High-level Verification of Handwritten Numeral Strings

L. S. OLIVEIRAI™3, R. SABOURIN! 3 F. BorTOLOZZI!, C. Y. SUEN?

LPUCPR Pontificia Universidade Cat6lica do Parana
PPGIA Programa de Pés-Graduagio em Informadtica Aplicada
LARDOC Laboratério de Anilise e Reconhecimento de Documentos
Rua Imaculada Conceigédo 1155, 80215-901 - Curitiba, PR - BRAZIL
{soares, fborto}@ppgia.pucpr.br

2ETS Ecole de Technologie Supérieure
LIVIA Laboratoire d’Imagerie, de Vision et d’Intelligence Artificielle
1100, rue Notre Dame Ouest, Montreal, (Quebec) H3C 1K3, CANADA
sabourin@gpa.etsmtl.ca

3CENPARMI Centre for Pattern Recognition and Machine Intelligence
1455 de Maisonneuve Blvd. West, Suite GM 606 - Montreal, H3G 1M8, CANADA
suen@cenparmi .concordia.ca

Abstract. In this paper we discuss the use of high-level verification on handwritten numeral strings. First of all, we
introduce the concept of levels of verification and present the baseline system used to carry out the experiments.
Two different strategies were developed: absolute and one-to-one verifiers. A thorough error analysis is also
presented in order to identify under which conditions high-level verification is more appropiate. Experimental

results are presented on NIST SD19 database.

1 Introduction

Automatic processing of handwritten numeral strings has
been attempted in several application areas such as the read-
ing zip codes on envelopes, courtesy amounts on bank che-
ques, data filled in tax and census forms. Such applications
have been motivated by the availability of relatively inex-
pensive CPU power, and the possibility to reduce consider-
ably the manual effort involved in these tasks.

Strategies for numeral string recognition can be di-
vided into segmentation-then-recognition {17] and segmen-
tation-based recognition [15]. In the first approach, the seg-
mentation module provides a single sequence hypothesis
where each sub-sequence should contain an isolated char-
acter, which is submitted to the recognizer. This technique
shows its limits rapidly when the correct segmentation does
not fit as well as the pre-defined rules of the segmenter.

The second strategy is based on a probabilistic assump-
tion where the final decision must express the best segment-
ation-recognition score of the input image. Usually, the sys-
tem yields a list of hypotheses from the segmentation mod-
ule and each hypothesis is then evaluated by the recogni-
tion. Finally, the list is post-processed taking into account
the contextual information. Although this approach gives
better reliability than the previous one, the main drawback
lies in the computational effort needed to compare all the
hypotheses generated. In this strategy, segmentation can be

1530-1834/01 $10.00 © 2001 IEEE

36

explicit when based on cut rules [12, 25] or implicit when
each pixel column is a potential cut location[1, 20].

There have been significant improvements in the recog-
nition rate of the handwritten numeral string recognition
systems in the last decade. One of the most significant

" reasons is that researchers have combined different feature

sets and classifiers in order to achieve better recognition
rates [8, 14]. However, when considering real business con-
straints, there may be some difficuities such as run time in-
efficiency, system complexity, and coordination of different
organizations. Another strategy that can increase the recog-
nition rate in a relatively easy way with a small additional
cost 1s through the use of high-level verification. Such a
scheme consists on refining the top few candidates in order
to enhance the recognition rate economically. The focus of
this work is to show the implementation of this strategy in
an already developed handwritten numeral string recogni-
tion system.

