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Abstract.

The Point Containment predicate which specifies if a point is part of a mathematically well-defined

object is a crucial problem in computer graphics. Point-driven algorithms can be executed for several points in
parallel as there is no interdependence among the computations for different points. This paper presents a variety
of parallel configurations to counteract the main disadvantage of the point-driven algorithm: its slowness on a
standard uniprocessor software implementation for interactive editing and manipulation.

1 Introduction

Region filling is an important raster graphics transformation
of a closed curve into a region, which has many fundamen-
tal applications in Computer Graphics. The point-driven
approach, that specifies if a point is part of a mathemati-
cally well-defined object, is a natural way to implement it.

However, the number of computations involved in the
point-driven approach is quadratic with the resolution of the
output screen. In the object-driven approach, the scan con-
version is usually linear with the output resolution. There-
fore a software implementation of the point-driven render-
ing on a standard uniprocessor is too slow for interactive
editing and manipulating. Silicon integration and/or the use
of coherence tests seem to be necessary to compete “in the
large” with the object-driven systems.

In [2, 3, 4] Corthout et al. present a robust point con-
tainment algorithm, which was implemented in dedicated
silicon, the Pharos chip, fabricated by Philips, on support
of the PostScript language. Corthout and Pol [4] describe a
way to reduce the number of tests of the point containment
approach for region filling to quasi-linear using quadtrees
coherence. Fabris et al. [9] present the Maximal Coherence
algorithm, a method whose number of tests complexity de-
pends not on the resolution but only on the perimeter of the
polygon boundary.

On the other hand, the point-driven algorithm can be
executed for several points in parallel as there is no inter-
dependence among the computations for different points.
Ideally, one could reserve a point processor per output pixel
or dot. The various UNC PixelFlow machines {5, 15] have
a processor per pixel and conceivably could, with a more
powerful processor, use the point containment algorithm.
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Brooks [1] quoting Poulton points out that if current hard-
ware trend continues, the number of pixels per primitive
rendered by hardware will approach unity and in such cir-
cumstances pixels should be computed directly from the
underlying geometry rather than first approximating the ge-
omelry by polygons or line segments. The point contain-
ment approach is an example of this strategy, enabling a
fast parallel implementation and generating pixels directly
from curves, which avoids the difficulties in curve render-
ing tackled by Klassen [13] and Lien et al. [14].

This paper presents different strategies of paralleliza-
tion for the region filling task according to the following
point containment sequential versions: the basic quadratic
one and those using quadtree coherence [4] and maximal
coherence [9]. These strategies were chosen in order to
maximize the gain of performance in each case without in-
troducing much complexity into the algorithms.

2 Discrete Curves

A list of length n is a finite sequence of points given by the
function L : [0..m] — Z2. Discrete curves can be described
as lists whose distance between consecutive points is less or
equal to 1. A discrete curve is closed if L(0) = L(m).

The algorithms described in this paper are based on
non-simple 8-connected discrete closed curves, that is, dis-
crete closed curves including self-intersecting ones and who-
se adopted distance is the well-know 8-distance in Z? [11],
as exemplified in Figure 1.

The point containment algorithm used in this paper
is based on the Discrete Jordan Theorem for Non-simple
Closed curves, stated and proved by Corthout and Pol [4].
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Figure 1: An 8-connected plane discrete closed curve

This mathematical structure and the corresponding algo-
rithm are also briefly described by Fabris et al. [9]. Corthout
and Pol’s thesis contains details of the overall integer pre-
cision required for rendering on a chosen device together
with proofs of robustness and accuracy.

In this paper, the point containment test will be used
as a primitive operation. From ([4] and [9] it is easy to
see that if the discrete closed curve has p points, the time
complexity of the containment test is of order O(p). This
information will be used later in the analysis of the algo-
rithms.

3 Sequential Algorithms

In this section we describe three sequential algorithms for
region filling on which the corresponding parallel versions
are based.

