Microarray Gridding by Mathematical Morphology
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Abstract. DNA chips (i.e., microarrays) biotechnology is a hybridization (i.e., DNA matching) based process
that makes possible to quantify the relative abundance of mRNA from two distinct samples by analysing their
fluorescence signals. This technique requires robotic placement (i.e., spotting) of thousands of cDNAs (i.e., com-
plementary DNA) in an array format on glass microscope slides which provide gene-specific hybridization targets.
The two different samples of mRNA, usually labeled with Cy3 and Cy5 fluorochromes, are cohybridized onto
each spotted gene and two digital images, one for each fluorochrome, are acquired after hybridization. Before
estimating the signal and background of each spot, it is necessary to locate the region of the spot in order to map
the gene information with the corresponding spot. Therefore, these images must be segmented for analysis, that
is, the spotting geometric structure must be found. That implies segmenting the subarrays (i.c., the set of grouped
spots) and, then, the positions of the spots in each subarray. In this paper, we introduce a new technique using mor-
phological operators that performs automatic gridding procedures (i.e., subarrays and spots segmentation). This

technique has been implemented and tested in a variety of microarray images with success.

1 Introduction

DNA chips (i.e., microarrays) biotechnology [6, 7] is a hy-
bridization (i.e., DNA matching) based process that makes
possible to quantitatively analyze fluorescence signals that
represent the relative abundance of mRNA from two dis-
tinct samples. This technique requires robotic placement
(i.e., spotting) of thousands of cDNAs (i.e., complemen-
tary DNAs) on glass microscope slides. This chip pro-
vides gene-specific hybridization targets. The samples of
mRNA are labeled with different dyes (i.e., fluorochromes)
and then cohybridized onto each spotted gene. The most
used fluorochromes for tagging mRNA are Cy3 and CyS5.

The detection and quantization of the resulting hybridiza-

tion is performed by a special scanner which measures the
light emitted by fluorochrome molecules when excited by
light at an appropriate wavelength. The location and inten-
sities at each point are stored in an image structure. An
example of a microarray image is shown in Fig. 1. This im-
age shows one fourth of the Cy3 channel (or 6 subarrays of
12 by 32 spots each).

The dimensions of a typical microarray image is about
2000 x 6000 pixels, where each pixel represents a disk with
10pm of diameter.

The acquired DNA chip images have to be analyzed
by Image Processing techniques in order to get the relative
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intensity of the Cy3 and CyS5 spot signals. The first step of
this analysis is image segmentation (to generate a partition
of the image pixels [3, 4]), that is, to segment the image sub-
arrays and spots. The procedures that perform theses tasks
are called, respectively, subarray and spot gridding. The
subarray and spot segmentation are necessary to link gene
database information with the measured spot signal. The
spot segmentation is also useful for spot signal estimation.

All available commercial software we have tested use
the region of interest (ROI) [3, 5] approach to locate spots.
In these software, the user gives some parameters (number
of subarray’s rows and columns, number of spot’s rows and
columns for each subarray, distance from one spot to an-
other, distance from one subarray to another, diameter of
each spot and etc) and the software draws an array of ROIs,
one for each spot. Usually the array of ROIs is far from
good, obliging the user to go through a cumbersome step of
adjusting the ROIs to the correct position.

In this paper, we introduce a new technique using mor-
phological operators that performs automatic gridding pro-
cedures for subarray and spots. This technique has been
implemented and tested with microarray images from sev-
eral makers.

Following this introduction, Section 2 introduces the
mathematical foundations necessary for presenting the new



Figure 1: A microarray image.

technique. In Section 3, we present the proposed technique.
In Section 4, we give some conclusions and future steps of
this research.

2 Mathematical Foundations

In this section, we provide some definitions and properties
necessary for understanding the morphological approach
used for subarray and spots gridding in microarray images.

Let Z be the set of integers; the origin of Z* is denoted
o = (0,0). Let E be a non-empty and finite subset of Z°
and let K be an interval [0, k] of Z, with & > 0. In this
paper, we consider that E is an Abelian group with respect
to a binary operation denoted by +.

A function f from E to K, f € K¥F, represents a
gray-scale image. A pixel, or point, is an element of E, for
instance, ap € E is a point in an image f and its gray-level
is f(p).

