Robust Approximation of Offsets and Bisectors of Plane Curves
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Abstract. Most methods for computing offsets and bisectors of parametric curves are based on a local formulation
of the distance to a curve. As a consequence, the computed objects may contain spurious parts and components,
and have to be trimmed. We approach these problems as global optimization problems, and solve them using
interval arithmetic, thus generating robust approximations that need not be trimmed.
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1 Introduction

Industrial applications often need to perform complex geo-
metric processing on existing forms. For instance, the off-
sets of a curve play a crucial role in tool path generation
for numerical-control machining, robot path planning, and
tolerance analysis. Offsets are rather complex geometrical
entities, as we shall see below.

Given a curve T in the plane R? and a positive num-
ber r, the r-offset of I is the set O of all points in the plane
whose distance to I is 7:

O={peR?:d(p,T) =r}.

The distance d(p, ') of a point p to T is the smallest dis-
tance of p to a point of I':

d(p,T) = min{d(p,q) : ¢ € T},

where d(p, q) is the ordinary Euclidean distance between
two points p and g in the plane.

From the formulation above, it is clear that finding oft-
set curves is a global problem, because a global minimum
of the distance is sought. In practice, the curve I is given in
parametric form, that is, as the trace y(I) of a parametric
curve v: I C R — RZ2. Computing the distance of a point
p to I is then equivalent to solving a global minimization
problem on the interval I:

d(p,T) = min{d(p,v(¢)) : t € I}.
In general, global minimization problems are seen as hard
to solve, and local formulations are used instead.
The natural local formulation for the offset of a para-
metric curve -y is to measure the distance to -y along its nor-
mal, thus obtaining the offset in parametric form over I as

O(t) = () £rN(1),
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Figure 1: Parametric offsets are correct near the curve (left),
but not far away (right) (extracted from Snyder [29]).

where N(t) is the unit normal vector at 7(2).
(2(t),y(1)), then N(t) =
' I = V' (1)? + y'(£)%.

This local formulation works well when r is small, but
when r is large the parametric offset has self-intersections
and does not correspond to the true, global offset defined
above (Figure 1). (The maximum value of r for which
the parametric offset is correct is the radius of the largest
tubular neighborhood around I, an elusive global property
of T related to the smallest radius of curvature of a point
in I'.) Thus, local formulations are easy—as long as you
know how to compute the normal vector N (¢)—but require
a complicated post-processing trimming step that identifies
and removes extraneous pieces [12, 13].

In this paper, we approach geometric processing prob-
lems based on distance as the global optimization problems
they are, and obtain robust approximations for offsets and
other related constructions by using interval arithmetic.

(—y'(t),z'(t)), where



2 Range analysis and global geometric processing

Range analysis is the study of the global behavior of real
functions based on estimates for their set of values. Given a
function f: 2 C R™ — R, range analysis methods provide
an inclusion function for f, that is, a function F' defined on
the subsets X of 2 such that

F(X) 2 f(X)={f(z) : 2 € X}.

Thus, F(X) is an estimate for the complete set of values
taken by f on X. The estimate is usually an interval,
which is not required to be tight; so, F(X) may be strictly
larger than f(X). Nevertheless, F(X) O f(X) implies
that min F(X) < min f(X), and so if r < min F(X),
then r < f(z), for all points z € X. Similarly, if
r > max F(X), thenr > f(z), forallz € X.

We shall see in Section 3 that interval arithmetic [23]
is the natural computational tool for range analysis. For the
moment, we show how inclusion functions can be used for
solving global geometric processing problems.

Suppose that we need to find the r-offset O of a para-
metric plane curve v: I C R — R? inside aregion  C R?
that contains the trace I of y. To compute an approximation
for O in , we perform a recursive exploration of €2, dis-
carding subregions X of 2 when we can prove that X does
not contain any part of the offset (0. This proof relies on
an inclusion function for the distance function d(X,T'): if
r is outside the interval estimate provided by this inclusion
function, then X cannot contain a part of O.

The actual algorithm for approximating the offset O
is more complicated than that because we cannot easily
compute an inclusion function for the distance function
d(X,T). Instead, we perform a global optimization sub-
algorithm to minimize d(X,~(t)) for ¢t € I that incorpo-
rates testing 7 in its rejection criteria. The details are given
in Section 4.

