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Abstract. This paper presents a new fractal color image compression method, called Fractal Hierarchical
Color Block Coding (FHCBC), which transforms the three-color planes of a color image into a one-component
image by extracting correlation among them. It hierarchically divides the three-color planes into homogeneous
blocks, and for each such block, the variance of pixels’ trichromatic coefficients is within a certain threshold
value. Then, each block is represented by its mean value of the pixels’ trichromatic coefficient ratios, and just a
one-component image is composed and compressed by fractal coding. In the decoding process, the
reconstruction is carried out by a fractal decoding algorithm and the associated mean values of trichromatic
coefficient ratios. In comparison with the well known three-component Separated Fractal Coding (SFC), the
suggested method generate performance gains in running time, high compression ratio and equal level of

reconstruction quality.

1 Introduction

Data compression has become an important issue for
information storage and transmission. This is especially
true for databases consisting of a large number of detailed
computer images [4, 5, 7]. Recently, a large quantity of
methods has appeared in the literature for achieving high
compression ratios for compressed image storage, and
among them, the fractal approach become a feasible and
promising compression technique. This assumption is
backed up by noticing its inclusion into end user products
such as Microsoft’s Encarta or as a Netscape plug-in by
Iterated Systems Inc. [2). Fractal image compression
exploits the natural affine redundancy present in typical
images to achieve high compression ratios in a lossy
compression format. The main idea of the method consists
in finding a construction rule that produces a fractal
image, approximating to the original one. Fractal image
coding has its roots in the mathematical theory of iterated
Sfunction systems (IFS) developed by Barnsley (1, 2],
whilst the first fully automated algorithm was developed
by Jacquin [12].

Up to now, image compression research is mainly
performed on gray-level images, with relatively few
results on color images, moreover, this is especially true
for fractal coding. However, we encounter much more
color images than gray-level images on day-to-day
applications. Additionally, any gray-level image can be
considered as a special case of a color image.
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There are many color image representations [8]. For
the convenience display colors on the monitor, a true
color image is most commonly represented by 24 bits per
pixel in a RGB color space with each component R, G and
B assigned 8 bits [8]. Thus, the most straightforward
method to encode a color image by gray-level fractal
image coding algorithm is to split the RGB color image
into 3 channels, red, green and blue, and compress them
separately by treating each color component as a single
gray-scale image [17], the so called three-component
Separated Fractal Coding (SFC). This method, however,
does not exploit the correlation among color components
(inter-color-plane redundancy) resulting in a relatively
low compression ratio and taking a long processing time.

In this paper, we introduce a new color image coding
algorithm, called Fractal Hierarchical Color Block
Coding (FHCBC). It is based on the RGB color model and
by hierarchically partitioning the three-color planes into
strongly correlated blocks. Then, only one color-plane
needs to be coded, while the other two can be
automatically reconstructed from the encoded color plane
and correlation among them. In comparison with SFC,
FHCBC can achieve the same level of reconstruction
quality, a much higher compression ratio and, especially,
one-third of the compression time.

This paper is organized as follows: Section 2 reviews
the general idea and a classical algorithm of the fractal
gray-level image coding. Section 3 introduces the FHCBC
method, and in the next one, computer simulation results



are presented. Finally, the last section presents some
conclusions.

2

In this section, we describe, briefly, the fractal image
compression technique. The mathematical foundations
were laid in (I, 2]. Detailed description on computer
implementations can be found in [6, 11] or [15].

Fractal Image Compression

It is well known that complex fractal images can be
generated by iterating very few simple maps (1, 2, 18]. If
we directly store these fractal images as a collection of
pixels, clearly, a large amount of memory will be required;
however, if just the maps are stored, only a fraction of the
former is necessary. This is the main motivation for using
the fractal image coding study. In this way, the
corresponding maps can be considered as a compressed
form of a fractal image, and the original image can be
reconstructed by iterating these maps.

In order to guarantee the convergence of iterations,
the set of maps should be contractive (1, 2]. Informally, a
map is contractive if the distance of any two points in the
image space tends to zero under iterating of the map.