The union of two gray-scale images f; and f;, denoted
fi V fa, is the function in KZ given by, for any z € E,
(frV f2)(z) = max{fi(z), f2(z)}.

The intersection of two gray-scale images f; and f5,
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denoted fi A fa, is the function in K2 given by, for any
z € E, (fi A f2)(z) = min{f1(z), f2(z)}. '

The addition of two gray-scale images f1 and fs, de-
noted fi + fa, is the function in KZ given by, for any
Tz €E,

(fi+ f2)(@) = { il(x) + f2(2)

The reflection of a subset X C FE is the subset X =
{zeE: -z € X}

Forany X C Fandy € E, X, denotes the translation
of X byy, thatis, X, ={z € E:z -y € X}.

The dilation and erosion ([1], p. 80) of a function f
by a structuring element B C E are, respectively, the func-
tions 6p(f) and ep(f) in K'® given by, for any = € E,

65(f)(z) = max{f(y) : y € B, N B}

if fi(z) + f2(z) <k
otherwise

and

ep(f)(z) = min{f(y) :y € B. N E}.

Given a structuring element B C E, the operators yg
and ¢p from K% to K%, given by vg = dgep and ¢ =
epdp are called, respectively, morphological opening and
morphological closing by B ([8], p. 50).

Let A and B be subsets of the 3 x 3 square. The oper-
ator V4,5 from KZ to KE, givenby Va g =04 —€p is
called morphological gradient ([8], p.437). This operator
performs the enhancement of edges. Particularly, if A and
B are two or three points line segments it does a directional
enhancement of edges. If B = {0}, then the morphological
gradient is called external morphological gradient and it is
denoted V¢.

Let f be an element of KE. The operators & B, and
ep,s from KF to KE, givenby ép s = 6p A fandep s =
ep V f are called conditional dilation and conditional ero-
sion by B given f [8, p. 393].

Let n be a positive integer. The succession of n condi-
tional dilations dp, s (respectively, erosions £p ¢), denoted
by 65 s = 0B,#0B,f -+ 0p,f (respectively, €} ; = ep,y
€B,f '+ *€B,y) is called n-conditional dilation (respectively,
n-conditional erosion).

Let g be an element of K¥. The operators vp,, and
éB,o from KZto KE, givenby, forany f € KE, v ,(f) =
0% ;(9) and ép 4(f) = €% ;(9) are called inf-reconstruction
and sup-reconstruction from the marker g [9].

Let h be a constant function in KF and g be an ele-
ment of K. The operator ¢ 411 from KE to KF ob-
tained by the sup-reconstruction from the marker g + h is
called basin.

Lett > |E|, leti — x; be a numbering process of the
elements of E (that is a bijection from [1,...,|E]] C Nto
E) and let f be an element of KF such that f(z;) = 4, for
z; € E. The operator Ap from {0,t}¥ to K¥, given by,



forany g € {0,t}E, Ap(9) = vB,gns(9) is called labeling
of g [8, pg. 405). Note that in Ag(g) each point of a con-
nected component [2] of g is associated to the same value.
The labeling operator is fundamental for applications which
depend on geometrical measures of the objects.

Given a point (a,b) € E, we define E,—, C E as
the line cutting E in the vertical direction at the coordinate
(a,b), that is, E;=, = {(a,y) € E}. Similarly, we can
define Ey—y = {(z,b) € E} as the line cutting E in the
horizontal direction at the coordinate {a, b).

Given a gray-scale image f : £ — K, the horizontal
projection profile of f, denoted by P, (f), is the function
from E;—g to Z, such that, for any (0, k) € E,—o¢,

> )

PEEy=k

Pu(f)(0,k) = M

Analogously, we can define the vertical projection profile
of f, denoted by P,(f), as the function from Ey—¢ to Z,
such that, for any (k,0) € Ey—o,

Y

PEE =k

Py(f)(k,0) = )

A regional maximum (resp., regional minimum) M C
E of a function f € KF is a connected component with a
given value f(p) = h, Vp € M (plateau at level h), such
that every point in the neighborhood of M has a strictly
lower (resp., higher) value. The regional maxima and the
regional minima can be extracted from the functions by the
morphological operators regional maximum, ¢g**, and re-
gional minimum gg"‘ 10, 2].