For this purpose, we will consider the system presented
in [13]. It takes a segmentation-based recognition approach
where an explicit segmentation algorithm determines the
cut regions and provides a multiple spatial representation.
In opposite to the systems that process just isolated nu-
merals [7, 22], our system has to solve a crucial problem:
distinguishing, at the recognition stage, a sequence corre-
sponding to an inter-character segmentation from another

: Component Detection H
and Segmentation i

Feature
Extraction

Conc&Cont

Recognition&Verification EPost-Processing

 General-purpose
Recognizer

Concavity

Muiti-level
Concavity
Analysis

Over-seg.
Verifier(v,}

Under-seg.
Verifier(v,)

Figure 1: Block diagram of a numeral string recognition system.

relative to an intra-character segmentation. In order to over-
come this problem we have used a strategy based on Recog-
nition and Verification where the recognition function takes
into account only a general-purpose recognizer while the
verifiers evaluate the result supplied by the recognizer. The
integration of all modules is done through a probabilistic
model inspired by information theory [5].

Initially, we introduce the concept of levels of veri-
fication and present a brief overview of the system. Af-
terwards, we describe two different strategies of high-level
verification as well as the results achieved by them. All ex-
periments reported in this work were carried out on NIST
SD19 database. In order to get a better comprehension of
the system, we show-a strong error analysis. Finally, we
outline the perspectives for future works and present our
conclusions.

2 Levels of Verification

The Recognition and Verification scheme looks straightfor-
ward, with a verification module embedded in the tradi-
tional classification system, which has a general-purpose
recognizer only. The goal of the general-purpose recog-
nizer is to attribute a given input to one of the n existing
classes of the system, while the pattern verifier assumes the
role of an expert to evaluate precisely the result of the rec-
ognizer in order to compensate for its weakness due to par-
ticular training, and-consequently to make the whole system
more reliable. Usually, a pattern verifier is applied after a
general-purpose recognizer and it is designed to “plug and
play”, i.e., it is used without knowing the implementation
details of the recognition modules.

Takahashi and Griffin in [21] define three kinds of ver-
ification: absolute verification for each class (Is it a “0” ?),
one-to-one verification between two categories (Is it a “4”
or a “9” ?7) and verification in clustered, visually similar,
categories (Is it a “0”, “6” or “8” 7).

In addition to these definitions, we introduce the con-
cept of levels of verification, where two levels are consid-

37

ered: high-level and low-level. We define as high-level ver-
ifiers those that deal with a sub-set of the classes consid-
ered by the general-purpose recognizer. The goal of the
verifiers at this level is to confirm or deny the hypotheses
produced by the general-purpose recognizer by recogniz-
ing them [21, 26]. We define as low-level verifiers those
that deal with meta-classes of the system such as characters
andpart of them. The purpose of a low-level verifier is not
to recognize a character, but rather to determine whether a
hypothesis generated by the general-purpose recognizer is
valid.or not [19].

3 System Overview

As we can see in Figure 1, basically the system is com-
posed ‘of four parts: component detection and segmenta-
tion, féature extraction, recognition&verification and post-
processing.

The component detection module operates in two steps:
connected component analysis and grouping. The former
segments the string image into connected components and
eliminates very small ones by filtering while the latter tries
to minimize the effects of fragmentation by detecting poten-
tial parts and grouping each of them to its nearest neighbor.

The segmentation module that we have used in this
system is based on the relationship of two complementary
sets of structural features, namely, contour/profile and skele-
tal points. Such an algorithm takes into account an over-
segmentation context and its final objective is to provide
the best list of hypotheses of segmentation paths without
any a priori knowledge of context, such as the number of
characters to be segmented. More details about this method
can be found in [12, 11].

The feature extraction is composed of three different
feature sets. The first one, which feeds the general-purpose
recognizer, uses a mixture of concavity [9] and contour
based features. The second one, which feeds the over-seg-
mentation verifier, is based on a multi-level concavity anal-
ysis [13]. The last feature set, which feeds the under-segmen-

tation verifier, takes into account the same concavity analy-
sis used by the general-purpose recognizer.