Here is a skeleton of the algorithm described above.
This skeleton is typical of interval methods [24] and works
for other global geometric processing problems.

explore(X):

if X does not.contain a part of O then
discard X

elseif X is small enough then
output X

else
divide X into smaller pieces X;
for each i, explore(X;)

We start the exploration with a call to explore(2). We may
assume that () is a rectangle and that X is divided into rect-
angles too. A typical choice is to divide X into four equal
rectangles, thus generating a quadtree [26,27]. The explo-
ration stops when X is small enough, which we interpret
as meaning that diam(X) < e, where ¢ is a user-specified
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tolerance. The result of the algorithm is a list of boxes that
is guaranteed to contain the offset O within the tolerance €.

The crucial step in the algorithm is the first one: testing
whether X does not contain a part of . This step requires
the solution of global optimization problems on the curve ~y
using X as input data. We shall see in Section 4.2 that these
optimization problems need not be solved from scratch for
each X. This is important for the overall efficiency of the
approximation algorithm.

3 Interval arithmetic

Interval arithmetic (IA) [23] is probably the most important
technique for range analysis currently in use, even though
it was originally introduced to improve the reliability of nu-
merical computations through automatic error control. IA
is a simple and reliable technique of probing a function over
an entire domain, obtaining information used in a variety
of algorithms and avoiding risky point sampling. Interval
arithmetic has been used successfully in several graphics
problems [1,9,22,24,29-32].

IA provides robust bounds for the range of functions
by representing ranges of values as intervals and providing
basic arithmetic operations as well as elementary functions
to operate on them. Here are some examples of interval
operations:

[@,8] + [¢,d] = [a+ ¢, b+ d]

[a,b] X [¢,d] = [min(ac, ad, bc, bd), max(ac, ad, b, bd)]

g2 = { [0,max(a®,5%)], a<0<b

lo, 0" = [min(a?, b%), max(a?, b?)], otherwise
exp([a,b]) = [exp(a), exp(b)].

Similar formulas can be given for all other elementary op-
erations and functions. Using this observation, Moore [23]
proved that every computable function f can be extended to
an interval function F', called its natural interval extension,
simply by replacing the operations used to evaluate f with
their equivalent interval operations. (This can be done auto-
matically using operator overloading.) Moore also proved
that F is an inclusion function for f, which shows that in-
terval arithmetic can be used for range analysis. There are
several packages for interval arithmetic in the Internet [19].

The range estimates obtained with interval arithmetic
can be much wider than the exact ranges because interval
formulas, such as the ones above, assume that all operands
are independent. IA gives pessimistic estimates when some
dependency between operands exists. Therefore, one can-
not safely use the IA estimates to guarantee that f takes a
certain value in an interval, but one can use these estimates
to assure that f does not take other values. So, even rather
pessimistic ranges still assure that values outside that range
cannot be achieved by f. This safety is the cornerstone of
interval algorithms.



4 Robust approximation of offsets

Now that we have seen that range analysis can be easily im-
plemented, we return to the computation of offsets using the
skeleton algorithm described in Section 2 for approxima-
ting the r-offset of a parametric curve + inside a region .

Recall that the main step is to test whether a subre-
gion X of 2 contains a part of the offset 0. As discussed in
Section 2, we discard subregions that we can prove to con-
tain no part of O. Such subregions are called empty. Range
analysis is essential for this proof, as we discuss below.

To test whether a subregion X is empty, we recur-
sively explore the curve domain I looking for pieces of I'
whose distance to X is close to r. If no such pieces are
found, then we can discard X. The main step in this explo-
ration of [ is an interval estimate of the distance between
X and y(T). More precisely, we use the natural interval
extension D (X, T) of the distance function

d(p,¥(t)) = V/(z — 2(t))* + (y —y())?,

forp = (z,y) € X C Qandt € T C I. The value of
D(X,T), computed on a rectangle X and an interval T, is
an interval that contains all distances from points in X to
points on y(T"). We compare D(X, T') with r as follows:

o If the distance from X to v(T') is strictly less than r, then
we can stop the exploration of I, because we have proved
that the distance from X to I is strictly less than r. Thus,
we can discard X because it cannot contain a part of O.

