Incremental Evaluation of BDD-Represented Set Operators

HERALDO M. F. MADEIRA'*AND
JUNIOR BARRERA?

! Departamento de Informética - UFPR
PO Box 19081
81531-990 Curitiba - PR - Brazil
heraldo@inf .ufpr.br

2 Instituto de Matematica e Estatistica - USP
PO Box 66.281
05315-970 Sdo Paulo - SP - Brazil
jb@ime.usp.br

Abstract.

In Mathematical Morphology set operators are described by a formal language, whose

vocabulary is composed of dilations, erosions, complementation, union and intersection. They are called
morphological operators when expressed in this form. Translation invariant and locally defined set opera-
tors are called W-operators. Recently, decision diagrams have been used as an alternative representation
for some 2-D and 3-D discrete W-operators. This paper shows that the reduced and ordered binary
decision diagram (ROBDD) is a non-ambiguous scheme for representing W-operators and presents a
method to compute the ROBDD of any W-operator from a corresponding morphological operator. This
procedure of computing decision diagrams can be applied to the automatic proof of equivalence between
morphological operators, since the W-operator they represent are equal if and only if they have the same

ROBDD.

1 Introduction

Mathematical Morphology (MM) is a general frame-
work for studying mappings over complete lattices [19]
[12]. In particular, operators (or mappings) between
binary images are of special interest in MM. A key
aspect, of MM is the description of such operators by
means of a formal language, whose vocabulary is com-
posed of the operations of intersection, union and com-
plementation and of dilations and erosions. This lan-
guage is called Morphological Language (ML) [4]. The
sentences of ML are called morphological operators.

An important class of image operators is that of
W-operators, i.e. the binary image operators that
share the properties of translation invariance and local
definition. W-operators are extensively used in mor-
phological image processing, and this family of opera-
tors is the focus of this paper.

Many of the existing software for morphological
image processing evaluate a set operator by directly
parsing morphological phrases and successively apply-
ing the special-purpose algorithms for the elementary

* Acknowledges support from UFPR and CAPES.

0-7695-0878-2/00 $10.00 © 2000 IEEE

308

operations and operators. Besides the ML-based op-
erator description, several structures for representing
W-operators have been studied.

The interval-based representation used in [6] has
been proved very useful in automatic learning of op-
erators for image analysis (7]. The set of training in-
put/output image pairs used in these systems can also
be seen as a, rather incomplete, representation of the
desired operator.

A graph-based representation for binary functions,
called Binary Decision Diagram (BDD), was first used
in MM in a special algorithm to compute the thin-
ning operator [18]. This paper extends the use of BDD
as a representation scheme for the whole class of W-
operators.

The motivation of this work comes from the search
for non-ambiguous (i.e. complete) and compact repre-
sentations for a large class of operators. It is desired
also that this representation lead to efficient algorithms
for morphological image processing and that it satis-
factorily solve the issue of verification whether two rep-
resentations are equivalent.

In fact, the BDD-based representation is efficient:

the application time of a BDD-represented operator is,
in the worst case, proportional to the size of the opera-
tor’s window and to the size of the input set. The class
of BDDs studied (reduced and ordered BDD) provides
a trivial algorithm for determining the equivalence be-
tween morphological operators. The algorithms to con-
vert a sentence of the ML to this new form of repre-
sentation are presented in this work.

Following this Introduction, Section 2 recalls the
basic concepts of binary MM. Section 3 presents the
morphological language. Section 4 introduces the BDD
as a representation scheme for Boolean functions. Sec-
tion 5 presents the algorithms for basic manipulation
of this graph-based representation. These algorithms
are used in Section 6, where we state the uniqueness
of this representation and show a method to derive the
graph of any binary morphological operator. Examples
of the graph construction process is given in Section 7,
and implementation issues and results are found in 8.
In the last section we give some conclusions and point
directions for future works.

