Hybrid Human-machine Non-linear Filter Design Using Envelopes
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Abstract.

Machine design of a signal or image operator involves estimating the optimal filter from

sample data. In principle, relative to the error measure used, the optimal filter is best; however, owing
to design error, the designed filter might not perform well. In general it is suboptimal. The envelope
constraint involves using two humanly designed filters that form a lower and upper bound for the designed
operator. The method has been employed for binary operators. This paper considers envelope design for
gray-scale filters, in particular, aperture filters. Some basic theoretical properties are stated, including
optimality of the design method relative to the constraint imposed by the envelope. Examples are given

for noise reduction and de-blurring.

Keywords: Morphological operators, statistical de-
sign, constraint, optimal filters

1 Introduction

Strictly data-driven automatic design of operators works
well only for relatively small windows. To incorpo-
rate more variables, and therefore more information,
it is necessary to impose constraints on the class of fil-
ters from which the designed operator is to be taken.
Hence, rather than try to estimate the optimal opera-
tor, one tries to estimate the optimal operator in the
constraint class. There is an advantage to constraint
if the expected error of the constrained designed op-
erator is less than the expected error of the uncon-
strained designed operator. Typically, constraint in-
volves the application of some heuristics. For envelope
design, the Leuristics take the form of lower and up-
per bounds on the designed operator. These are hu-
manly designed and imposed on the automatic design
procedure. If they are chosen in such a way that the
optimal filter lies fully between them, then there is
always an advantage to using the envelope. Unfortu-
nately, if the lower and upper bound are too far apart,
this advantage is negligible (or in the extreme null be-
cause we could always choose zero and infinity for the
lower and upper bounds). To gain real advantage re-
quires imposing meaningful constraints. If the sample
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size is sufficiently large, then the constraint will not be
beneficial, but for large windows such a prospect can
be unreasonable and therefore a well-chosen constraint
can be beneficial. Previously, envelope constraint has
been studied for binary filters [1]. Here we extend the
concept to gray-scale filters, state some basic proper-
ties, and provide applications to both de-noising and
de-blurring. In particular, we apply envelope design to
aperture filters [2]. Theorems are stated without proof.
The proofs, further theoretical results, and more appli-
cations are given in [3].

2 W-Operators and Apertures

Digital images can be formally defined and represented
by functions from a non-empty set E that is an Abelian
group with respect to a binary operation + to an or-
dered chain L. Usually, F is a subset of Z x Z (where
Z is the set of integers) and L is a positive interval of
Z, i.e., L = [0, — 1], where | € Z. A binary image is
an element of P(E) (the class of subsets of E). It can
also be represented as a function of E — [0,1] via the
indicator function [2]. The set of all possible functions
from E to L will be denoted by LZ and a mapping ¥
from L to L'F (where L’ is a nonnegative interval of
Z, not necessarily equal to L) will be called an image
operator.

A finite subset W of E, customarily containing the



origin (of E), will be called a window and the number
of points of the window W will be denoted by [W]|.
A configuration is a function from W — L and the
space of all possible configurations from W — L will be
denoted by LW. Configurations are usually the result
of translating a window W by ¢, t € E, and observing
the values of an image h, h € LW. Formally, if W =
{w1,ws,...,ws}, n = |W|, and we associate the points
of W to a vector (w1, ws, . ..,w,), then a configuration
h(W,), seen by W translated by ¢, denoted Wy, can be
written as,

W) = (h(t +w1), h(t +w2),. .., h{t + wy)),

Since digital images can be modeled by digital
random functions, h(W;) is a realization of a random
vector X = (X1,X2,...,Xn) , le, h(W,) = x
(z1,Z2,...,Zy), where x denotes a realization of X and
Iy,Z2,...,ZTy are the values observed in h under W;.
An important subclass of operators from LE to L'E is
the class of W-operators.