3.1 Quadratic Filling

This first algorithm is the most natural one, but also the
slowest of the three presented in this section. It works test-
ing all points of the image against the curve, marking them
either with the object or the background color.

Algorithm 3.1  Quadratic Filling
Input: image I, closed curve C
Output: image 1

// paint each point of the image
for each point P of the image do
if P is inside the curve
then paint it with the object color
else paint it with the background color
// return result
return I

If the image has r points on each axis, then the algo-
rithm will make O(r?) point containment tests. As each
point containment test spends O(p) time (where p is the
perimeter of the discrete curve), the total cost time of the
algorithm is O(r? - p).

3.2 Quadtrees Coherence

One way to reduce the time complexity is to introduce a co-
herence test for regions. A region R is coherent with respect
to a closed curve C' if and only if it is completely inside
or completely outside the region delimited by C, Figure 2.
This can be easily determined checking if any point of C is
inside R. If R is a rectangle, testing if a point is inside R
spends O(1) time. Thus a whole coherence test for a curve
with p points spends O(p) time.

Figure 2: R; and R» are coherent regions with respect to
C, while Rj is not

The notion of coherence can be used in a recursive al-
gorithm that tests if a rectangle is coherent with respect to
a closed curve. If it is, the whole rectangle can be painted
with the object or background color, depending if its in-
side or outside the curve. If the rectangle is not coherent,
it can be divided into four quadrants and the algorithm can
be called recursively, Figure 3. The initial rectangle is the
whole image and the subdivision may stop in a rectangle
constituted by only one point.

Algorithm 3.2  Quadtrees Filling
Input: image I, closed curve C
Output: image [

if the image is coherent with respect to C
then do
// paint all points of the image
choose a point P of the image
if P is inside the curve
then paint all points of the image with
object color
else paint all points of the image with
background color
end do
// image subdivision
else divide the image in four quadrants and
call the algorithm recursively
// return result
return I

Note that in Algorithm 3.2 the initial parameter must
be the entire image. Then the following calls will be done
only for smaller parts of the image.

In [12] Hunter and Steiglitz proved that the quadtree
that represent the recursive calls to the algorithm has O(r +



Figure 3: Recursive division of an image

p) nodes, where r is the image resolution and p is the perime-
ter of the curve. So, the algorithm will be called O(r + p)
times, making a coherence test each time. Besides, only
O(r-+p) point containment tests will be done (on the leafs of
the quadtree), each one spending O(p) time. There are also
O(r?) color assignments. Therefore the algorithm spends
O((r+p)-p+ (r+p) -p+r?) time, thatis, O(p* +r-p+7r?)
time.

3.3 Maximal Coherence

As stated by Fabris et al. [9], the quadtrees subdivision ap-
proach used to detect coherent regions is not optimal, be-
cause it can find coherent regions that are embedded in big-
ger coherent regions.

The maximal coherence algorithm finds the bigger co-
herent regions existing on the image. It uses a propagation
approach starting on any point inside the region to be filled.
The function is simple: first the curve is plotted on the im-
age. Then for each point of the curve, it propagates the
object color from every 8-connected neighbour inside the
region. This propagation can be done using a queue.

Algorithm 3.3 Maximal Coherence Filling
Input: image I, closed curve C
Output: image 1

initialize all image points with the back-
ground color

// plot the curve on the image
for each point P of the curve do

plot P on the image with the object color
// start propagation from each interior
// 8-neighbour point of each point of C
for each point P of the curve do

for each 8-neighbour Q of P do

if Q is inside the curve
then start the propagation from Q

// return result
return I

The propagation process is similar to a breadth-first
search used on graphs. It can be done only for the 4-con-
nected neighbours of each point, to guarantee that the prop-
agation will not cross the 8-connected curve. For more de-
tails see {9].
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For each of the p points of the curve, up to 8 point
containment tests are performed, resulting O(p?) complex-
ity time. The propagation is performed for O(r?) points,
where r is the image resolution. The time for each propa-
gated point is constant as it requires one removal and up to
4 insertions in the queue. Then the total complexity time of
the algorithm is O(p? 4 r2).

