 50 100
1 15.6 15.0 154
2 13.1 11.7 11.8

Table 1.Results (% of misclassifications) with simulated
data. The control set consisted of 500 patterns.

All

variants:

Variant 1: usual or traditional behavior of the classifier,
identifying all the test patterns in a single
batch and without knowledge increase during
the second phase.

Variant 2: the proposed procedure with ongoing
learning. The test set was partitioned in
several groups. After identification of the
patterns in each group, operational phase
stopped temporarily to incorporate to the TS
those new patterns not filtered by the reject
option, to depurate the resulting TS and to
reduce its size when necessary.

the experimental comparison included two

For a more precise evaluation, the procedure was
applied afterwards to five real datasets. The first four of
them were taken from the UCI Repository [9] and the fifth
corresponds to several training fields selected from a
Landsat-TM  image. Datasets were divided in,
approximately, 40% for the training sample (TS) and 60%
for an independent set (CS) used for control or validation
purposes. Characteristics of these datasets are in Table 2.

Dataset #classes #features TS size CSsize
Liver 2 6 138 207
Ionosphere 2 34 140 210
Sonar 2 60 83 125
Vowel 11 10 209 325
Landsat 11 4 3033 2993

Table 2. Information about the employed real datasets.

For the experiments, three different partitions were
randomly produced for each dataset, all with the same
proportion between training and control set, as explained
in the Table 2. To simulate the sequence required for
developing the potentiality of the ongoing learning
capacity, the control sets were divided into 10 lots or
layers. Each layer contained, approximately, the same
proportion of patterns of every class. Since the
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classification =~ phase  stopped  temporarily  after
identification of the members in each of these lots, the
system had 10 opportunities to increase its knowledge. An
exception was the Landsat dataset whose control set size
allowed the creation of 29 layers.

Results in Table 3 present the misclassification rates —
both alternatives- averaged over the three replications of
each dataset.  Confidence levels for the statistical
significance (one-tailed t tests) of the difference in
accuracy of the ongoing learning procedure with the usual
variant are also reported. The ongoing learning system
was significantly better than the traditional alternative in
four of the five cases and there was not significant
difference in the Ionosphere application.

Averaged misclassification (%)

Dataset Variant 1 Variant 2 Stat. significance
Liver 40.2 38.2 p<0.005
Ionosphere 25.4 26.0  no significance
Sonar 61.0 44.8 p<0.001

Vowel 60.7 47.2 p<0.001
Landsat 23.6 13.2 p<0.001
Average 422 33.9

Table 3. Experimental results with real datasets.

Landsat dataset is the one with the highest size in the
control set. Besides, this is the dataset from which more
ancillary information was available. For these reasons, we
have selected it for a more detailed analysis of some
issues of the procedure proposed here. Table 4 presents a
dynamical description of the training sample structure as it
is being gradually modified by the incorporation of new
examples. Columns 2 and 3 indicate the number of
patterns that were accepted for incorporation by the reject
option, the majority of them with the labels assigned by
the domain experts (1762 with the same label against only
60 with different labels). Column 7 shows the number of
patterns that remain in the training sample after the
application of the Depuration methodology and the
composition of this resulting training sample is reflected
through columns 4-6. Columns 8-11 present the same
information concerning the results of the posterior
employment of the Modified Selective Subset algorithm.
See also Figures 2 and 3 for graphical depictions.



Structure After Depuration Structure After Modified Selective
Layer | Incorporated patterns Incorporated Incorporated
number Different Same | Different Same | Different
Same label label Originals | label label Total | Originals | label label Total

0 0 0 383 0 0 383 383 0 0 383
1 67 7 368 67 7 442 145 6 2 153
2 77 4 140 83 6 229 87 5 4 96
3 84 3 83 88 7 178 64 13 3 80
4 74 9 55 86 9 150 43 6 6 55
5 59 10 43 65 16 124 40 6 13 59
6 56 0 40 62 13 115 37 10 12 59
7 61 1 37 71 13 121 36 15 12 63
8 62 0 36 77 12 125 36 16 10 62
9 57 0 36 73 10 119 36 17 9 62
10 62 2 36 79 11 126 35 20 11 66
11 63 2 35 83 13 131 35 23 9 67
12 59 3 35 82 12 129 34 23 12 69
13 68 0 34 91 12 137 34 24 12 70
14 57 1 34 81 13 128 - 33 27 13 73

15 51 3 33 78 16 127 32 31 16 79

16 39 0 32 70 16 118 32 33 15 80
17 37 1 32 70 16 118 30 32 15 77
18 51 0 30 83 15 128 30 32 15 77
19 46 0 30 78 15 123 30 31 15 76
20 38 2 30 69 17 116 30 30 16 76
21 46 2 30 76 18 124 30 30 18 78