Although many types of neural networks can be used
for classification purposes [18], we opted for a multi-layer
perceptron (MLP) which is the most widely studied and
used neural network classifier. Therefore, all classifiers pre-
sented in this work are MLPs trained with the backpropa-
gation algorithm [3]. The training and validation sets were
composed of 195,000 and 28,000 samples from hsf_{0,1,2,3}
series respectively while the test set was composed of 60,089
samples from hsf_7 series. The recognition rates (zero-
rejection level) achieved by the general-purpose recognizer
were 99.66%, 99.45% and 99.13% on the training, valida-
tion and test sets respectively.

As we can observe from Figure 1, the recognition sys-
tem considers two verifiers to cope with the over-segmenta-
tion and under-segmentation problems. The objective of
these verifiers is to validate the general-purpose recognizer
hypotheses by using the following meta-classes: characters,
part of characters and under-segmented characters. The first
verifier (vg) was trained with 28,000 samples and it reached
a recognition rate of 99.40% on the test set (14,000 sam-
ples) while the second verifier (v,,) was trained with 9,000
samples and it reached a recognition rate of 99.17% on the
test set (4,000 samples). In [13] we show that such verifiers
provided an improvement of about 7% in the recognition
rate for numeral string. However, it is important to empha-
size that these verifiers are low-level verifiers and hence we
will not discuss how they work in this paper.

Regarding the post-processor, the sole information that
it can use (considering NIST numeral string database) is the
string length. Thus, the syntactic analysis just considers the
string length to post process the hypotheses yielded by the
system. Such a model is represented by a grey box in Fig-
ure 1 due to the fact that it can be either part of the system
or not. In the following sections we will reference the sys-
tem depicted in Figure 1 without the post-processor module
(no a priori knowledge of the string length) as the baseline
system.

4 High-Level Verification

As mentioned previously, the goal of the high-level veri-
fication is to confirm or deny the hypotheses produced by
the general-purpose recognizer by recognizing them. In this
section we discuss two different strategies of high-level ver-
ification: absolute and one-to-one. We will describe how
such verifiers were implemented as well as why they con-
tribute to improve the recognition rate of the system in some
cases and why they fail in others.

38

4.1 Absolute High-Level Verifier

In this experiment ten absolute verifiers (one for each nu-
merical class) were considered. Each verifier was trained
with two classes: digit and noise. For example, for the veri-
fier of the digit class “0”, we have used all zeros of the train-
ing set (19,500 samples) for the digit class and the same
number of other digits for the noise class. We have tried dif-
ferent feature sets such as concavity analysis in 8-Freeman
directions and Moments [6]. The feature set that produced
better results was the same one used by the general-purpose
recognizer. Table 1 shows the recognition rates reached by
each absolute high-level verifier.

Table 1: Recognition rates achieved by the absolute high-
level verifiers.

Class RR (%)
0 99.66
1 99.08
2 99.58
3 99.20
4 99.80
5 99.66
6 99.50
7 99.84
8 99.28
9 99.10

According to our probabilistic model, the output of the
recognition module will be the product of four probabili-
ties: the probability supplied by the general-purpose recog-
nizer (P;), the probability supplied by its respective high-
level verifier () and the probabilities yielded by the two
low-level verifiers (P3 and Py) (see Figure 2).

General-purpose | p
Recognizer 1
High-level P
Verifiers 2

Over-seg. P
Verifier(v,) 3
Under-seg. P
Verifier(v,,) 4

Figure 2: Recognition and Verification module with high-
level verifiers.