2 Windowed Set Operators

Let E be a nonempty set. P(E) denotes the power-set
of E and C is the usual set inclusion relation. The pair
(P(E),C) is a complete Boolean lattice[8]. A set oper-
ator is any mapping defined from P(E) into itself. The
set ¥ of all set operators ¢ : P(E) — P(E) inherits
the complete lattice structure of (P(E), C) by setting
Y1 <2 & Yi(X) C Pa(X), Vb1, 92 € ¥, VX € P(E).
Let X,Y € P(E). XUY, XnY and X\Y are the usual
set operations of union, intersection and difference, and
X¢ is the usual set complementation.

Let (E, +) be an Abelian group with zero element
o € E, called origin. Let h € Eand X,Y C E. The set
X}, defined by Xp, = {z + h : z € X} is the translation
of X by h. Theset Xt = {—z : z € X} is the transpose
of X. The set operations X @Y = Uyey(Xy) and
X oY =Nyecy(X_y) are the Minkowski addition and
subtraction.

A set operator ¢ € ¥ is called translation invari-
ant (t.i.) if and only if, Vh € E,VX € P(E),¢¥(Xy) =
Y(X)n-

Let W be a finite subset of E. A set operator i
is called locally defined (1.d.) within a window W if
and only if, Vh € E,VX € P(E),h € ¢¥(X) & h €
Y(X NWh).

Let Yy denote the collection of all t.i. operators
that are also 1.d. within W. The elements of ¥y are
called W-operators. The pair (¥w,<) constitutes a
sub-lattice of the lattice (¥, <). Furthermore, it is iso-
morphic to the complete Boolean lattice (P(P(W)), C
), since the mapping Kw : ¥y — P(P(W)) defined

309

by Kw () = {X € P(W) : 0 € $(X)},Vy € Ty,
is bijective and preserves the partial order. The set
Kw (1) is the kernel of 1.

3 Morphological Language

In this session we recall the main concepts of Math-
ematical Morphology from the viewpoint of a formal
language.

Let ¥,v¢, € (¥,<). The supremum v, V 12 and
infimum ¥ Az operators verify (v Vi }(X) = ¢¥1(X)
U ¥2(X) and (Y1 A 9)(X) = 91 (X) Nya(X), X €
P(E). They can be generalized as (Vicrs)(X) =
Uieri(X) and (Aier:)(X) = Nieri(X), where [is a
set of indices. The composition operator 1), is given
by ¥211(X) = ¥h2(¢1 (X)), X € P(E).

The set operators ¢ and v defined by «(X) = X
and v(X) = X¢ VX € P(E), are called, respectively,
the identity and the negation operators. ¢ and v are
1.d. within the window {o}. The dual of an operator
1, denoted by ¥*, is defined by ¥*(X) = (X)), X €
P(E). Note that ¥* = viv.

For any h € E, the set operator 7, defined by
Tw(X) = Xn, VX € P(FE), is called the translation
operator by h. 7, is 1.d. in {-h}. For a t.i. operator 1,
ThY) = YTh.

Let B € P(W). The t.i. set operators ép and €p
defined by 6p(X) = X®Bandep(X)=X6B,VX €
P(E), are the dilation and erosion by the structural
element B [6]. These set operators are 1.d. in B* and
B, respectively. One can also write §g = Vpep 7 and
€B = NpeB T—p-

Proposition 3.1 If ¢, ¢, and i are set operators
locally defined within windows W, W and W5, respec-
tively, then they have the following properties:

1. 3 is ld. in any window W' D W;
2. Y1 AP and Y1 V pg are L.d in Wy UW,;
3. Yhe E,mptp is Ld. in W_p;

4. YB C W,dp¢ and ept are l.d. in W © B! and
W & B, respectively,

5. T/)2¢1 is l.d. in W] 5] WZ,'
6. v, Yu, v, Yv and ¥* are l.d. in W.

This proposition is demonstrated in [6].
Morphological operators, that is, sentences of the
Morphological Language, are built as strings of elemen-
tary operators (eg;, ép,, ¢, ¥) bound by the operations
V, A and composition.
As an example, let A, B € P(W) such that A C
B. The collection [A,B] = {X : A C X C B} is

called an interval. The ti. sup-generating operator
AX g, defined by W p(X) ={z € E: (X_;)nW €
[4,B]}, X € P(E), can be described as A g = €4 A
vz, where B = W\B. Note that AY 5 is Ld. in
AU B, and, hence, in W.