22 54 0 30 84 18 132 30 31 17 78

23 65 1 30 96 18 144 30 31 18 79
24 75 0 30 106 18 154 30 32 17 79
25 70 0 30 102 17 149 30 34 17 81

26 63 7 30 97 24 151 29 36 19 84
27 70 2 29 106 21 156 29 36 21 86
28 79 0 29 115 21 165 27 37 21 85
29 72 0 27 109 21 157 27 39 20 86

Total 1762 60

Table 4. Landsat data. Steady updating of the training sample in one of the experimental runs with the ongoing learning procedure

It can be observed in Table 4 that the combination
Depuration-MSS has produced an additional filtering and Landsat dataset
at the end of the procedure, in the training sample
remained only 20 of those 60 new patterns that were
acquired with a label different from the original they had
in the control set. That is, two thirds of them were
gradually removed. The available ancillary information
(spatial distribution of the patterns) allowed a more deeper
analysis of this situation and we were able to detect that
15 of these 20 supposedly wrong-labeled incorporated
patterns corresponded to pixels located at the edges of the
selected test fields. Because of the way these training sites
are chosen, this fact implies the possibility of mixed
elements or pixels that combines the spectral » v
characteristics of two adjacent classes. Therefore, these e e N o s m e e

aso0l | Blincorporated Diferent Labels

400 DOincorporated Same Labels

B Originals

Number
Patterns
N
«»

o

————— &8 & &R
patterns could have received a wrong identification when Layers
originally collecting the CS. On the contrary, 967 pixels
that were correctly identified by the NN rule were not Figure 2. Structure after depuration

accepted by the reject option.
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Employing Modified Selective after new Without applying Modified Selective
incorporations
Layer No. of | Training % Increment./  Misclassifications| Training % Misclassifications
number  Patterns |sample size Decrement Number % |sample size Increment Number P

1 100 383 15 15.00 383 15 15.00
2 100 153 -60.05 8 8.00 442 15.40 7 7.00
3 100 96 -37.25 3 3.00 539 21.95 4 4.00
4 100 80 -16.67 11 11.00 637 18.18 7 7.00
5 101 55 -31.25 17 16.83 736 15.54 13 12.87
6 100 59 7.27 4 4.00 834 13.32 12 12.00
7 102 59 0.00 3 294 932 11.75 4 3.92
8 101 63 6.78 1 0.99 1032 10.73 2 1.98
9 101 62 -1.59 0 0.00 1132 9.69 3 2.97
10 102 62 0.00 8 7.84 1232 8.83 16 15.69
11 103 66 6.45 9 8.74 1324 7.47 15 14.56
12 100 67 1.52 13 13.00 1422 7.40 5 5.00
13 101 69 2.99 5 4.95 1517 6.68 8 7.92
14 102 70 1.45 7 6.86 1616 6.53 3 2.94
15 101 73 4.29 8 7.92 1713 6.00 4 3.96
16 101 79 8.22 13 12.87 1812 5.78 16 15.84
17 100 80 1.27 8 8.00 1912 5.52 9 9.00
18 101 71 -3.75 2 1.98 2009 5.07 11 10.89
19 100 77 0.00 8 8.00 2096 433 3 3.00
20 102 76 -1.30 13 12.75 2194 4.68 3 2.94
21 102 76 0.00 12 11.76 2290 4.38 7 6.86
22 102 78 2.63 6 5.88 2385 4.15 5 4.90
23 103 78 0.00 1 0.97 2485 4.19 4 3.88
24 101 79 1.28 1 0.99 2586 4.06 4 3.96
25 102 79 0.00 3 2.94 2684 3.79 4 3.92
26 101 81 2.53 8 7.92 2783 3.69 5 4.95
27 102 84 3.70 4 392 2879 3.45 3 2.94
28 100 86 2.38 3 3.00 2978 3.44 3 3.00
29 102 85 -1.16 1 0.98 3077 3.32 1 0.98
Total 2933 -77.81 195 6.65 703.39 196 6.68

Table 5. Landsat data. Analysis of the impact of the Modified Selective Algorithm on the training sample size
and on the classification accuracy.

Number

Landsat dataset

180

Incorporated Diferent Labels

160

140 Bincorporated Same Labels

120

B Originals

100 {.