We have observed that this strategy of verification sup-
plies an improvement to naturally isolated digits, however,
when the system faces problems such as touching and frag-
mentation, it does not seem very appropriate. Table 2 presen-

ts the results on different string lengths' on NIST SD19
(hsf_7 series).
As we can see, the overall performance achieved for

Table 3: Top 20 digit confusion with frequencies

Confusion Frequence

numeral strings by the system that considers the absolute 3.0 43 Con7f-u151on Freqll;cncc
verifiers is worse than the baseline system. This can be 39 40 9.5 17
explained by the fact that strings with more than one digit 2-1 29 72 16
present several cases of fragmentation and touching. 4.0 28 0.8 15
' 7-3 28 8-2 15
Table 2: ‘Recognition rates (% - zero-rejection level) for 9-7 28 6-4 14
numeral strings: Comparison among different strategies. 9-4 27 6-5 12
5-3 22 8-5 11
String Number of . Absolute One-to-one Baseline 6-0 22 9-0 11
Lenght Strings Verifier Verifier System 8-3 22 8-4 10
1 60089 98.72 98.02 98.06
2 2370 96.65 96.10 96.88
3 2385 95.03 94.98 95.38 _
4 2345 92.97 9291 93.38 Edge Maps [2] and histograms, but the one that brought
5 2316 92.01 91.03 92.40 better results was the same one used by the general-purpose
6 2169 92.60 91.77 93.12 recognizer. Table 2 presents the results achieved by this
10 1215 8951 89.00 90.24 strategy for different string lengths.

This strategy seems well suitable for systems that have
a weak general-purpose recognizer or systems that do not
face problems such as touching and fragmentation very of-
ten. In such cases, the verifier can re-rank the list of hy-
potheses in order to get the correct answer.

5 One-to-One High-Level Verifier

The second strategy of high-level verification that we have
implemented was the one-to-one verifier. Such a strategy
is straightforward and makes it easy to concentrate on the
local difference between two classes. In order to deter-
mine the main confusions of the baseline system, we carried
out an error analysis on the validation set of isolated digits
and we observed 39 different confusions (theoretically, the
number of possible confusing digit pairs is 10 x 9/2 = 45).
We can solve 75.05% and 62.76% of all errors focusing
on top-39 and top-20 confusions respectively. Therefore,
it seems more cost effective focusing on top-20 confusions,
since we have to deal with about 50% of the confusions pro-
duced by the system. Table 3 presents top-20 confusions
with their respective frequencies.

We trained each verifier with 40,000 samples (20,000
for each class of digit involved) using the same feature set
that we have used for our general-purpose recognizer. For
these verifiers we have tried different feature sets such as

11-digit string means that isolated digits are submitted to the system
modules without any a priori knowledge of the image. In addition to recog-
nition errors, segmentation and fragmentation errors are also considered
and consequently the system reaches smaller recognition rates than when
the isolated digit is submitted directly to feature extraction and recogni-
tion.

39

As we can notice, this strategy gave worse results than
the previous one. We expected better results at least for 1-
digit string problem, once the confusions were detected on
the isolated digit database. But even for this case the results
were unsatisfactory. In order to enhance the results sup-
plied by this strategy, it is necessary to improve the verifier
training set by including misrecognized samples. The diffi-
culties of implementing such a solution lie in two points:

1. Lack of samples to improve the database. If we con-
sider our most frequent confusion (8-0), we have just
48 cases.

2. If we include a few misrecognized samples in the train-
ing set of the verifier, probably we will introduce noise
to our models. We can visualize this problem from
Figure 3.

§ T

Figure 3: Misrecognized samples: 8 confused with 6 and 9
confused with 7.

In order to identify the different sources of error of
the system and find why the high-level verification schemes
achieved unsatisfactory results, we decided to carry out an
error analysis on numeral strings instead of isolated digits.

6 Error Analysis on Numeral Strings

In order to gain a better insight of the system, we divided
the errors into four classes: confusions generated by the
general-purpose recognizer, confusions generated by the low-
level verifiers, errors caused by segmentation and errors
caused by fragmentation. This analysis was carried out con-
sidering the baseline system. Table 4 describes all sources
of errors as well as its frequency per string size.