The set Bw (1) of all maximal intervals in the ker-
nel of a W-operator v is called basis of ¢ [2]. See Sec-
tion 2 for kernel definition.

Any W-operator 1 can be given by their canonical
sup-decompositions:

P(X) =AY p(X): [4,B]CKw(®)} [X € P(E)]
and
P(X) = UMY p(X): [A, Bl € Bw(¥)} [X € P(E)]

As a conclusion, ML is complete, in the sense that
any W-operator can be represented by canonical forms,
which are valid sentences of ML [3]. It is also expres-
sive, since many useful operators can be described with
short sentences.

4 Binary Decision Diagrams

A variety of representation methods for Boolean func-
tions have been developed. In the classical ones, such
as truth tables and canonical sum-of-products form,
the representation of a function of n variables has size
O(2™). Other approaches, such as the set of prime im-
plicants (or equivalently the set of maximal intervals)
or a subset of irredundant ones, yield to compact rep-
resentation for many functions, but simple operations
such as complementation may result in a representa-
tion of intractable size. Here we describe a graph-based
representation method that is very useful for a large
class of Boolean functions, many of them not tractable
by other schemes.

4.1 Boolean Functions as DAGs

The representation of a Boolean function by a decision-
based structure was introduced by Lee[15] and further
popularized by Akers [1] under the name of binary de-
cision diagram (BDD). Algorithms for BDD manipu-
lation are described in {10]. Efficient implementation
directions are found in {13] and [9]. Applications of
BDDs in Digital Image Processing have been recently
developed [20], [18], [17].

A Binary Decision Diagram of a Boolean func-
tion f : {0,1}" — {0,1} is a rooted, directed acyclic
graph (DAG) with two types of nodes: terminal and
nonterminal. Each terminal node v has as attribute
a value value(v) € {0,1}. The nonterminal nodes v
have two children nodes, low(v) and high(v). Each

310

nonterminal v is labeled with an input variable index
indez(v) € {1,2,...,n}.

For a given assignment to the input variable vec-
tor x = (z1,...,Zn), the value of the function is de-
termined by traversing the graph from the root to
a terminal node: at each nonterminal node v with
index(v) = ¢, if z; = 0, then the arc to low(v) is
followed. Otherwise (z; = 1), the arc to high(v) is fol-
lowed. The value of the function is given by the value
of the terminal node.

A node v in a BDD represents a Boolean func-
tion f, such that: (a) if v is a terminal node with
value(v) = 0, then f, = 0; (b) if v is a terminal node
with value(v) = 1, then f, = 1; (c) if v is a nontermi-
nal node and indez(v) = i, then f, =75 - flou () + Ti -
fhrigh(v)- The mathematical background of the BDD
construction is the well known Shannon Ezpansion of
a Boolean function: f = z; - f|;, + Z; - flzz- The re-
strictions fl,, = f(zi1,...,%i-1, 1, Zit1,...,Zn) and
flez = f(z1,...,zi—1, 0, Tit1,...,xn) are the cofac-
tors of f with respect to the literals z; and Z;.

4.2 Reduced and Ordered BDDs

An ordered BDD (OBDD) is a BDD such that any path
in the graph from the root to a terminal node visits
the variables in ascending order of their indices, i.e.,
index(v) < indez(low(v)) whenever v and low(v) are
nonterminal, and indez(v) < indez(high(v)) whenever
v and high(v) are nonterminal. Since a variable ap-
pears at most once in each path, a function is evaluated
in time O(n) in an OBDD.

If an OBDD contains no pair of nodes {u, v} such
that the graph rooted by u and v are isomorphic, and
if it contains no node v such that low(v) = high(v), it
is called a reduced OBDD (ROBDD). An OBDD of N
vertices can be transformed in an equivalent ROBDD
in time O(N- log N) by the REDUCE algorithm pre-
sented in [10).