3 Image Segmentation

In this section we show the main steps performed by the
system to locate each spot in the microarray. Since the ex-
periment gives us two images instead of one and assuming
there is no registering problem (usually there is not because
the images are acquired simultaneously), the system uses
both images to extract the grid information. In our tests we
used either union or addition of the two images and the re-
sults are equivalent. In the examples we give in this section,
we used the union of the channels, i.e., f = foys V foys,
where fcys and foys are the Cy3 and CyS5 images, respec-
tively.

We start by showing the correction of rotation, that is
fundamental for the automatic segmentation technique pre-
sented in the next sections.

3.1 Correction of Rotation

The main group correction that may be necessary before
the gridding step is the rotation. Figure 2 illustrates the
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Figure 2: Rotation correction

distortion the software can correct so far. Of course there
are other types of distortions that may occur, for instance,
individual spot misalignment but we usually do not need to
correct them.

The method for correction of rotation we propose here
is human guided, works for small corrections (which is usu-
ally the case), and it is done via an interface where the user
chooses 2 points to guide the program to compute the ro-
tation angle. For instance, the center of the uppermost left
spot and the center of the lowest left spot. Figure 2 also il-
lustrates the process of choosing the two points, where the
labelled arrows indicate the points and the order they have
been chosen. The program computes the angle o and then
corrects the rotation of a pixel p = (z,y), Vp € E, by trans-
lating it vertically by the nearest integer to tan(a)(z — o),
and horizontally by the nearest integer to tan(a)(y —yo), to
the correct position, where (zg, yo) is the center of the im-
age. It is important to notice that we can not use the usual
rotation methods (linear, bilinear, bicubic, etc) because they
change the value of the pixels. The part of the border that
is lost by the rotation correction is not important because it
does not contain hybridization information. An additional
and optional step that is done before gridding is the extrac-
tion of the region (the central part) of the image that con-
tains the spots, which is also human guided so far. Devel-
opment is being done to automatize this part of the process
that throws away the borders of the image.

3.2 Automatic Subarray Gridding

If the image is correctly aligned, the system can proceed
to the next step, that is, to segment the regions of the sub-
arrays. This is done by computing the projection profiles
of the image f, filtering the profiles and computing the re-
gional minima of each profile. The idea behind this pro-



Figure 3: A more complex microarray image.

cedure is that the signal segmentation problem is easier.
Therefore it is advantageous to transform an image segmen-
tation to a signal segmentation problem. Once it is solved,
we can take the solution back to the image realms. Figures 4
and 5 show the horizontal and vertical projection profiles of
the image shown in Fig. 3 (an inversion has been done for
a better visualization of the image).

Before proceeding the segmentation, a filtering step is
necessary because noise or weak signal of a whole column,
or a whole row, of'subarrays can cause the misposition of
one or more lines of'the grid.

The first filter tries to remove all the noise due to the
spot signals. The filter is a morphological closing, denoted
by ¢p,, where By,,is a flat 1 x n structuring element. The
parameter n is chosen based on the radius of the spot (it is
approximately equal to the radius of the mean spot). This
information is known because: the user adjusts the diameter
of the spot during the spotting of the chip; and also adjusts
the resolution of the scanner during digitalization. This in-
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Figure 6: Result of the first filter

formation is usually stored in the header of the image file.
The center of the structuring element B, is at the left end.
This is because operators are applied from left to right, the
usual signal scan direction. Figure 6 illustrates the effect of
this filter when applied to Fig. 4.

The second filter tries to remove all the valleys with
medium contrast. This is necessary to eliminate noise in-
side the subarray region. The filtering is done by the oper-
ator basin, ¢p_ g+hr, Where h is the contrast threshold, g is
the signal resulting from the first filter, and B, isa 1 x 3
structuring element. Figure 7 illustrates the effect of the
second filter when applied to Fig. 6.

The third filter is a morphological opening, yg,, , where
B, is aflat 1 x m structuring element. The parameter m is
given by the user based on the idea that the valleys between
subarrays must be eliminated. Figure 8 illustrates the effect
of the third filter when applied to Fig. 7.