These are translation invariant (t.i.) and locally
defined (1.d.) by a window W. If an image operator
¥ is a W-operator, then it can be characterized by a
function ¢ : LW — L/, called a characteristic function,

by,

U(h)(t) = p(h(t+wr), h(t+ws), ..., A(t+wn)) = Y(x)

An aperture configuration is a function from W
— K (K = |[—k,k],k € Z"), and the set of all possi-
ble aperture configurations on W is denoted by K%.
These configurations are usually the result of a spatial
translation of a window W by ¢, t € E, range translat-
ing W by z, z € Z;.and truncating the observed values
to values inside K. In this case, a configuration can be
written as

hZ(Wh) = (AL (t+w1), hZ, (t+wz), ..., hZ,(t +wn))

where h_,(t) = h(t) — z, z = z(h(W})) is a function of
h(W¢), and h* , is defined by

-z

L h_, -k<h_.<k
R, = k ho,>k (1)
-k ho, < -k

The class of aperture operators is a subclass of
the class of W-operators that are t.i. and 1.d. by a
window W, and are also locally defined by a range
window K = [~k;k],k € Zt. Let X* be a truncated
random variable: X (following the truncation rule of
Eq. 5), ie., X* = (X{,X3,...,X}), and let x* be a
realization of X* . An aperture operator ¥ defined
via the aperture- A = W x K is characterized by an
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aperture characteristic function ¥4 : A — L’ according
to the representation

WA(R)(E) = YahS (E+wn), ..., B (+wn)) = Pa(x")

Given two gray-level images on E, h to be ob-
served and g to be estimated, the basic filtering prob-
lem is to find a filter ¥ that minimizes an error measure
between ¥(h)(t) and g(t), where t € E. Assuming h
and g are jointly stationary [4], the mean-square error
(MSE) of ¥ is given by E[|g(t) — ¥(h)(t)|?]. If ¥ is
a W-operator, these are equivalent to E[JY — ¢(X)]]
and E[(Y — ¥(X))?], respectively. For an operator ¥
defined by ¥ (defined on LP, D = LW), the MSE is

-1
MSE@W) =) Y (y - ¥(x))*P(y, %)

x€D y=0

)

where P(y,x) is the joint probability of (y, x).
The optimal MSE filter is given by the median and
the mean of the distribution of Y'|x, respectively.
When using a suboptimal filter instead of the op-
timal filter, there is an increase in error. The total
increase in MSE error from using ¢ in place of the
optimal filter 1oy is

AW, Yopt) = D (%) — ope(x))2 P(x).

x€D

®3)

If 4ope, v is an estimate of 1,5 based on N sample
pairs (X1, Y1),...,(X¥,Y¥), then there is a design
(estimation) cost A(Yope, N, Yopt). The MSE of the de-
signed filter is given by

MSE(wopt,N) = MSE(wopt) + A("/)opt,N: '¢'opt)- (4)

Since the estimated filter 1,p;, ;v depends on the
training sample, it is random. Estimation error (preci-
sion) is defined by the expected cost E{A(Yopt, N, Yopt)]
and depends on the estimation procedure. The ex-
pected MSE of 9ope, v is found by taking the expected
value in Eq 3, in which M SE (1, ) is constant.

3 Design of W-operators under envelope con-
straint

In this section we introduce the notion of envelope and
quantify its effects on the quality of the operator de-
signed.

3.1 Envelope constraint

The envelope constraint has been originally defined on
binary W-operators(l], that is, operators that trans-
form subsets of P(W) (the power set of W). There we



defined two subsets, A, B C P(W) such that we have
confidence that the W-operator is zero if is applied to a
subset x of A and one if it is applied to a subset x of B®.
In reality, the sets A and B define two operators o and
B, respectively. Therefore, the envelope of a function
Y : P(W) — 0,1 was defined as ¥con = (¢ V &) A B).
It is always true that o < ¥, < 0.

We now generalize this approach to gray level op-
erators. Let D = LW be the configuration space, and
let o, 8 : D — L be two gray level characteristic func-
tions with @ < 8. Our prior knowledge is some confi-
dence in that o < ¥,p; < B. In such case, let ¥ be a
machine designed characteristic function, for each con-
figuration x € D, if ¥(x) < a(x) then we will prefer to
use a(x) in place of 1(x). The same situation arises if
P(x) > B(x). Formally, for each operator ¢ : D — L,
we define its constrained operator 1oy, in the following
way:

a(x) P(x) < ax)
Peon(X) = P(x) a(x) < P(x) < B(x) (5)
B(x) P(x) > B(x)

As in the binary case, Ycon = (Y Va) AB. We will
call the pair (o, ) an envelope. An envelope (a,()
defines an envelope constraint "Qap5 C LP” as the
sub collection of the operators in- L? that lies between
aand B3, ie. Qup={¥ € LP : a <4 < B}. For any
operator 1 € LP, its constrained operator con is an
element of the restriction Qg g.