3.4 Theoretical Comparison of Sequential Algorithms

Table 1 shows that for an upper bound limitation, the max-
imal coherence algorithm is theoretically faster than the
quadtrees coherence and that this one is theoretically faster
than the quadratic algorithm, although the first difference is
smaller than the second.

Algorithm # of Tests Total Time
Quadratic O(r?) o(r? - p)
Quadtrees Coherence | O(r +p) | O@* +r-p+7r?)
Maximal Coherence O(p) oW? +r?)

Table 1: Comparison of theoretical results

4 Parallel Algorithms

A well-known fact in parallel computing (e.g. [6]), is that
the fastest sequential algorithm is not always the fastest par-
allel algorithm. And the fastest parallel algorithm for one
number of processors may not be the fastest for a different
number of processors. In the following we present paral-
lelizations for distributed memory machines with arbitrary
number of processors for the three sequential algorithms
described above.

The correct load balance among the processors is a
crucial problem in constructing parallel algorithms. Also,
excess of communication, specially during the computation
phase, may cause overhead, limitating the gain of perfor-
mance proportionally to the number of processors. Thus
communications among processors must be minimized.

4.1 Quadratic Filling Parallelization

The parallelization of the quadratic filling algorithm is triv-
ial: first the image can be equally partitioned among the
processors, then each processor constructs its own part of
the image and finally all parts are joined.

One processor is chosen to be the master and is in
charge of: taking the curve from the input, dividing the
work among the processors, sending the data to them, col-
lecting the results, joining them and sending it to the output.
As usual, the master processor in our implementation also
takes a part of the work for itself to help the others.



Algorithm 4.1  Parallel Quadratic Filling - Master
Input: image I, closed curve C, int numProcs
Output: image I

// divide image among all processors
for each processor p do
send the curve C to processor p
send the limits of the image to be filled
by p to processor p
end do
// execute algorithm
execute quadratic filling on master’s image
piece
// get results from all processors
for each processor p do
get image piece constructed by p
join all image pieces
// return result
return I

Algorithm 4.2  Parallel Quadratic Filling - Others
Input: (none)
Output: (none)

// get data from master processor

get the discrete curve C from master

get limits of the image to construct

// execute algorithm

execute quadratic filling on processor’s
image piece

// send results to master processor

send image piece to master

In order to simplify the division and joining for any

number of processors, we divide the image by vertical strips,

Figure 4. Horizontal strips could equivalently be used.

Figure 4: Image division among four processors

4.2 Quadtrees Coherence Filling Parallelization

The main idea of this parallelization is similar to the quad-
ratic one. The image is partitioned equally among the pro-
cessors either by horizontal or vertical strips and the exe-
cution starts. However, due to differences in the execution
times for different pieces of the curve, a dynamic load bal-
ance is required: when a processor finishes its work, an-
other one has to delegate a part of the work to it, as shown
in Figure 5.

238

Transtered trom P, to P,

Figure 5: Image division among four processors with work
transfer from P to P4

Algorithm 4.3  Parallel Quadtrees Coherence Filling
- Master

Input: image 1, closed curve C, int numProcs
Output: image I

// divide image among all processors
for each processor p do
send the curve C to processor p
send the initial limits of the image to be
filled by p to processor p

end do
// execute algorithm
do

execute quadtrees coherence filling on
image piece
ask other processors for more work
choose from which processor to get more work
tell other processors which one’s work was
taken
while got work to do
// get results from all processors
for each processor p do
get image pieces constructed by p
join all image pieces, combining repetitions
using ‘‘or’’ combination
// return result
return I

Algorithm 4.4  Parallel Quadtrees Coherence Filling
- Others

Input: (none)
Output: (none)

// get data from master processor
get the discrete curve C from master
get limits of the image to construct
// execute algorithm
do
execute quadtrees coherence filling on image
piece
ask other processors for more work
choose from which processor to get more work
tell other processors which one’s work was
taken
while got work to do
// send results to master processor
send all image pieces constructed to master




The dynamic load balance implies that the recursivity
of the algorithm must be eliminated. Thus, a stack can be
used to keep the data of the recursive calls. When a proces-
sor needs to delegate some work to another one, it can just
take some data from the base of the stack and transfer it to
the top of the other processor’s stack.