The vertical and horizontal lines corresponding to the
edges of the subarrays are the result of the union of the
external morphological gradient of the regional minima ap-
plied to the result of the third filter for both profiles. There
are 16 non zero pixels in the external morphological gra-
dient signal whose coordinates correspond to the horizontal
limits of the subarrays. Figure 9 shows the result of the sub-
array’s segmentation (the image has been enlarged for a bet-
ter visualization). The whole segmentation can be seen bet-
ter in our web site http://www.vision.ime.usp.br/demos.html

Let B, be a flat 1 x 3 structuring element. Let k, m
and n be two non zero positive integers. Let ¢B'" be the
regional minima operator and V¢ be the external morpho-
logical gradient. The following equation summarizes the
whole process for the horizontal profile Py (f). For the ver-
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Figure 7: Result of the second filter
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Figure 9: Result of the segmentation
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Figure 10: The union of two subarray image (Cy3 and
CyS).

tical profile the equation is similar.

V(0B (V8. (88,65, (Pu (1) +4(8B. (Pa(£)))))  (3)

The coordinates of the non zero pixels of the horizon-
tal and vertical filtered profiles can be used to extract the
subarrays images. Usually those limits are tight, therefore
the software allows the user to give a horizontal and a ver-
tical looseness to be used in the extraction.

3.3 Automatic Spots Gridding

Each subarray is now extracted and the system can proceed
to the next step, to segment the region of the spot. The idea
is the same: the software computes the projection profiles
of the subarray image, say f;, where 7 is the index of the
subarray, filters the profiles and takes the regional minima
of each projection profile. The filter now is much simpler
and the idea behind it is that only the spots (the places which
we consider to be signal) will be responsible for the higher
values in the profile, while the background points will be
responsible for the lower values.

Figures 11 and 12 show the horizontal and vertical pro-
Jection profiles of the image shown in Fig. 10.

Although being simpler, it is still necessary because
noise or weak signals from a whole column, or row, of spots
can cause the misposition of one or more lines of the grid.
The filtering solution in this case is based on the fact that
there is a regular grid imposed by the robot. The idea is
to remove local minima between the minima that form the
grid. This is done by a morphological opening with the
same structuring element B,, used for subarray gridding.
Figure 13 illustrates the filtering when applied to Fig. 11.

The whole process of horizontal gridding can be writ-
ten by the following equation. The vertical gridding is equiv-



Figure 11: Horizontal subarray profile.

Figure 12: Vertical subarray profile.
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Figure 13: Subarray profile filtering.
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Figure 14: Vertical grid line.

Figure 15: Horizontal grid lines
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The result of this segmentation, is a set of horizontal

.and vertical point coordinates (the non zero points of M),

and M, respectively) that define the horizontal and vertical
lines of the grid. Figures 14 and 15 show the vertical and
horizontal lines of the grid, respectively. Figure 16 shows
the union of these images composed with the subarray im-
age.

The complement of the grid is a set of squares, each
containing a spot. Labeling this image using the morpho-
logical labeling operator produces another image where each
point of each square has an integer value that can be used
to map each spot to the corresponding entry in the gene
database.



Figure 16: Resulting grid lines composed with subarray im-
age

4 Conclusion

The gridding procedures to segment either the subarray’s
or the spot’s regions in microarray images are usually done
manually or with:strong user assistance. This methodology
is cumbersome, unreliable and non reproducible. Consid-
ering the regularity of the images, we have introduced a
new gridding technique via morphological operators that is
robust and automatic; user assistance is only necessary to
fix image rotation and check if the segmentation is correct.
The software has.been implemented under Matlab using the
MMach toolbox for mathematical morphology and tested
with a variety of images from different microarray spotters
and scanners. The result of the tests can be seen in our web
site: http://www.vision.ime.usp.br/demos.html

The software. provides an optional step to enforce a
regularization of the griddings and adjust the intervals be-
tween each horizontal and vertical lines. This is valid if the
subarray sizes are equal. This regularization can also be
done with human assistance via a graphical interface that
stops the processing if the number of subarrays are not the
same as specified previously by the user. The segmenta-
tion of the spot’s signals (from both images) is still an open
problem that overwhelms the Image Processing fields. The
source of difficulty is the fact that we have no access to the
correct measure of the hybridization. Some controlled ex-
periments are being:done to find this answer.
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