Usually, we cannot expect to find a single map to
represent a whole natural image, but it is always possible
to find self-similarities amidst different portions of the
same one. This suggests that we can divide the original
image into a number of sub-image blocks and try to match
the transformed sub-image blocks with other parts of the
same image. Specifically, we partition the image twice to
get the following two type of blocks: 1) a collection of
non-overlapped smaller sub-image blocks, called range
blocks {R;} ¥, and 2) a collection of possibly overlapping
larger sub-image, called domain blocks {D;} ¥, . For each
range block R;, the domain pool is searched to find a best
matched domain block under certain transformation .
This range block is, then, represented by the obtained
transformation (map) «. Finally, the whole image is
represented by a collection of maps @, @, ..., ax, such

- n . . .
that W = Y la),». The original image is an attractor of
[ =

W, ie., it can be reconstructed by iterating W on any
initial image configuration.

For its simplicity and suitability to the image
processing handling, usually the affine transformation is
utilized to limit the form of maps:
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where subscript / indicates the transformation of ith range
block; x; and y; represent the pixel coordinates, and z;
represents the pixel intensity at point (x;, y,). a;, b;, ¢, d;, e;,
/i, are geometrical transform parameters, where a;, d; are
scaling factors, b, ¢; are rotation factors and e;, f; are
translation quantities. While s; and o, are pixel intensity
transform parameters with s; the contrast factor, and o; the
intensity shift.

The set of parameters a;, b;, ¢;, d;, e, f;, s;, 0; defines,
hence, a transformation between a range block and a
domain block.

One cannot expect to get a collection of maps, which
generate exactly the original image, since images are not
composed of pieces as puzzles, that can be transformed to
reconstruct exactly. However it can be expected in
general, that another image is generated, where the
difference between the generated image and the original
image is small. This implies in a lossy compression
technique.

Since domain blocks are larger than range blocks, a
transformation from a domain block to a range block
always shrinks the distance between any two pixels of the
domain block. Thus, transformations extracted by this
method is always contractive. Then, there exists a unique
attractor, which is approximately the original image, for
the collection of transformations. This is guaranteed by
Contractive Map Theorem [1, 2].

If each range block is well matched by a domain
block, the reconstructed image will be sufficiently similar
to the original image. This is guaranteed by the Collage
Theorem [1, 2].

We summarize next, the main steps of the classical
fractal image compression algorithm.

: Partition the original image into a collection of
non-overlapping range blocks {R;} ,-’\;, ; and

: a collection possibly overlapping of larger sub-
images (domain blocks) {D,} %, .

: The domain blocks are filtered and sub-sampled
using pixel averaging so that it occupies the size
of range blocks, that is,

_ D) (D) ) )
=(faiz;+ fanja + Failin) * faicinja

Step 4: For each range block R;, search the domain pool
(including contracted domain blocks with eight
self-symmetrical  transformations) until a
contracted domain block with a smallest mean
square difference of the range block is reached;
Once the contracted domain block is found, the
affine transformation parameters a, b, c, d, e, f are
determined immediately. The two additional
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parameters s and o are determined by the
regression method proposed by Fisher [6].

Step 5: Store this mapped transformation coefficients.

Step 6: Repeat Step 4 for all other range blocks.

3 Fractal Hierarchical Color Block Coding
(FHCBC)

Fractal Hierarchical Color Block Coding (FHCBC)
algorithm consists on two processings: Hierarchical Color
Block Coding (HCBC) and one-color plane fractal coding.

The general idea behind HCBC is to exploit the
strong correlation among three-color components. HCBC
is based on quadtree partitioning [14, 19], which
subdivides recursively a region of an image into four equal
blocks if a given criterion is not met within that region. It
continues to divide each subdivision until a predefined
criterion is met or a pre-defined minimum block size is
reached.

The structure of the quadtree depends on the inter-
pixel correlation of the image that it represents. Areas with
the highest correlation, that is, little variation of pixels’
trichromatic coefficients, compose the high level of the
quadtree, which represent the large uniform blocks. Areas
which varies the most fall into the lowest level of the

quadtree. Notice that this recursive image splitting imply,
that larger blocks achieve higher compression ratio, while
small blocks preserve details of non-correlated region.

Specifically, given a color image to be encoded,
HCBC first partitions the image into sub-image blocks,
where to each such block, pixels’ trichromatic coefficients
has no variation or a small one. Then, each block is
represented by a mean value of all pixels’ trichromatic
coefficient ratios and these mean values together with the
information of blocks, such as position and size of a block,
are stored as the first part of the compressed image. After
that, HCBC composes a one-color plane image (gray-level
image) S with weighted sum of the three-color
components, and in sequence, the second part of
processing starts, i.e., the composite image S is
compressed by invoking the fractal coding algorithm.
Then, a set of transformations obtained at this stage is
stored as the second part of compressed image.