e If the distance from X to v(T') is strictly greater than r,
then we can discard T. 1If this happens for all sub-
intervals T visited during the exploration of I, then we
can discard X .

o If neither X nor T can be discarded, then T is bisected
and the two pieces are explored recursively. The recur-
sion stops when v(T') is small; at this moment, we have
found a point of I" at distance (approximately) r from X.
To test whether v(T') is small, we use an interval estimate
G(T) for v(T). This estimate is a box X (T') x Y (T),
where X and Y are the inclusion functions for the com-
ponents of -y that were used to compute D(X,T'). Then,
~(T) is small when diam G(T') < €.

The core of the algorithm is thus the function below:

test(X,T,r):

if max D(X,T) < r then
return true

if min D(X,T) > r then
return false

if diam G(T') < € then
all « false
return false

else
bisect T into T and Ty
return test(X, Ty, r) V test(X, T3, r)
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Note how we compare the distance of X to y(T') using
the interval estimate D(X,T), as described in Section 2.
Note also that the exploration of I stops as soon as we
find T such that max D(X,T) < r, assuming that the
“or” operator V is short-circuited. The flag “all” controls
whether all pieces of I visited during the exploration of 1
have distance to X greater than 7, as discussed above.

This algorithm is a kind of interval global optimization
algorithm [15], except that it does not always need to find
the global minimum of the distance, but instead is guided
only by the need to find a minimum distance close to r. For
regions X that are far away from I, the algorithm never
actually computes the distance of X to I', because it stops
as soon as it establishes that this distance is greater than r.

The complete algorithm for computing a robust ap-
proximation of the offset O within tolerance € using a
quadtree exploration of the region (2 is then:

explore(X):

if empty(X,r) then
discard X

elseif diam(X) < € then
output X

else
divide X into four equal pieces X;
for each i, explore(X;)

empty(X,7):
all « true
return test(X,1,r) v all

Starting with a call to explore(§2), this algorithm performs
an adaptive exploration of (2, quickly discarding subre-
gions that cannot contain the offset O, and working harder
near O, where it needs to, so that it can approximate O well.
Figure 2 shows a series of offsets with decreasing radius.
Figure 3 shows a typical quadtree decomposition of (2.

4.1 Reconstructing offset curves

As mentioned in Section 2, the output of the algorithm
above is a list of boxes that is guaranteed to contain the
offset O within the tolerance . For some applications, sim-
ply drawing these boxes will be enough. The base curve in
Figure 3 and all curves in Figure 2 are drawn this way.

For other applications, such as modeling, the boxes
must be processed and transformed into polygonal lines or
curves. Gleicher and Kass [14] faced this very same prob-
lem when computing the intersection curve of parametric
surfaces using interval methods, and solved it by using a
“stringing” algorithm. However, it is probably simpler to
select the midpoint of each box and then reconstruct the
offset curve using one of the good algorithms that have ap-
peared recently [8,20]. If needed, the reconstructed poly-
gonal curve can then be approximated with B-splines [28].



Figure 2: Offsets of decreasing radius.
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Figure 3: Adaptive approximation of an offset curve.

4.2 Cache trees

A large fraction of the cost of the algorithm above is the cost
of computing the interval estimates D(X,T) and G(T).
The interval estimate G(T') is used twice in test: once in
the computation of D(X,T) and once for testing whether
~(T) is small. Since G(T) does not depend on X, it is
natural to cache the values of G(T") and reuse them across
calls to test. We now describe briefly how to organize this
cache.

Since the domain [ is always explored in the same way
in test, that is, by starting with T' = I and bisecting each T’
that cannot be discarded, we use a simple binary tree to
cache the values of G. The nodes in this cache tree cor-
respond to the sub-intervals T of I visited during the re-
peated explorations of I, for varying X. The root node cor-
responds to T = I. In each node, we store the box G(T),
which is guaranteed to contain y(T'), and possibly point-
ers to children nodes corresponding to T} and T3, the two
halves of T created for recursion. To reduce overestimation,
the estimates in a node are updated (from the bottom up) to
be the smallest box that contains the estimates of its chil-
dren nodes (this is a simple min/max computation because
only rectangles are involved).

