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Abstract: This work reports the development of a system for automatic analysis of retinal angiographic
images. Particularly, we focus on the segmentation of the blood vessels in these images. We started by
implementing a previously known technique based on mathematical morphology. Due to some shortcomings of
this method to our data, we have developed a new approach based on the continuous wavelet transform using
the Morlet wavelet. The main advantage of the latter with respect to our images lies in its capabilities in
tunning to specific frequencies, thus allowing noise filtering and blood vessel enhancement in a single step.
Furthermore, as we intend to use shape analysis techniques for the detection and quantitative characterisation
of the vascular branching pattern in the retina, the wavelets will also be important with respect to performing
fractal and multifractal image analysis. Nevertheless, it is worth mentioning that the mathematical morphology
method was able to detect finer detail more precisely. Our present results suggest that an interesting direction to
be investigated is how to use both approaches together in order to obtain better results and apply this as a

diagnostic tool.
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1 Introduction

Proliferative diabetic retinopathy (PDR) is characterised
by new vessel growth near or at the optic disk (blind spot)
or elsewhere in the peripheral retina and is a known as a
risk factor for severe vision loss [Sussman et al., 1982].
However, the effectiveness of the treatment depends on
the timely detection of these vascular changes. Additional
fundal pathology, such as cataracts, often minimize a
timely detection of vascular changes and may lead to
uncertain diagnosis. Advances in shape analysis, and the
development of strategies for the detection and
quantitative characterisation of proliferative vascular
changes is therefore of great importance.

Fluorescein angiograms highlight the blood vessel
network of the retina and allows one to evaluate the
progression of vascular disease. Recently we have
developed a semi-automated process for image processing
and shape analysis [Cesar & Costa, 1999]. The new
method, which is based on multiscale curvature contour
segmentation and syntactic shape analysis, is robust and
greatly improves the tiresome task of drawing branching
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structures such as the vessel networks prior to analysis
(see Mainster, 1990; Daxer, 1993). A necessary initial
step in applying shape analysis is to segment the blood
vessels from the background. This work describes the
results we obtained with an algorithm to segment only the
vascular tree of retinal angiograms by applying
mathematical morphology operations [Walter et al.,
2000]. Mathematical morphology has previously revealed
itself as a very useful digital image processing technique
for quantifying retinal pathology by detecting and
counting micro-aneurysms in fluorescein angiograms
[Spencer et al, 1996]. Furthermore, we describe a new
approach based on the continuous wavelet transform
(CWT), and compare the results obtained with this
approach to that of mathematical morphology. The
continuous wavelet transform (CWT) is a powerful and
versatile tool that has been applied in many different
image processing problems, from image coding [Rioul &
Vetterli, 1991] to shape analysis [Costa & Cesar, 2001].
This success is largely due to the fact that wavelets are



especially suitable for detecting singularities (e.g. edges)
in signals [Grossmann, 1988], extracting instantaneous
frequencies [Antoine & Murenzi, 1994], and performing
fractal and multifractal analysis [Jones and Jelinek, 2001;
Arnéodo et al., 2000]. Furthermore, the wavelet transform
using the Morlet wavelet, also often referred to as Gabor
wavelet, has played a central role in increasing our
understanding of visual processing in different contexts
from feature detection to face tracking. The next section
of this paper describes our implementation of the
previously proposed mathematical morphology approach
to the segmentation problem. In what follows, Section 3
describes our new approach based on Morlet wavelets.
Some illustrative experimental results are presented and
discussed in Section 4. Finally, Section 5 concludes with
some comments on our ongoing work.

2 Mathematical Morphology Approach

The notation and definitions in this section follow
those adopted by Gonzalez and Woods [1992] and Banon
and Barrera [1994]. In this section we describe our
implementation of mathematical morphology proposed in
[Walter et al., 2000].

Let (x,y) € ZxZ, Z denote the set of integer numbers,
and f, b € Z* be two discrete functions representing the
digital image and the structuring element respectively, that
assign a certain gray level value, here an integer number
g, 255 2 g 2 0, to each distinct pair of coordinates (X,y).

Basically, most of the mathematical morphology
operations lie on erosions and dilations, whose formal
definitions may be respectively written according
equations (1) and (2):

E(f,b)(s,)=min { f(s+x,t+y) - b(X,y) | (s+X, t+y) € Dy,
(x,y)e€ Dy } (D

8(f,b)(s,t)=max { f(s-x,t-y) + b(x,y) | (s-X, t-y) € Dy,
(x,y) € Dy } 2

Ds and D, are the domains of the functions f and b
respectively.