When a processor finishes its job it must contact all
the others to know the amount of work that each one may
transfer in order to decide from which one to take it. If
the amount of work is not advantageous the processor may
decide to do not take any work from the others.

After a processor delegates a task to another, it must
clean the image piece related to the area transfered with the
background color, because when both of them send their
results the master one decides from which one to take the
results, or just combine them using an “or” operator.

Since a working processor should never be waiting
for communication, asynchronous communication must be
used. So a processor contacting the others may wait for
their answer. But the others, that are still working, may
check for messages only when they are able to transfer data.
If there is no request, they can continue working.

4.3 Maximal Coherence Filling Parallelization

A parallel algorithm using the maximal coherence approach
could simply divide the image among the processors and let
each one calculate its own part, limitating the propagation
of the object color to each processors’ area. It is necessary
to avoid that an area without pieces of the curve could be
attributed to a processor, since this algorithm only works
inside the curves propagating the object color.

Once the propagation starts it is difficult to change its
limits, what may increase the time complexity of the algo-
rithm. Thus a static load balance should be used.

The idea of the maximal coherence filling algorithm
(see Algorithms 4.5 and 4.6) is to calculate the limits of the
curve in one axis, partition the range occupied by the curve
among the processors in that axis and let them perform the
filling only in that region, limitating the propagation. The
area not assigned to any processor must be pre-filled with
the background color by the master processor.

If the width of the curve is greater or equal to the num-
ber of the processors, vertical strips can be used, as shown
in Figure 6. Otherwise horizontal strips must be used.
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Figure 6: Maximal coherence image division among four
processors

Algorithm 4.5
Master

Input: image I, closed curve C, int numProcs
Output: image [

Parallel Maximal Coherence Filling -

// divide image among all processors
calculate minx and maxx of the curve C
partition minx->maxx range equally among
the processors
fill areas not assigned with background color
for each processor p do
send the curve C to processor p
send the limits of the image to be filled by
p to processor p
// execute algorithm
execute maximal coherence filling on master’'s
image piece, limitating the propaga-
tion to image piece
// get results from all processors
for each processor p do
get image piece constructed by p
join all image pieces
// return result
return I

Algorithm 4.6  Parallel Maximal Coherence Filling -
Others

Input: (none)

Output: (none)

// get data from master processor

‘get the discrete curve C from master

get limits of the image to construct

// execute algorithm

execute maximal coherence filling on pro-
cessor’s image piece, limitating
propagation to image piece

// send results to master processor

send image piece to master




4.4 Theoretical Comparison on the Parallel Algorithms

For the three parallel algorithms described, the curve must
be sent by the master processor to all the others, causing an
overhead linearly dependent on the perimeter of the curve
and on the number of processors, O(n - p). This overhead
can be lower if more processors help on this task. We did
not use this improvement because in our implementation a
low number of processors is used.

The parallel quadtrees coherence algorithm also requi-
res communication among all processors on the job transfer.
On each of the O(r + p) subdivisions up to n — 1 processors
may contact the other n — 1 processors asking for more job,
resulting on a O(n? - (r + p)) overhead.

In the parallel maximal coherence algorithm, the limi-
tation imposed to the propagation of the object color causes
a low overhead for each propagated pixel, but high when
considering the whole image. It means that the overhead
of any parallelization of the maximal coherence algorithm
based on area limitation is relatively high and quadratically
dependent on the image resolution, O(r?).

Finally, for the three parallel algorithms, there is a
O(r?) overhead caused by sending the image pieces to the
master processor.

Table 2 shows the theoretical upper bound limitations
of the overhead of the parallel algorithms with respect to
the perimeter of the curve (p), the image resolution (r) and
the number of processors (n).