80

Patterns

60
40
20

]

Figure 3. Structure after Modified Selective.
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As the lecture of the last row in Table 4 might produce
concern about the reduced size of the training sample as a
consequence of the repeated application of the Modified
Selective Subset algorithm, an analysis of the impact of
this pruning method is shown in Table 5. Column 4
indicates —in percentage- the modifications caused in the
training sample size in each step of the ongoing learning
procedure. Increments are produced when the number of
incorporated patterns is greater than the number of
patterns eliminated by the Modified Selective method.
Obviously, in Column 8 only increments appear since this
corresponds to the variant without the employment of the
pruning algorithm. Comparison of Columns 5-6 with
Columns 9-10 leads to an important remark: classification
errors are the same with and without the Modified
Selective  application  (in  fact, there is one
misclassification less when employing the Modified
Selective). On the other hand, the reduction in the



computational burden of the classification rule is huge.
Modified Selective permits to work with less than 23%
of the initial training sample size (Column4, last row).
On the contrary, when the pruning algorithm is not
employed, the last training sample size is more than seven
times the initial one.

5 Related work and concluding comments

In the neural network and machine learning communities,
online (or lifelong) learning methods have received some
attention. One of the first attempts is due to Pratt [10]. She
is concerned with the transfer of the knowledge stored in a
previously trained Multi-Layer Perceptron model to a new
neural network. Her interest is to reduce the long time
required by the back-propagation training procedure and
is motivated by those situations when new' training
patterns become available after an initial classification
system has been already set to work. Thrun and Sullivan
[14] deal with the problem of acquiring and re-using
domain-specific knowledge across multiple learning tasks
and they propose an algorithm to cluster learning tasks
into classes of mutually related tasks. Their interest lies in
the improvement in the learning ability of a recognition
method when it is applied to a sequence of learning tasks.
A detailed review of the strategies to transfer knowledge
can be found in Thrun [12],[13]. Bruzzone and Fernandez-
Prieto [4] present an incremental learning technique for a
classifier based upon a Radial Basis Function neural
network. Their purpose is to allow the acquisition of new
knowledge whenever a new training set becomes
available, while preserving the knowledge acquired on
previous training sets. It is an important property in
remote sensing applications. In these applications it would
be very useful to have a classifier that, after being trained
on data related to a specific image, could be able to attain
acceptable classification accuracy when employed on
different images (provided that the land-cover classes in
all the images are the same).

Unlike our approach, all these proposals rely on the
periodical availability of new training sets. That is, all
these systems are always working with training patterns
identified by human experts. That means that these
training patterns are assumed to bear correct class labels
and to not represent possibility of knowledge
contaminated or mistaken.

Dasarathy [5] proposed a decision system with a
design very related to ours. He was also concerned with
the robustness of the system through varying
environments and with the problem of unrepresentative
pretraining. The latter is what he called “partially exposed
environments”. Consequently, Dasarathy presented an on-
line adaptive learning system with two capabilities:
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a) to progressively improve the classification of
objects belonging to the known classes

b) to detect the objects not belonging to the currently
known classes

However, Dasarathy’s system requires the steady
participation of a human expert to be in charge of the
evaluation of the labels assigned by the system to new
patterns and to decide which of them are to be
incorporated to the training sample. As he himself (page
1271) pointed out: “in real-world operational phase, such
operator supervision may be unavailable”.

We avoid this bottleneck by incorporating to our
procedure the necessary tools to let the system to decide
alone which pieces of new knowledge are trustworthy
enough to be accepted. Of course, these selections are not
to be always correct (it is arguable whether the training
patterns identifications assigned ‘by human experts are one
hundred percent correct, at least in several domain
applications). But the experimental results above indicate
that the potential damage that could be produced by
distorted information is more than compensated by the
enrichment allowed by new useful knowledge and the
better understanding of the characteristic of the
application at hand.

As it can be observed in Table 3, the best results
(classification accuracy in comparison with the traditional
procedure) in our system are obtained with those datasets
with an important number of patterns in their control sets.
This behavior is consistent with the basic goal of the
ongoing learning capability: to steadily improve the
knowledge and to enhance the performance of the system
as it is employed for the classification of new patterns.
That is, the greater the practical experience acquired the
more reliable the performance of the classifier.

We intend to do further work to tune some of the
parameters of the procedure. One of these parameters is
the threshold value for the reject option. In all the
experiments above reported we have employed 0.25 as the
threshold value. Preliminary experiments with a value of
0.1 did not offer good results. However, this is an issue
that deserves additional study. Euclidean distance metric
was employed until now. Although, because of the nature
of the data we have used, we do not expect important
changes, it could be interesting to explore with other
distance functions. Also some research for adding to the
system the capacity to detect new classes and to cope with
the shortcoming of unbalanced training sets is to be done
in the next future.
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