The following theorem states the canonicity of the
ROBDD representation.

Theorem 4.1 For any Boolean function f, there is
a unique ROBDD representing f. Furthermore, any
other OBDD representing f contains more vertices.

The proof of this theorem is presented in [10].

Besides allowing function evaluation in linear time,
ROBDDs can be used in the efficient computing of
function satisfiability, tautology and equivalence.

4.3 The Lattice of ROBDDs

Let F, denote the set of all functions {0,1}™ — {0,1}
and let ®w denote the set of all functions P(W) —

{0,1}, such that W = {wy,...,w,}. We establish
a one-to-one correspondence between elements of F,
and ®w by making f(z1,...,7,) = o({w; € W : z;
1}). Let < denote the usual order in {0,1}. The par-
tially ordered sets (F,, <) and (®w, <) are complete
Boolean lattices isomorphic to (P(P(W)),C). This
is observed from the bijective mapping K : &y —
P(P(W)) given by K(p) = {X : p(X) = 1}.

Let Gw denote the set of all ROBDDs represent-
ing functions in F,,. From the previous theorem, ROB-
DDs are unique and non-ambiguous representations of
Boolean functions. Thus, there is a bijective mapping
between Gy and F,, and, hence, between Gy and
®w. The ROBDD of a binary function ¢ € ®w is
denoted by G(¢) and is simply called “graph” in the
sequence. The pair (Gw,C) is a complete Boolean
lattice isomorphic to the lattice (®w, <), where the
partial order C between two graphs G(¢1) and G(p2)
in Gw is defined by G(p1) C G(p2) & ¢1 < p2 ,
01,902 € Pw.

5 Operations on BDDs

5.1 Algorithms for Logical Operations
between Graphs

Let ¢, 01,02 € ®w and let G,G1,G2 € Gy be their
corresponding graphs. The graph complement, infi-
mum and supremum, respectively denoted by =, M and
U, are computed by the algorithm APPLYOPERATION
presented in [10]. This algorithm takes as input two
graphs with N; and N nodes and a logical operation
(AND, OR, XOR) as parameters, and return the re-
sulting graph in time O(N; - N2). The algorithm is
based in the following property of Boolean functions:
[®fo =T (file ® falz) + @i (fila, ® f2ls;), where
® denotes one of the sixteen logical function of two
variables [11]. Thus,

G1 M G2 =G(p1-p2) =APPLYOP.(G1,G2, AND);
GLUGy = G((,Ol + (pQ)ZAPPLYOP.(Gl, Gg,OR);
G =G(®) =AprpPLYOP.(G,1, XOR).

The graph of the complement of ¢ € ®w can be
alternatively computed by simply exchanging the val-
ues of the two terminal nodes.

The graph dual of G in Gy is denoted G*, and is
defined by G*(p(X)) = G(p*(X)) = G(®(X°)). It can
be computed from G by swapping low(v) with high(v)
in each vertex of G and swapping the terminal nodes
too.

5.2 Algorithm for the Translation of a Graph

Let h € E and ¢ € ®w. The translation of ¢ by
h, denoted by ¢y is defined by pr(Y) = ¢(Yn),VY €

311

P(W_p). Thus, g, € dw_, and the Boolean expres-
sions of ¢}, can be obtained from those of ¢ by a chang-
ing of variables. The input translation by h of the
graph G(p) € Gw is denoted by G(y) + h and defined
as G(¢) + h = G(pp). Note that G(p) + h € Gw_, -

For a trivial implementation of G + h, W U W_,,
must be consistently ordered, otherwise a reordering
of the BDD may be mandatory. From this point, we
assume that £ = Z? and that a all translations of
interest of W fit in a rectangle R C E. The usual
lexicographical order for the elements of R yields to
a preservation of the order of the elements of W in
any translation. Thus, the translated graph G + h is
isomorphic to G up to vertex relabeling.

6 Translating Morphological Operators into
Decision Diagrams

In this section we see how to incrementally compute the
ROBDD of a W-operator described by a morphological
expression.