Algorithm Overhead
Quadratic Omn-p+r?)
Quadtrees Coherence | O(n? - p+n? - r 4+ 7r?)
Maximal Coherence O(n-p+r?)

Table 2: Comparison on the parallel algorithms overhead

Given a curve and image resolution, the overhead of
the parallel quadratic and of the parallel maximal coher-
ence algorithms depend linearly on the number of proces-
sors. On the other hand, the parallel quadtrees coherence
algorithm depends quadratically on the number of proces-
sors. It means that, for a low number of processors, the par-
allel quadtrees coherence algorithm can be the fastest one.
But for a higher number of processors the parallel maximal
coherence is better. Near a limit situation, for a number of
processors close to the number of pixels of the image the
parallel quadratic algorithm is better, due to its simplicity.

5 Practical Results

The algorithms were tested in a Parsytec PowerXplorer with
8 processors and distributed memory. The sequential ver-
sions were also implemented and tested on this machine
using only one processor. Two images with resolution of
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450x300 pixels were used to compare the times spent on
each algorithm using different number of processors. These
images have complex shapes in order to illustrate the ro-
bustness of the algorithms.

Plate 1 shows a curve composed by 47 Bézier curves,
with degrees varying from 2 to 10, adding up 211 control
points. It has some sharp ends and some curve superpo-
sition, but has no self-intersection. The resulting discrete
curve has 9,425 points. Figure 7 shows the execution times
for each algorithm.
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Figure 7: Times for first image

Plate 2 explores an example of a curve composed by
41 Bézier Curves, with degrees varying from 3 to 6, adding
up 159 control points. It has many self-intersections and
image superpositions. The resulting discrete curve has 5,495
points. Figure 8 shows the execution times for each algo-
rithm.
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5.1 Data Analysis

A well known tool that may be used to illustrate the gain
acquired with the parallel execution is the speed-up. If ¢; is
the time spent for the best sequential algorithm known and
t, is the time spent in a parallel execution using p proces-
sors, than the speed-up S, for p processors can be defined
as:

t
S, =+
tp

Figures 9 and 10 show the charts constructed for the
speed-ups for both images.
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Figure 10: Speed-ups for Image 2

Using the time and speed-up graphics, we can analyze
the behavior of the algorithms with relation to the num-
ber of processors. They show that, although the maximal
coherence is the fastest algorithm for sequential execution,
for parallel execution using a low number of processors the
quadtrees coherence is faster.

The graphical and theoretical analysis indicate that, for
higher numbers of processors, the maximal coherence is
faster than the quadtrees coherence algorithm because, as
stated before, it has a high overhead but linearly dependent
on the number of processors, while the quadtrees coherence
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algorithm has an overhead quadratically dependent on the
number of processors. The quadratic filling algorithm is
slower for all tested number of processors.

6 Conclusions and Further Work

Algorithms based on the point containment paradigm are
usually simple but slow. In this paper we have presen-
ted parallelizations for three filling algorithms based on the
point containment paradigm. The gain of performance ac-
quired makes all them profitable despite the fact that each
one is the fastest for a certain range of numbers of proces-
sors: the parallel quadtrees coherence algorithm is faster
for a low number of processors, the parallel maximal coher-
ence algorithm is the fastest for a higher number of proces-
sors and the parallel quadratic algorithm is theoretically the
fastest for a number of processors approaching the number
of pixels of the image.

Current work is going to investigate the parallelization
of the stroking algorithms based on the point containment
paradigm presented in [10]. By doing this we would be pro-
viding a complete parallel system for image renderizations
(e.g. a PostScript language interpreter), using simple but
efficient and robust algorithms.

Other further work include applications to Point Con-
tainment based antialiasing techniques [7, 8] and the par-
allelization of multidimensional Point Containment based
algorithms.
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Plate 1: Composed Bézier curves segments
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Plate 2: Bézier curves with self-intersecting segments