3.2 Error Analysis for envelope constraint

The way to combine human and machine design is by
machine designing of operators under envelope con-
straint. In place of the best operator in L?, we will
seek the best operator in Q4 3. A key problem in re-
striction design is the existence of a easy way to train
constrained operators. The solution to the problem of
proving this existence has been shown for resolution
constraint [5, 6], and also for increasing binary filters
[7]. In the case of gray-level envelopes, the next theo-
rem shows that the filter ¥op—c = (Yopt V @) A B ob-
tained by envelope constraining the optimal filter 1,p¢
is the optimal filter in the class Qq,g3:

Theorem: Let opi—c = (Yopt V @) A B, then for any
1/) € Qa,B’ A(d)vwopt) - A(d)opt—cywopt) >0

The importance of this theorem is that it allows to
compute the optimal constrained filter by constraining
the estimationn of the optimal non-constrained one.

Given the envelope (o, 8) and the estimate ¥ of
Yopt, We need to determine the advantage of using the
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envelope constrained filter ¥con, = (¥ Va)AQ instead of
1. The advantage ” Ay (o, B) is given by the difference
between the MSE increase for ¢ over v,,; and the MSE
increase for Ycon OVer Yop:

A’t{)(ay ,6) A('L/), '(/)opt) - A(wcons WOpi)' (6)

The next theorem shows that the envelope con-
straint must be beneficial if well designed.

Theorem: If the optimal filter 1op¢ lies in the envelope,
meaning a < Yope < G, then
Ay(a,B) > 0. (7)
In general the optimal filter does not lie within the
envelope and the advantage can be positive or nega-
tive. The potential for disadvantage is illustrated by
letting 1 = 1)op: , meaning that before constraint, the
estimated filter is actually optimal. The next theorem
shows that the envelope constraint will be detrimental
if not well designed.

Theorem: If ¥ = 1,ps, then

Ay(a,B) <0. (8)

We can see that using the constrained operator
Yeon in place of an operator 1, the error will decrease
(or not change) if the optimal operator lies in the en-
velope, but it can increase too if the optimal operator
is not completely bounded by the envelope (a, 3).

3.3 Precision of estimation under envelope con-
straint

When designing the optimal operator from pairs of
samples, the designed operator is only an approxima-
tion of the optimal operator. For different sets of sam-
ples, different estimators of the optimal operator can
be created. To analyze the goodness of an envelope,
one must compute the average value of the MSE in-
crease Ay (a, ) for all the possible operators that can
be created from a sample of a given size.

As with other types of constraints, the envelope
constraint is detrimental when we have a large num-
ber of samples pairs. In such cases, is better to train
the optimal operator of the whole class LP than the
optimal constrained operator in Qq,g. However, for
small samples and a good envelope (o, §), it can be
better to design envelope constrained operators than
non constrained ones.

To examine estimation precision, we suppose that
1 results from a statistical estimation of 1,y using N
pairs of samples, so that ¢ = 1. Assuming that ¢ is



a strongly consistent estimator of ¥pe, YN — Yopt al-
most surely as N — oo. We are using a strongly consis-
tent estimators. The next theorem bounds the expec-
tation E[Ayy (o, B)] of the MSE increase " Ay, (o, 8)”
when N goes to infinity

Theorem: If ¢y is a strongly consistent estimator of

Popt
Lim,_.__E[Ay, (o, 8)] <0. (9)
~In the limit, the envelope constraint is not bene-
ficial and its disadvantage is increased (negatively) by
making o larger and 8 smaller. The influence of a
larger « is in two senses, first, by increasing the num-
ber of configurations x € D where ,5:(X) < a(x), and
second, by increasing the value (a(x) — Yopt(x))? for
such configurations.

Equations 7 and 9 can seem as opposites. In the
hypothesis of equation 7 the advantage is always non
negative, hence at the limit when N goes to infinity, it
can be only zero. In this case, lower values for N will
give better advantage of the envelope.

4 Experimental results

In this section we demonstrate the performance of the
hybrid approach to design filters for noise reduction
and deblurring on signals and images. Blurring is ac-
complished by an 11 point flat convolution kernel for
signals and a 3 x 3 non flat convolution kernel for im-
ages (Fig. 1). The noise is independent Gaussian noise
added at 5% of the points.