We can read this table in the following way. For 2-
digit strings, we have detected 74 errors, which corresponds
to a global error rate of 3.12%. This error is divided into
the following: 43 due to the general-purpose recognizer, 15
to low-level verifiers, 9 to segmentation and 7 to fragmen-
tation. Focusing on the top-10 confusions of the general-
purpose recognizer, we can correct 31 of the 43 errors found.
In the following subsections, we will give more details about
each source of error.

6.1 General-purpose recognizer

In order to generate the total number of confusions for nu-
meral strings, we carried out the analysis for each string
length independently and afterwards we summarized the re-
sults to compare with the confusions obtained for isolated
digits. The first interesting fact we observed was that we
have different confusions for different string lengths. This
means that a verification strategy based on one-to-one veri-
fier could supply improvements for some string lengths but
will be difficult to optimize globally the system with this
strategy. Table 5 summarizes the top-10 confusions for each
string length.

If we compare the top-10 confusions found on numeral
strings (Table 5) with the top-10 confusions found on iso-
lated digits (Table 3), we can observe that the confusions do
not respect the same order, and some of the numeral string
confusions even do not exist for isolated digits.We can cite
for example, 7-2, 4-1 and 7-1 pair confusions. We observed
that effects generated by the segmentation algorithm such
as ligatures produce several confusions. Figure 4 shows the
problem of the confusion between 9-7 (top-1 confusion).

4949 4

@ @ ®
©
Figure 4: Confusion between 9 and 7: (a) Original image,
(b) Best hypothesis of Segmentation-Recognition and (c)
Correct hypothests.

@

40

6.2 Low-Level Verifiers

We divided the error of the low-level verifiers into two classes:
confusion generated by the over-segmentation verifier (v,)
and confusion generated by the under-segmentation verifier
(vy). We have observed that the latter is responsible for
87.7% of the errors generated at this level, while the former
generates just 12.3% of the errors. About the second low-
level verifier, the confusions are generated when isolated
digits are classified as under-segmented digits. The classes
where this kind of confusion occurs are the digit classes
“6” (44%), “0” (22%), “8” (17%), “4” (12%) and “2” (5%).

Figure 5 shows some examples of these classes of digits.

v gul)

Figure 5: Digits confused with under-segmented class by
the second low-level verifier. This kind of 8 and 0 are some-
times misverified by the first verifier (v,).

About the first low-level verifier (v,), the confusion
is generated when the verifier does not succeed in detect-
ing the over-segmented parts. Such a fact usually happens
with digit classes “0” (61%) and “8” (39%). The over-
segmentation in these two classes is generated when the
digits are opened (Figure 5). This kind of effect usually
is produced by pre-processing.

6.3 Segmentation

The segmentation errors can be caused either by under-
segmentation, which is due to a lack of basic points in the
neighbourhood of the connection stroke, or wrong segmen-
tation. More details about segmentation errors can be found
in [12].

6.4 Fragmentation

The confusions produced by fragmentation are found basi-
cally when the algorithm groups the fragmented part with
the wrong neighbor. Usually, it fails for images that have
neighbors (left and right) with similar distances to the frag-
mented part (Figure 6b) and for images with poor quality
(Figure 6a)

7 Discussion

So far, we have described two different strategies of high-
level verification in order to improve the recognition rate of