We have seen (Section 2) that (¥w, <) is isomor-
phic to (P(P(W)), C), and also (Section 4) that (®w,
<) is isomorphic to (Gw, C) and to (P(P(W)), C).
This demonstrates, by transitivity of isomorphisms,
that there is a one-to-one correspondence between ele-
ments of Gy and ¥y . This shows that a graph non-
ambiguously and uniquely represents a W-operator.

We denote by Gw (¢) the corresponding graph of a
W-operator 1. The caligraphic G() is to stress that the
argument is an operator, while G() has as argument a
function. The subscript W is used in both notations to
emphasize the window in which the graph is defined.

The mapping ¢ : ¥y — Sy given by p(¥)(X) =
1 0 € Y(X),V) € Ty establishes the characteristic
function of the W-operator 1. Note that the kernel
K () is the satisfying set of (1), and the basis B(1)
is the set of prime implicants of p(v).

The following propositions establish the algorithms
that perform the basic operations on graphs of morpho-
logical operators.

Proposition 6.1 If ¢, i, and ¥, are W-operators,
respectively within the windows W, W; and Wy and
with graphs Gw (¥), Gw, (V1) and Gw, (v2), then

Gw(vy) = Gw(¥)
Gwuws (Y1 AY2) = Gwyows, (¥1) N Gw,yuw, (V2)
Gwiuw: (1 V) = Gwuw, (¥1) U Gwiow, (¥2)
Gw*) = Gw().

Proposition 6.2 If ¥ is a W-operator with graph
Gw(¢) and, Vh € E, 7, is the translation operator

by the vector h, then

Gw_n(Th¥) = Gw (¥) + .

Proposition 6.3 If 1 is a W-operator with graph
Gw () and dp 1is the dilation by B, then

Gwep (08Y) = UseB(Gweon: (¥) + b).

Proposition 6.4 If ¢ is a W-operator with graph
Gw (¥) and £ is the erosion by B, then

Gweon(es¥) = MeB(Gwan (W) + (—b)).

Proposition 6.5 If ¢ is a W-operator with graph
Gw (), ’\K/,B is the sup-generating operator, and B =
W'\B, then

Gwow (MY 5¥) = Gwew (€4¥) NGwew: (05:9).

Definition 6.1 Given a set of indices I, we say that a
collection of intervals {[A;, B;] : i € I} exactly covers
a W-operator ¢ if ¢ = V.L‘e]/\%’B‘_.

For example, the basis of a W-operator is an exact
cover of it. And so is the set {[4,4] : A € Kw(¥)}.
The set of intervals representing the positive paths
(those that yield to 1) of a graph Gw (¥) is a disjoint
exact cover of 1, because it exactly covers ¥ and any
two of its intervals have empty intersection.

Proposition 6.6 If ¢; and ¢, are t.i. operators l.d.
in W, and Wa, respectively, with graphs Gw, (¥1) and
Gw, (¢2), and {[Ai, B;] : i € I} is a set of intervals
that exactly covers 15, then

Gwiow, (¥2t1) = UicrGw,ow, (A4 5, 1)

The proofs of these propositions are based on the
isomorphisms mentioned in the beginning of this sec-
tion, and are presented in [16].

Figure 1 illustrates the building blocks used to
pictorially describe a morphological operator (a) and

bkt
bk
b

(a) (b)

Figure 1: Basic operations on operators and corre-
sponding operations on graphs.

312

gl -—l. OOy O O
? 0 LI O O O O
- (o |

= I“g OOOOOX
N o] = coooe

Figure 2: Vertical border detector and its window.

| XCW | o(¥)(X) Xcw (W) (X)
{ws} 0 {wy,ws} 0
{’u)g} 1 {wl,wQ} 1

{wq, w3} 1 {w1,ws,ws} 0

Table 1: Characteristic function of a W-operator.

their corresponding blocks used to incrementally build
its graph (b). The correspondence between sets (a)
and (b) is explained in the propositions above. The
blocks with the symbol ”=" compares two input mor-
phological operators (and graphs), as explained in the
sequence, and result a boolean value. In the examples
below we will use such graphical construction.