At the decoding process, fractal coding algorithm is
first applied to get a one-color plane image, say S, where
8§’ = 8. Then, HCBC is invoked to restore the three-color
planes by utilizing S’ and the mean values of trichromatic
coefficients previously memorized. The following figure
illustrates the whole process of FHCBC.

R —
Orginal G HCBC One-plane Fractal
Color = .
Image O Encoding Image S Encoding
B —»

Compressed
Form

Decoded

Color
Image O'

HCBC
Decoding

Fractal
Decoding

Figure 1: Block diagram of FHCBC
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The encoding and decoding algorithm of FHCBC is
given next. The equations used by this algorithm are
shown just after the algorithm.

Fractal Hierarchical Color Block Encoding Algorithm

Step 1: Read a color image O with size NX N.

Step 2: Calculate the trichromatic coefficients for each
pixel according to equation (1)

Step 3. Use R;’,G;’,B;’ to reconstruct image O', where

VAR

Oy =0y’

Equations Used by the Algorithm FHCBC

i

Y TR 56, %8,
i i i

G
Step 3: Decompose the image recursively by quadtree Y, R S (nH
partitioning. R; +G; +B,;
1) Partition the image in 4 non-overlapped blocks 7 = By
[/
with size N xﬁ. Ryj+Gy +By
2 2
m+l, m+l,
2) For each such a block, calculate the average M- __1_2 EX
trichromatic coefficient and variances according My =—3 o i
to equations (2)~(3). e =
+h,
3) The process of division continues, if equation (4) _ mil‘ mz;
(with a pre-defined tolerance) is not satisfied. - 2)
When this occurs, the block will be divided into =l i=ly
another four quadrant sub-blocks, and for each of ekl Ly
them, the same process 2), 3), is repeated again. 7 =—— z z
The process of quarter halts if any one of the two i=l, i=l,
conditions are satisfied:
. L . | el mily .
a) the pre-defined maximum dividing level is vi =— 2 2‘){0 M‘I
reached; Ml el
b) or, equation (4) is satisfied. | e mel.,
4) If all of the blocks have been processed v =? z ZIYU‘M)II 3)
(recursively returned), the whole process i=l =l
terminates. mL, mL,
, : : vi=L S |z, - M)
Step 4. Use equation (5) produce a new image, S, with a z = ey _ i z
value of Sj; associated to each pixel The image S =k i=hy
and the mean value of trichromatic coefficient
ratio of each block are stored as the first part of L <tol and Vy" <tol and VZ" <tol 4)
compressed image.
Step 5. Use fractal coding algorithm (see Section 2) to Sy =R Xy +G,Y; + B, Z, (5)
compress the composite image S. Store the
parameters of affine transformations as the R = M;; R =S,
second part of compressed image. LM+ M
G,'= Mg =S, (6)
Fractal Hierarchical Color Block Decoding Algorithm i (MR) +(M(,) +(MB) i
Step 1. Use the fractal decoding algorithm and the second Ak
part of compressed image to decode image S, B,’= B S,
where S =S, ' (MR) +(M() +(Mp)?
Step 2. Use equation (6) and the first part of compressed
image to get R;’, G;’, B;’, where R; =R;’, where Rj;, G;, B, represents red, green and blue
components of pixel (i, j), respectively. X, Y, Z; are
(’y Gy » By = B called trichromatic coefficients of pixel (i, j), Wthh

describe the percent of each color component in their
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sum. Mf\},M,l,‘,lei represents the mean value of

trichromatic coefficient X, Y, and Z on block L,
respectively. m is the block size; Ly, L, are x- and y-

coordinates of the first pixel of block L. V%, ¥}, v/

represents variances of trichromatic coefficient X, ¥, and Z
on block L, respectively. S represents composite image to
be encoded. S’ is the decoded S, ie., S =S R, G’ and
B’; are decoded red, green and blue components of pixel
(7, /), respectively, i.e., Ry = Ry, G’y = Gy, B’ = By,