Table 4: Distribuition of the system errors

String G-P. Recognizer Verifier Segmentation | Fragmentation Total
Length - | Errors P Top-10 P Errors % Errors % Errors % Errors %
2 43 181 31 131 | 15 0.64 9 038.{ 7 0.29 74 312
3 78 326 40 167 | 15 0.64 9 0.38 8 033 | 110 4.61
4. 104 446 53 227 20 086 | 17 073 13 056 | 154 6.61
5 126 543 72 310 11 048 | 14 0.60 | 25 1.08 | 176 7.59
6 98 449 65 298 |-31 142} 13 059 8 037 | 150 6.87
10 89 673 55 416 8 060 | 9 068 | 23 1.74 | 129 9.75
Table 5: Top-10 digit confusion with frequencies per string length.
2-digit | 3-digit | 4-digit | 5-digit | 6-digit | 10-digit | Total
7-2:6 | 4-1:5 | 5-3:7 | 7-3: 11 | 9-7: 11 | 9-7:9 | 9-7: 41
9-4:5 | 7-1:5 | 9-7:7 | 7-9:9 | 7-3:9 6-2: 8 | 8-0: 39
8-0:4 | 4-1:5 | 4-1: 6 | 8-0:9 | 8-0:9 8-0:7 | 3-2:31
3-2:4 | 3-2:5 | 3-2:5 | 7-2:8 | 3-2:8 2-1: 7 | 9-4: 30
6-5:2 | 2-1:5 | 2-1:5 | 9-4:7 | 7-2:7 7-1:7 | 7-2: 27
4-1:2 | 6-0:3 | 6-0:5 | 9-8:6 | 9-4:6 | 9-4:5 | 7-3:24
8-2:2 | 9-4:3 | 94:5] 32:6 | 83:6 3-2:3 | 5-3:20
8-5:2 | 80:3 | 80:5 | 5-3:6 | 7-1:6 | 4-2:3 | 4-1:20
9-0:2 | 7-3:3 | 7-3:4 | 9-5:5 | 5-3:5 6-5:3 | 7-1: 20
9-7:2 | 20:3 | 2-0:4 | 6-4:5 | 8-2:5 9-1:3 | 2-1: 18
‘ . - classes and for this reason a different strategy of optimiza-
2_ D .-." ! ' tion should be adopted in our case. One strategy could be
~/ Raadl J _, to find different feature sets to feed the high-level verifiers.
(a)) But in this case, the system should overcome the same kind

Figure 6: Fragmentation problems.

the system. We also presented a strong error analysis car-
ried out on numeral strings. As we can notice, both strate-
gies (absolute and one-to-one) do not achieve satisfactory
results on numeral strings. Such strategies become interest-
ing either when there is a diversity of samples (confusions)
to train the verifiers or when the system has a weak general-
purpose recognizer, e.g., the system presented by Britto Jr.
etalin[1].

The strategy based on absolute verifiers has brought
an improvement for 1-digit string. Such a fact emphasizes
that high-level verifiers should be built in order to cope
with more complex problems, e.g., all sources of errors pre-
sented in the last section. However, we have seen that it is
not a trivial problem. As described in Table 5, the con-
fusions for numeral strings are not concentrated in a few

41

of problems faced by multi-classifier systems, e.g., run time
inefficiency and system complexity.

Since our two main sources of errors are related to
classification problems (general-purpose recognizer and low-
level verifiers), we think that a plausible strategy to opti-
mize the overall performance of the system lies in feature
subset selection [10, 24]. A very popular approach to carry
out this task in large-scale problems is genetic algorithms
[16], since the encoding of a feature subset into a chromo-
some is straightforward and the function that is optimized
does not need to be smooth and can, therefore, be direétly
the classification accuracy (direct error minimization).

In spite of the fact the current system can be optimized
in some respects, we already have recognition rates compa-
rable or better than those reported in the literature. Table 6
summarizes recognition rates claimed by different authors
on NIST SD3/SD19 (hsf_7). Ha et al [23] used about 5,000
strings of the NIST SD3. Lee and Kim [20] used 5,000
strings but they did not specify the used data. It is im-
portant to remark that the results achieved for Fujisawa’s

Table 6: Recognition rates on NIST SD3/SD19 - hst_7 (zero-rejection level) (3No post-processor, 4 With post-processor)

String Ha [23] Lee [20] Fujisawa (4] | Our System® | Our System?