6.1 Automatic Proof of Equivalence

An important task in MM is to determine whether two
descriptions correspond to the same operator. Proving
the equivalence of two morphological operators 1, and
12 involves manipulation of their expressions using well
known set-theoretic properties, and it is often a diffi-
cult task. On the other hand, if we know the graphs
G and G7 of two W-operators, then the proof of their
equivalence is trivial: since the graph representation
of a W-operator is unique, we simply compare if both
graph descriptions are equal. Alternatively, we could
verify it by calling APPLYOPERATION (G, G2, XOR),
and test if the resulting graph is the trivial leaf ”0”.

7 Examples

In this section we will see how to compute the ROBDD
representation of a W-operator. Several ways of rep-
resenting a W-operator exist. For example, an opera-
tor 4 locally defined in W = {w;,ws, w3} = {(-1,0),
(0,0), (1,0)} that detects the vertical borders of Fig-
ure 2, can be represented by:

e the characteristic function ¢(1)) of Table 1;
e the Hasse diagram of Figure 3(a);
e the canonical sup-decomposition

Y=)‘mz}w{wuwz} v A‘{/sz},{wzyws};

Figure 3: (a) Hasse diagram and (b) graph of the op-
erator.

the morphological expression by means of erosion
and dilations ¥ = €y,} A V0(w,} V E{wy} A VO{ws}

the block diagram of Figure 4(a);

the Boolean expressions F(vy)(z1,%2,73) = 2 -
T1T3 = T1Z2 + 12T3 = 22(T) + T3);

the kernel Cw (1/)) = {{’UJQ}, {UIQ,'LU;;}, {wl,wg}};
the basis

Bw () = {[{wZ}a {w11w2}]) [{U)?}a {w2, ws}l};
e the graph (ROBDD) Gw (¢) of Figure 3(b).

It is possible to compute the graph of any W-operator,
whenever its description in the morphological language
is known. For the incremental computation of the
graph of a W-operator ¥ described by a morphological
expression, we start with the graph of the identity op-
erator and successively apply the algorithms that cor-
respond to the propositions in the preceding section,
according to the parsing of the sentence that describes
1. Each step is initiated by the modification of the
window by applying Proposition 3.1.

7.1 Anti-Extensive Vertical Border Detector

Figure 4: Construction of the morphological expression
(a) and of the graph (b) of the vertical border detector.

" In order to obtain the graph of the anti-extensive

313

=52

0] 1]

oo

G0=G2=)5

o]

o)

Figure 5: Incrementally computed graph of the border
detector (see labels in Figure 4-b).

vertical border detector just seen, we set the config-
uration of Figure 4(b) and apply the corresponding
algorithms. At each step we obtain the graphs shown
in Figure 5.

7.2 Composition of two Median Filters

This example illustrates the composition operation be-
tween two operator graphs. When two graphs are
known, but we have no access to the morphological
expression that generated them, then we can use the
algorithm of Prop. 6.6 to calculate the graph of the
composition of the two represented operators.

(a)

Figure 6: (a) 1x3 median filter and (b) composition of
two of them.

Figure 6 shows the graph of the median filter of
window W = {wy, w2, w3} ={(-1,0),(0,0),(1,0)}, and
the resulting composition between two of them. The
latter has window W = {wg, w1, ws, w3, ws} = {(-2,0),
("LO): (070)7 (170)7 (270)}'

8 Implementation

We implemented the algorithms of section 6 to com-
pute the BDD of image operators. The low-level BDD
algorithms followed the ideas found in [9}, i.e. the ITE

operation, instead of the already mentioned APPLY-
OPERATION() of [10]. In this level, the graphs of all
operators being processed share their nodes in a unique
table (global storage). However, at a higher level (local
storage), each operator has its own ROBDD, together
with its window stored in the usual 2-D scan order.