The real key to color image processing is to first
choose the right color model for the job. With all the
definitions given above, we can answer the reason for
choosing the RGB model in HCBC. Intuitively, the
variance of trichromatic coefficients is small when the
three-color planes are strongly correlated, in such a case,
larger blocks can be obtained, implying as consequence,
that higher compression ratio can be achieved. Table 1
[11] shows the correlation and variance among three-color
planes of three representative color models. From the
table, we find that color planes in RGB model have highest
correlation (indicated by non-diagonal values of
covariance) than the other models. On the other hand, in
KL and YCbhCr models, signal energy (indicated by
variance) strongly concentrates on one of the three color
components, and in this case, the other two color planes
would be almost uniform, while the energy plane would
have high pixel variance, and hence, the correlation among
the three-color planes would be very low. This is
confirmed by Table 1. Thus, the RGB model was chosen
by HCBC.

Covariance Variance

R {1.0000 0.9930 0.9784 | 34.23%
G 109930 1.0000 09916 | 35.02%
B 09784 09916 1.0000 | 30.75%
1.0000 0.0000 0.0000 | 99.25%

KL |0.0000 1.0000 0.0000 | 0.66%
0.0000 0.0000 1.0000 | 0.09%

Y |1.0000 -04198 0.2710 | 98.24%
Cb [-0.4198 1.0000 -0.9424 | 0.64%
Cr 102710 -0.9424 1.0000 | 1.12%

Table 1: Seéond-order statistic of RGB, HSI,
KL and YCbCr images
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Another question is interesting to be noticed why
homogenous blocks are obtained by the evaluation of the
variance of pixels’ trichromatic coefficients instead of
directly evaluating variance of pixels values of each color
plane. This effect occurs because if all of the three-color
planes have an uniform pixel value distribution, they have
necessarily uniform trichromatic coefficient ratios, with
the converse assertion is not always true. For example,
suppose that a block with four pixel have values R(10, 10,
10, 10), G(40, 40, 40, 40), B(50, 50, 50, 50), one can see
that each one of the three-color plane generates an uniform
image. In this case, the trichromatic coefficient ratio (0.1 :
0.4 : 0.5) is a constant too. On the other hand, if a block of
four pixels has the values: R(1, 2, 3, 4), G(4, 8, 12, 16),
B(5, 10, 15, 20), the trichromatic coefficient ratio is still
uniform (0.1 : 0.4 : 0.5), however, neither one of the three-
color plane has uniform pixel values. This means that
larger blocks can be obtained by detecting uniformity of
trichromatic  coefficients rather than by detecting
uniformity of pixel values. This observation may explain
why higher compression ratio can be achieved by the
suggested method.

4

This section presents the results of computer simulations
preformed on a 512X512 color images Lena by FHCBC
and SFC. In both cases of the fractal coding experiments,
the domain block size is set to 16x16, while the range
block size is set to 8§x8.

Experimental Results

Figure 2-a) shows the original color image Lena. Fig.
2-b) and Fig. 2-d) are reconstructed image by FHCBC and
SFC respectively. The reconstruction quality is quite good
by both methods. However, it is difficult to judge which
method generates the best quality based only on subjective
observation

From Fig. 2-f), one can sce that large blocks can be
obtained by FHCBC coding. As explained before, this
effect improves the compression ratio.

Although the three-color planes are not shown here,
it is still possible to realize that the signal energy is
concentrated on the red color plane, i.e., it is a dominant
color plane. This implies that the decoding error is mainly
decided by the red color plane. In this case, if the green or
the blue color plane were chosen to perform the FHCBC
coding, the reconstructed image would not repeat the
same performance. This explains why FHCBC coding is
performed on a composite image S (obtained by equation
(5)). Notice that S is, indeed, a weighted average image on
the three-color components, and this avoids the selection
of a very low energy color plane in either case.



Figure 2: Results of computer simulations on the
standard color image Lena. a) Original image Lena
512X 512X24; b) Reconstruct image by FHCBC
coding; c) Difference image between images a) and
b); d) Reconstructed image by SFC coding; e)
Difference image between images a) and d); f)
Result of quadtree partition by HCBC; g)
Composite image by HCBC.
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The most important index to evaluate a compression
method is the Compression Ratio (CR). It is defined as the
total number of bits needed to store the original image by
the total amount of bits required to store the compressed
image. From Table 2, one can see that the compression
ratio of FHCBC is higher than that of SFC. This can be
qualitatively understood in the following way, for each
range block, SFC must memorize three transformations,
each one for a different color plane. On the other hand,
two types of information need to be memorized by
FHCBC, one is a transformation for each range biock and
the other is the mean values of trichromatic coefficients of
a partitioned block. Thus, if the number of blocks
obtained by the quadtree partition of HCBC is not
significantly greater than the number of range blocks of
the fractal coding, the compression ratio of FHCBC is,
necessarily, higher than that of SFC. Specifically, we get
CRg.¢: CRepucse = 2 : 3, when the number of blocks
partitioned by HCBC is almost equal to the number of
range blocks.