As our main aim was to segment the vascular tree
present in the retinal image, we had to initially remove all
the non-linear abrupt gray level variations, say the
aneurysms [Walter et al., 2000]. To do so, we took the
supremum of the openings with elongated 10 pixel-sized
structuring elements whose length was larger than the
diameter of an aneurysm in different rotational directions.
These orientations were taken within rates of 10 degrees
from O up to a maximum of 180 degrees. Following this
strategy, we were able to preserve elongated structures
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that corresponded with the vascular tree we intended to
segment.

The Opening operation is defined as an erosion
followed by a dilation with a specific structuring element
being mathematically represented as:

VEb=O(EED).b) 3
where b is the proper structuring element and f the digital
function to be opened.

The above procedure allowed us to smooth vessels,
to break the narrow items and to eliminate the thin
protrusions. Figure 1 is a representation of an
angiographic image that we have used for the experiments
in this work, while Figure 2 illustrates the result of the
aforementioned supremum of openings procedure.

Figure 1: riginal angiographic image of the
retina.

Figure 2 The result obtained by supremum of
openings



Then we computed the sum of top-hats by using
linear 10 pixel-sized structuring elements rotated in
increments of 10 degrees up to a maximum of 180
degrees. The main feature of the top-hat transform is to
emphasize detail (smaller vessels) in the presence of
shadow (the background).

The top-hat transform may be mathematically
defined according to the equation (4):

tophat(f,b)=f - O (f,b) )

where b is the proper structuring element and f the digital
function to be transformed

Figure 3 shows the result from this latter step.

Transform application

Thirdly, we followed two methods for edge
detection: the Canny and the LoG filters. The latter
provided the best results (see Figure 4). The LoG
(Laplacian of Gaussian) is based on differential operators
and may be defined in polar coordinates, since the circular
symmetry holds, as:

2_20_2 ,
LoG(r) = :_6 e‘(rz/20') 5)

2ng

Finally, to preserve the edges whilst reducing
spurious noise, we used alternating sequential filtering
(ASF). ASF increased the length of the structuring
elements, from 10 up to 30 pixels and in rotational
orientations at 30 degree increments up to 180 degrees.
This step was applied to eliminate the structures
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result is presented and

associated with noise. The final
discussed in Section 4.

3 Wavelet Transform Approach

The notation and definitions in this section follows
Arnéodo et al, [2000]. The real plane Rx R is denoted as

R?, and the vectors are represented as bold letters, e.g.
x,be R*. Let fe I’ be an image represented as a
square integrable (i.e. finite energy) function defined over

R%*. The continuous (CWT)
Tw(b, 0,a)(x) is defined as:

wavelet transform

T, (b,6,a)(x) = C;'/? —al— v’ (a“r_e(x - b))f(x)d2x

(6)
In the above formula (6), C\v

denote the normalizing constant, analyzing wavelet, the
displacement vector, the rotation angle and the dilation

parameter (y denotes the complex conjugate). As

previously mentioned, the CWT is a useful tool for
detecting and analyzing singularities, such as edges in
images. There are many different analyzing wavelets that
can be adopted, such as the 2D Mexican hat, the optical
wavelet and the Morlet wavelet. In this work, we have
chosen the Morlet wavelet because it is directional (in the
sense of being effective in selecting orientations) and
capable of fine tunning specific frequencies. This latter
capability is especially important in filtering out the
background noise of the angiographic images. These
characteristics of the Morlet wavelet represent its

vy, b, 0 and a



advantages with respect to other standard filters such as
the Gaussian and its derivatives. The 2D Morlet wavelet is
defined as:

vy (x)=exp(jk, - x)exp(—%lel2 ] Q)

where j=+v-1and A=diagle %1 e21 is a 2x2
array that defines the anisotropy of the filter, i.e. its
elongation in some direction [Antoine & Murenzi, 1994].
In the Morlet equation (7), which is actually a complex
exponential multiplying a 2D Gaussian, k; is a vector
that defines the frequency of the complex exponential.
Figure 5 illustrates the Morlet wavelets for different sets
of parameters.

Figure 5: Morlet wavelets (real part) for 4
different set of parameters, showing its capabilities for
tunning to scale, orientation, position and frequency.

Using the Morlet transform to segment the blood
vessels, the scale parameter is held constant and the
transform is calculated for a set of orientations 0 = 0, 10,
20, 30, ..., 180. The £ parameter has been set as 4 in order
to make the filter elongated and k, =[0 2], i.c. a low

frequency complex exponential with few significant
oscillations. These two characteristics have been chosen in
order to enable the transform to present stronger responses
for the coefficients associated with the blood vessels.
Figure 6 shows the wavelet transform of the angiographic
image of Figure 1 for two different orientations 6. The
transform maximum response (in modulus) from all
orientations for each position, b, is then taken (Figure 7),
emphasizing the blood vessels and filtering out most of
the noise and other undesirable features. The blood
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vessels can then be detected from this representation. We
have tried three different image segmentation approaches
to segment the blood vessel network following the Morlet
transform application: adaptive thresholding, edge
detection and semi-interactive region-growing. The basic
algorithm can be stated as follows:

Algorithm for Blood Vessels Segmentation

Set T, (b)=0,vb
for each 6 =0, 10, 20, 30, ..., 180
Calculate |T“, (b, 6, a)(x)l

Set ITV (b,e,a)(x)| =0 if IT“, (b,e,a)(x)| <t, Vb
Set Ty, (b) = Max Ty (b} [Ty (b, 6,0)(0[) W

end_for

Find the blood vessels from T, (b)

Figure 6: Wavelet transform response for two
different orientations.



Figure 7: Wavelet transform taking the maximum
response for all orientations 6 = 0,10,20,30...180.

In the above algorithm, 7, is a threshold and the step
involving it (second step within the for) is carried out in
order to set the noise coefficients with weak response to 0.
This operation is commonly referred to as shrinkage by
the wavelets community.

The last step required for segmenting and enhancing
the blood vessels has been implemented by using three
different strategies, as previously mentioned. The adaptive
thresholding technique has been adapted from [Ficher et
al, 1996]. Adaptive thresholding is obtained by comparing
the value of each position b with pu - ¢, where u is the
mean value around b and c¢ is a constant introduced to
avoid noisy segmentation along uniform background
regions. The size of the neighborhood where the mean
value is calculated is an input parameter, and we have
used a small 5 X 5 window. Wavelet coefficients larger
than [ - ¢ are associated to blood vessels, while those
smaller are considered background. For the edge detection
experiments, we have simply applied the Sobel approach
[Gonzalez & Woods, 1992]. Finally, we have also tried a
traditional semi-interactive region-growing algorithm
[Gonzalez & Woods, 1992], as discussed in the next
section.

4 Experimental Results

The series of intermediary results obtained by the
mathematical morphology approach has lead to the
segmented image shown in Figure 8. As can be seen, the
blood vessels have been segmented, including some
difficult fine structures, though some noise has remained.
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On the other hand, the Morlet wavelets approach, whose
maximum response for the considered orientations is
shown in Figure 7, has lead to the segmented results of
Figures 9, 10 and 11, produced by segmentation using
adaptive thresholding, Sobel edge detection and region-
growing, respectively. The region growing approach has
been applied with a set of seeds indicated interactively by
the user. Clearly, the main problem of the wavelets
approach is the grey central region, which produces some
noisy structures for the automatic segmentation methods
(adaptive thresholding and Sobel). This problem has been
circumvented by the region-growing approach, but at the
expense of a semi-interactive technique. We have applied
the Morlet wavelets technique to other different images
and obtained similar results.

Figure 8: The final result obtained by the
mathematical morphology approach.

Figure 9: Segmented image using adaptive
thresholding.



Figure 10: Result of edge detection from the
wavelet transform of Figure

Figure 11: Segmented blood vessels using semi-
interactive region-growing.

It is worth mentioning that extensive experiments
with the Morlet wavelets approach has been carried out
for different sets of parameters, which can be found at:

http://www.vision.ime.usp.br/~cesar/projects/sibgrapi2001/

It is clear that many sets of parameters lead to similar
(good) results, suggesting that correct parameter setting is
not so critical. On the other hand, some sets of parameters
with high frequency modulating exponentials produce
very noisy results, indicating that proper care should be
taken.

5 Concluding Remarks

Our results indicated that retinal vessels can be
segmented in the fundus of the eye with some noise by

using either mathematical morphology or wavelet
transforms. The main advantage of the wavelet approach
lies in its capabilities in tunning on specific frequencies.
This allows noise filtering and blood vessel enhancement
in a single step. The good local contrast exhibited by the
blood vessels suggested that using more powerfull
segmentation algorithms, such as those based on gradient
and morphological reconstruction [Fisher et al, 1996],
should lead to better vessels segmentation results. This
will be incorporated soon in our system. Furthermore, the
wavelet transform can also be used to perform fractal and
multifractal analysis, which is a powerful shape analysis
tool per se. On the other hand, the mathematical
morphology method was able to detect finer detail more
precisely in our experiments. Therefore, both methods
have demonstrated that automated processing of the
retinal fundus can select the retinal vasculature, which
then allows further automated processing to determine the
spatial characteristics of the vascular network and serve as
a diagnostic tool in retinal disease. Our ongoing work
aims at obtaining more precise results by mixing the
results from both approaches discussed in this paper.
Finally, we have also started the second phase of the
project regarding shape analysis of the blood vessels in
order to quantitatively characterize vascular changes
associated with  diabetic retinopathy such as
neovascularisation and microaneurysms. '
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