The implementation of the translation operation
is not straightforward in the ITE paradigm: a relabel-
ing of nodes can’t be done, because the label is part
of the hash key (see [9]). In order to implement the
translation operator still by means of an order preserv-
ing change of variables, the nodes in the unique table
don’t store the actual indices of the operator’s func-
tion variables. Instead, they store a reference into an
unordered table of all window elements in use. When
extracting a graph from the unique table, or import-
ing a new graph into it, the appropriate conversion
between local and global indices is made. Thus, the
translation of a graph is done by extracting it from
the unique table, and then loading it again with the
window appropriately displaced.

Compositions by erosion and dilations are com-
puted by calling the translation several times. The pa-
rameters for the sup-generating operators used in the
computation of the composition of two operators is di-
rectly obtained from each positive path of one of the
input graphs. Sometimes the task of representation
conversion from morphological expressions is slow, be-
cause the number of generated graph nodes may grow
exponentially, depending on the operator.

The application of a BDD over an image could be
done by a general program that traversed the graph
structure, but in our system we implemented a code
generator: each BDD is converted to a program in the
C language, which takes the image and the window
as inputs. The program is then compiled, optimized
and stored in a dynamic library. The advantage of
this approach is obvious: each node is an if-then-else
structure which is directly executed, leading to faster
programs. The implemented image structure uses one
pixel per byte.

8.1 Experimental Results

The programs for incremental construction of BDDs
and the one that applies them over images were devel-
oped on the Khoros 2.2 environment (14]. For compar-
ison reasons we used the MMach Toolbox [5]. Several
runs were made for the created BDD-based operators,
and compared against the equivalent operators built
from the specifically designed ones of the mentioned
Toolbox.

Timing results were collected on a 450 MHz per-
sonal computer running the Linux operating system,

314

Image Size Thin_4.homoth Dil_diamond

Name (pixels) MMach | BDD [MMach | BDD

Beetle 4096 63.2s 19.3s 33.4s 4.8s
NoisyBall 4096 62.1s 15.4s 35.4s 19.4s
UltraSnd 4600 69.6s 23.3s 39.3s 3.7s

Table 2: Comparison of running times for the operators.

Figure 7: Diamond-shaped structuring element.

and shown in Table 2. Two previously calculated op-
erators, named “Thin_4_homoth” and “Dil_diamond”,
were applied over three images of around 2000 x 2000
pixels. They are explained in the sequence.

The first operator tested was the four-homothetic
thinning as defined in {17]. Each complete turn is an
operator that depends on a window of 82 elements.
The task in the MMach test consisted on calling the
thinning operator a single time, with parameter of 80
steps (each step rotates the structuring element by
45°), while the equivalent task in the BDD test (our
implementation) consisted in 10 consecutive applica-
tions of the BDD of a single turn. This BDD has 2899
nodes. The measured times show that the BDD im-
plementation is at least tree times faster.

The second operator consists of a dilation by the
diamond of Figure 7. The operator window size has
84 elements. The task in both runs consisted of 10
consecutive applications of the operator. As would be
expected, the BDD program is too sensible to the input
image contents: when it has large areas of zero value,
short paths in the BDD are rare. Nevertheless, the
implementation with BDD is much faster than in the
other approach.

9 Conclusion

In this work we saw that the Reduced Ordered Binary
Decision Diagram is a good alternative for the repre-
sentation of translation-invariant and locally defined
set operators. Its efficient application time makes it
a good candidate as the core representation scheme of
non-linear signal and image processors.

The main contribution of this work was the de-
velopment of a well defined procedure to convert any
expression of the morphological language for a given
W-operator in its correspondent ROBDD. We saw that
the ROBDD is a non-ambiguous (complete) and unique

representation scheme for W-operators, The unique-
ness of the ROBDD representation allow a simple so-
lution to the problem of checking the equivalence be-
tween morphological operators.

The main drawback of the graph-based represen-
tation is that its size (number of nodes) can grow ex-
ponentially with the number of variables (window size)
in some cases. A challenging task is to classify the
Boolean functions in terms of such behavior, in order
to determine the conditions for which one description
(morphological expression, basis, graph, etc.) is better
than the other.