Lena 512X512X24

CR PSNR Time

(min)

30.69 (R)
SFC 21.94] 29.78(G) | 624
30.58 (B)
30.35 (M)
29.01 (R)
FHCBC | 36.34| 28.34(G) | 204
30.34 (B)
29.13 (M)

Table 2: CR, PSNR and compression time for
each experiment

In order to evaluate the fidelity between the original
image and the decoded image, we calculate the Peak-
Signal-to-Noise-Ratio (PSNR) for each method. The
PSNR is defined by

255x255

(Or =0y
PSNR; = 10log,g| —22X235 (10)
(0 -05)



255x% 255 an
(05 -0y

where PSNRyR, PSNR;, PSNRg are PSNRs for each one of
the red, green and blue color plane. Oy, O, Op are color
planes of the original images and O, O, O are the
color planes of the reconstructed image. Here, each PSNR
is the same as used in [11, 12, 16] for gray-level images.
The mean PSNR among three-color planes is:

PSNR ; +PSNR ; +PSNR 5
3

The PSNRs calculated during the experiments are
shown in Table 2 too. From the table, one can see that the
PSNRs of FHCBC and SFC have the same level, implying
that the fidelity of FHCBC is not better than that of SFC.
However, the encoding time of FHCBC is significantly
shorter than SF'C. This is due to the fact that the quadtree
partitioning process (HCBC) of FHCBC is almost
immediate, and hence, the encoding time is decided just
by the part of fractal coding. Fractal coding runs only
once in FHCBC, but it must run three times in SFC, each
one for a different color plane. Therefore, the time spent
by SFC is approximately three times longer than that
needed for FHCBC, and the results presented in Table 2
confirm this observation.

PSNRy = lOlogw(

PSNRy = (12)

5 Conclusions

The main results obtained by this work can be
summarized by the following items.

1) FHCBC can achieve higher compression ratio than
SFC. This is because SFC only eliminates intra-color-
plane redundancy, while FHCBC eliminates both
intra-color-plane and inter-color-plane redundancy.
FHCBC takes shorter encoding time than SFC. The
encoding time of FHCBC is approximately one-third
of SFC.

FHCBC has the same level reconstruction quality as
SFC. However, from the experiments on other
images, we found that the reconstruction quality is
not stable in both method. It is heavily dependent on
the images to be encoded.

The general conclusion is: FHCBC has a better
performance than SFC.

Although HCBC algorithm is developed and used, in
this paper, to improve fractal color image compression,
one can easily see that it is really independent from fractal
coding, i.e., HCBC is a more general scheme for color
image coding, which can be used to work with fractal
image compression algorithm as well as with other
different one-component image compression techniques.
The reason why we choose fractal coding to work with
lays on the coding time. In comparison with other image

2)

3)
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coding techniques, current fractal coding algorithm takes
extreme long time to encode a gray-level image and
clearly, longer computational time is needed to encode a
color image. For fractal color image compression, usually
there are two ways to treat this problem. One is to
improve the fractal coding algorithm itself (for a review,
see [15]), another way is to transform three-color planes
into a one-component image by using the correlation
among them. One can see that this work follows exactly
the second idea. As a conclusion, more benefits on
savings of the encoding time can be obtained when HCBC
works with fractal coding rather than with other image
coding algorithms.

In this work, a homogeneous block is obtained by the
quadtree partitioning of HCBC if the variance of pixels’
trichromatic coefficients is within a certain threshold
value. However, if the variance does not satisfy the given
threshold at the ultimate level (smallest block size) of a
given partition, a relatively large loss may occur. This
effect diminishes the reconstruction quality. In order to
avoid this situation, we can further divide the trichromatic
coefficient ratio (a three-value ratio in this work) into two,
two-value ratios and a multi mean value scheme has to be
devised to get a better approximation.
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