Length | Stringgs RR % | Strings RR % Strings RR % Strings RR % Strings RR %
2 981 96.2 | 1000 9523 | 1000 89.79 | 2370 96.88 | 2370 97.21
3 986 92.7 | 1000 88.01 | 1000 84.64 | 2385 95.38 | 2385 95.80
4 988 93.2 | 1000 80.69 | 1000 80.63 | 2345 93.38 | 2345 94.11
5 988 91.1 | 1000 78.61 | 1000 76.05 | 2316 92.40 | 2316 93.22
6 982 90.3 | 1000 70.49 | 1000 74.54 | 2169 93.12 | 2169 95.90
10 1215 90.24 | 1215 91.07

system were published in {20]. As we can see, even con-
sidering a larger number of strings we reach better results
than the other systems. Figure 7 shows the examples of
misclassified fields while Figure 8 shows the examples of
fields containing touching or broken characters that were
correctly recognized by the baseline system.

W7/ S FELe

82771 (92771) 13211 (13210)

7386 T 79293

73167 (73169) 99293 (79293)

57 bosell Bl

07 (01) 698411 (6904111 86 (56)

SO L9462 127C 1

092 (892) 6963 (8963) 12761 (12701)

Figure 7: Examples of misclassified fields.

8 Conclusion

We have presented in this paper some experiments con-
sidering strategies of high-level verification. Two differ-
ent schemes were developed, namely, absolute verifiers and
one-to-one verifiers. We have introduced the concept of lev-
els of verification and described the baseline system, which
takes into account a segmentation-based recognition approa-
ch with an explicit segmentation algorithm. We have seen
that the absolute verifier strategy brought an improvement
in the recognition rate for 1-digit string but it reached worse
results on strings with more than one digit due to the dif-
ferent kinds of errors between isolated digits and string of
digits.

Based on the experiments described in this work, we
can conclude that one of the best ways to optimize a system
with a good overall performance lies in the optimization

42

226 550 @Y7

H DI KT8/
) 5’ ? 7 R ?\S(%D
G4 53R

Figure 8: Examples of correctly recognized fields.

(deletion, addition, and modification) of the feature sets.
Therefore, our next efforts will be focused on the optimiza-
tion of the feature sets employed in the system through a ge-
netic algorithm approach. Finally, some resuits claimed by
different authors on NIST SD19 database have been com-
pared.

Acknowledgements

The authors wish to thank Pontificia Universidade Cat6lica
do Parana and Parand Tecnologia which have supported this
work.

References

[1] A:.Britto-Jr., R.Sabourin, F. Bortolozzi, and C.Y.Suen.
A two-stage HMM-based system for recognizing
handwritten numeral strings. To appear in 6!*ICDAR,
Seattle-USA, September, 2001.

Y. C. Chim, A.A. Kassim, and Y.Ibrahim. Dual clas-
sifier system for handprinted alphanumeric character
recognition. Pattern Analysis and Application, 1:155—
162, 1998.

(2]

(3]

(4]

[3]

(6]

[7

—

—
oo
—

[9

—_—

{10]

[11]

[12]

(13]

(14]

D.E.Rumelhart, R.Durbin, R.Golden, and Y.Chauvin.
Backpropagation: The basic theory. In Y.Chauvin and
D.E.Rumelhart, editors, Backpropagation:Theory, Ar-
chitectures and Applications, pages 1-34. Lawrence
Erlbaum, Hillsdale, NJ, 1995.

H. Fujisawa, Y.Nakano, and K.Kurino. Segmentation
methods for character recognition: from segmentation
to document structure analysis. /EEE, 80:1079-1092,
1992.

G.E.Kopec and P.A.Chou. Document image decoding
using markov source models. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, 16(6):602—
617, 1994.

M. K. Hu. Visual pattern recognition by moment in-
variant. [EEE Transaction on Information Theory,
8:179-187, 1962.

J.Cai and Z.Q.Liu. Integration of structural and sta-
tistical information for unconstrained handwritten nu-
meral recognition. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 21(3):263-270, 1999.

J Kittler, M.Hatef, R.Duin, and J.Matas. On combin-
ing classifiers. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 20(3):226-239, 1998.