Currently we are working on an implementation
of a BDD-based morphological machine and extending
this approach to multi-level morphology.

References

[1} S. B. Akers. Binary Decision Diagrams. IEEE Trans-
actions on Computers, C-27(6):509-516, June 1978.

G. J. F. Banon and J. Barrera. Minimal Repre-
sentations for Translation-Invariant Set Mappings by
Mathematical Morphology. SIAM J. Appl. Math.,
51(6):1782-1798, December 1991.

G. J. F. Banon and J. Barrera. Bases da Morfolo-
gia Matemadtica para Andlise de Imagens Bindrias. IX
Escola de Computagio, Pernambuco, July 1994.

2

(3]

[4] J. Barrera and G. J. F. Banon. Expressiveness of the
Morphological Language. In Image Algebra and Mor-
phological Image Processing III, volume 1769 of Proc.

of SPIE, pages 264-274, San Diego, California, 1992.

J. Barrera, G. J. F. Banon, R. A. Lotufo, and R. Hirata
Jr. MMach: a Mathematical Morphology Toolbox for
the Khoros System. Electronic I'maging, 7(1):174-210,
1998.

J. Barrera and G. P. Salas. Set Operations on Closed
Intervals and Their Applications to the Automatic
Programming of Morphological Machines. Electronic
Imaging, 5(3):335-352, July 1996.

J. Barrera, R. Terada, R. Hirata Jr, and N. S. T. Hi-
rata. Automatic Programming of Morphological Ma-
chines by PAC Learning. Fundamenta Informaticae,
41(1-2):229-258, January 2000.

G. Birkhoff. Lattice Theory. American Mathematical
Society, Providence, Rhode Island, 3rd edition, 1967.

K. S. Brace, R. L. Rudell, and R. E. Bryant. Effi-
cient Implementation of a BDD Package. In Proceed-
ings of 27th ACM/IEEE Design Automation confer-
ence, pages 40-45, 1990.

R. E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Com-
puters, C-35(8):677-691, August 1986.

G. de Michelli. Synthesis and Optimization of Digital
Circuits. Mc Graw-Hill, 1994.

(5]

7]

(8

—

(9]

(10]

(11]

315

[12] H.J. A. M. Heijmans. Morphological Image Operators.
Academic Press, Boston, 1994.

[13] K. Karplus. Representing Boolean Functions with If-
Then-Else DAGs. Technical Report UCSC-CRL-88-

28, UCSC, November 1988.

K. Konstantinides and J. Rasure. The KHOROS Soft-
ware Development Environment for Image and Signal
Processing. IEEE Transactions on Image Processing,
3(3):243-252, 1994,

C. Y. Lee. Representation of Switching Circuits by
Binary-Decision Programs. Bell Syst. Tech. Journal,
38:985-999, 1959.

H. M. F. Madeira and J. Barrera. Decision Diagrams
as the Core of Morphological Machines. Manuscript
in preparation, 2000.

H. M. F. Madeira, J. Barrera, R. Hirata Jr, and
N. S. T. Hirata. A New Paradigm for the Architec-
ture of Morphological Machines : Binary Decision Di-
agrams. In J. Stolfi and C. L. Tozzi, editors, Proc.
SIBGRAPI’99 - XII Brazilian Symposium in Com-
puter Graphics and Image Processing, pages 283-292,
Campinas, SP, Brazil, November 1999.

L. Robert and G. Malandain. Fast Binary Image Pro-
cessing Using Binary Decision Diagrams. Computer
Vision and Image Understanding, 72(1):1-9, October
1998.

J. Serra. Image Analysis and Mathematical Morphol-
ogy. Volume 2: Theoretical Advances. Academic Press,
1988.

M. Starkey and R. Bryant. Using Ordered Binary-
Decision-Diagrams for Compressing Images and Image
Sequences. Technical Report CMU-CS-95-105, School
of Computer Science, Carnegie Mellon Univeristy, Jan-
uary 1995.

(14]

(18]