1|2

2|13
1]2]1

Figure 1: Kernel for images blurring

The signals used for the experiments reported in
this paper are "saw” signals (Fig. 2) which are gener-
ated by the model described in [8].

The images used for the experiment follow a ran-
dom Boolean function model [9] whose primary func-
tion is pyramidal with at most 16 gray levels range.

We have generated 20 images, each of size 256 X
256 points, and their respective blurrings. Figures 3
and 4 show part of an original and blurred image, re-
spectively.
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Figure 2: Saw function passing through equally spaced
random points

Figure 3: Part of a random Boolean function

4.1 Noise Filtering in Signals

This experiment shows the performance of the envelope
approach in comparison with aperture filters for noise
filtering. Thirty saw signals have been generated (d =
15, size = 1024 points) and corrupted by noise with
mean 0 and variance 3 at 5% of their points. From
this set, one to ten pairs of signals (noise, original)
are given to the system to design the aperture filters
and twenty pairs to test the performance. Two hybrid
filters have been tested, env; and envg. For env;, a
and [ are given by,

a(f) es(f) (10)
B(f) 68(f) (11)
where B is a 1 x 7 structuring element [10], £p is an
erosion [10] by B, ép is a dilation [10] by B, and v is
an aperture filter with W =1 x 7 and k = k' = 15.
For envg, a and g are given by,

a(f) Nesos(f)¢BeB(f)}
B(f) V{ppoB(f), ¢8va(f)}

(12)
(13)

Il



Figure 4: Blurring of the image shown in Fig. 3

where pp is an opening [10] by B, ¢p is a closing [10]
by B, A is the infimum [10], V is the supremum [10],
B, 1, W, k and k' are the same as defined before. The
composition of closings and openings are sometimes
called alternating sequential filters 2]

The aperture filters and the hybrid filters have
been applied to 20 test signals and compared to the
respective ideal images. The MSE errors as a function
of the number of training examples have been com-
puted and averaged. The average MSE for the noisy
images is 0.27. Figure 5 shows the MSE errors for the
aperture filters and the env; filters. The results of g
and §p do not depend on the number of examples and
are constant equal to 0.62 and 0.44, respectively. It is
interesting to note that the hybrid filter gives a bet-
ter result than the aperture filter. Moreover, it is less
affected by noise in the training set than the correspon-
dent aperture filter. For instance, for 6 and 7 images,
the error of the aperture filter increases (due to noise
in the training set). The error of the hybrid filter also
increases but not in the same proportion.

Figure 6 shows the MSE errors for the designed
aperture filters, ppdp, dBYn, and the envy filters.
The results of the alternating sequential filters do not
depend on the number of examples and are constant
equal to 0.075 and 0.056, respectively. Now, the hybrid
filter is not better than the aperture filter for more than
4 training images, just more stable. However, for less
than 4 images, the hybrid filter is very good, showing
that this approach can be a good alternative when the
number of training examples is limited and we have a
good a and 5.

Figure 7 shows the results of both env; and envy
filters, together with the results of the aperture filters.
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Window Size: 7
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Figure 5: MSE errors for env;

4.2 Deblurring Boolean Model Images

This experiment shows the same technique applied to
2D random Boolean model images. We compared aper-
ture filters to linear and hybrid filters. From the set of
20 images, we used one to ten pairs (blurred, original)
to design the aperture filters and ten pairs to test the
performance. The hybrid filter tested, env, has o and
B given by,

o(f) (14)
B(f) (15)

where ¥ ,p45r is the optimal restricted linear filter with
window 9 x 9. % is an aperture filter with W =3 x 3
and k = k' = 5.

Figure 8 shows the initial MSE error and the MSE
errors for the aperture filters, for the optimal restricted
linear filter and the env filter. The results confirm the
advantage of the envelope.

\I]optlin(f) -1
‘I”optlin(f) +1

5 Conclusions

Envelope design provides a systematic means by which
humanly designed operators can be used to assist in
machine design. If the lower and upper bounds are
well chosen, then envelope design can be advantageous
in the common situation in which there is insufficient
data to adequately design filters requiring more than
a small number of variables.
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Figure 6: MSE errors for envg
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