L.Heutte, J.Moreau, B.Plessis, J. Plagmaud, and
Y.Lecourtier. Handwritten numeral recognition based
on multiple feature extractors. In 2% JCDAR, pages
167-170, 1993.

L.Kuncheva and L.C.Jain. Designing classifier fusion
systems by genetic algorithms. IEEE Trans. on Evo-
lutionary Computation, 4(4):327-336, 2000.

L.S.Oliveira, E. Lethelier, F. Bortolozzi, and
R.Sabourin. A new approach to segment handwritten
digits. In 7th IWFHR, pages 577-582, Amsterdam-
Netherlands, 2000.

L.S.Oliveira, E. Lethelier, F. Bortolozzi, and
R.Sabourin. A new segmentation approach for hand-
written digits. In 15t ICPR, volume 2, pages 323—
326, Barcelona-Spain, 2000.

L.S.Oliveira, R.Sabourin, F.Bortolozzi, and C.Y.Suen.
A modular system to recognize numerical amounts
on brazilian bank cheques. To appear in 6:*ICDAR,
Seattle-USA, September, 2001.

L.Xu, A.Krzyzak, and C.Y.Suen. Methods of combin-
ing multiple classifiers and their applications to hand-
written recognition. IEEE Trans. on Systems, Man,
and Cybernetics, 22(3):418-435, 1992,

43

[15]

(16]

(17]

(18]

(19]

[20]

[21])

[22]

[23]

(24]

[25]

(26]

O. Matan and C.J.C.Burges. Recognizing overlap-
ping hand-printed characters by centered-objects inte-
grated segmentation and recognition. In IJCNN, pages
504-511, 1991.

M.Mitchell. An introduction to genetic algorithms.
MIT Press, Cambridge - MA, 1996.

M.Shridhar and A.Badreldin. Recognition of isolated
and simply connected handwritten numerals. Pattern
Recognition, 19(1):1-12, 1986.

R.P.Lippmann. Pattern classification using neural net-
works. IEEE Communications Magazine, 27(11):47—
64, 1989.

S.J.Cho, J.Kim, and J.H.Kim. Verification of
graphemes using neural networks in an HMM-
based on-line korean handwritting recognition sys-
tem. In 7" IWFHR, pages 219-228, Amsterdam-
Netherlands, 2000.

S.W.Lee and S.Y.Kim. Integrated segmentation and
recognition of handwritten numerals with cascade
neural networks. [EEE Trans. on Systems, Man,
and Cybernetics, Part C:Applications and Reviews,
29(2):285-290, 1999.

H. Takahashi and T.D.Griffin. Recogniton enhance-
ment by linear tournament verification. In 2”¢ ICDAR,

pages 585-588, Tsukuba - Japan, 1993.

T.M.Ha and H.Bunke. Off-line, handwritten nu-
meral recognition by perturbation method. [EEE

Trans. on Pattern Analysis and Machine Intelligence,
19(5):535-539, 1997.

T.M.Ha, M.Zimmermann, and H.Bunke. Off-line
handwritten numeral string recognition by combin-
ing segmentation-based ans segmentation-fre¢ meth-
ods. Pattern Recognition, 31(3):257-272, 1998.

W.Siedlecki and J.Sklansky. A note on genetic algo-
rithms for large scale on feature selection. Pattern
Recognition Letters, 10:335-347, 1989.

Chen Y.K. and Wang J.E. Segmentation of single-
or multiple-touching handwritten numeral string us-
ing background and foregound analysis. IEEE
Trans. on Pattern Analysis and Machine Intelligence,

22(11):1304-1317,2000.

J. Zhou, Q. Gan, A. Krzyzak, and C.Y.Suen. Recog-
nition and verification of touching handwritten nu-
merals. In 7** IWFHR, pages 179-188, Amsterdam-
Netherlands, 2000.