Because I does not always need to be fully explored,
the cache tree is in effect a dynamic adaptive representation
of the function v on I: it summarizes the behavior of ~y at
various resolution scales, and gets locally refined as needed
when X varies [6].



To compute the approximation shown in Figure 3,
220089 evaluations of G’ were required, but 218618 of these
were read from the cache; only 1471 fresh evaluations were
required. So, in this case, the cache contained the answer
to more than 99% of all evaluations. The use of a cache
in our implementation allowed interactive response times
as we varied the offset radius r. The use of cache trees in
interval methods has many other applications [6].

5 Point/curve bisectors

Bisectors are another example of geometric objects that are
defined globally. Given a curve I' and a point py in the
plane, the bisector of T" and py is the set B of all points in
the plane whose distance to I" and to pg are the same:

B={peR’:d(p,T") =d(p,po)}

When T is given as the trace of a parametric curve -y, a local
formulation for the bisector is

B(t) =~(t) £ r(t)N(1),
where N (t) is the unit normal vector at y(t) and

2(po — (1), N(t))
Thus, bisectors can be seen as “variable-distance” off-
sets [11]. As in the case of offsets, this local formulation re-
sults in curves that need to be trimmed into the true, global
bisector B.

Given the similarity between offsets and bisectors, it
is not surprising that the method described in Section 4 can
be adapted to compute bisectors. What is somewhat sur-
prising is that it is almost trivial to do so: All we need to
do is to compare D (X, T) with D(X, pg), the set of all dis-
tances from points in X to po. As in the case of offsets, we
use the natural interval extension of the distance function
d(p,po) = /(@ —70)? + (y — 40)? for p = (z,y) € X
and po = (z0, Yo). In this case, the interval evaluation gives
the exact value, with no overestimation, because the vari-
ables = and y occur only once in the expression above [23].
(In the expression for D(X,T), the parameter ¢ occurs
many times, and so overestimation is expected.)

Using the lines below instead of the corresponding
lines in the test function of Section 4 is all that is needed
to computed bisectors instead of offsets:

if max D(X,T) < min D(X, po) then
return true

if min D(X,T) > max D(X, po) then
return false

Some bisectors computed with this modified algorithm
are shown in Figure 4. Again, the use of a cache was essen-
tial for good performance; the cache contained the answer
to more than 98% of all evaluations.
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Figure 4: Point/curve bisectors for various points.



6 Related work

Several methods for approximating offset curves and sur-
faces were reviewed in a survey by Pham [25], which was
recently updated by Maekawa [21]. Most methods are of a
local nature and work hard at trimming procedures.

A prime example of the local approach is the work
of Farouki and Neff [12, 13], who did an in-depth study
of analytic and algebraic properties of offsets of algebraic
parametric curves in the plane. They gave algebraic im-
plicit equations for the offset and procedures for identifying
self-intersections, which together allow the computation of
trimmed offsets. Farouki and Johnstone [11] did a similar
study for point/curve bisectors.

Of special interest for CAD applications are B-spline
approximations of offsets, because even when the base
curve is given in B-spline form, its offsets cannot in general
be given in B-spline form too. Elber et al. [10] compared
several B-splines offset approximation methods.

Chiang et al. [2] approached the computation of off-
sets of a curve I as a global problem and extracted the off-
set as a level set of the distance function to I'. They dis-
cretized the curve I" and the region Q uniformly and solved
the eikonal equation on these grids. (The eikonal equation
models wavefront propagation in fluid dynamics.) A simi-
lar approach was used by Kimmel and Bruckstein [18].

In contrast to all these approaches, our approach adap-
tively samples I" and 2, avoiding error-prone choices of
grid sizes and simultaneously computing a guaranteed ap-
proximation that does not requires trimming. Moreover, our
method works for curves that are not necessarily smooth,
because we do not need a normal vector defined at each
point of the curve. Actually, the method works even for
discontinuous curves: all we need are inclusion functions
for each continuous piece.

Closest to our approach is the work of Snyder [29],
who described a framework for geometric modeling based
on interval methods for the reliable solution of systems of
constraints and global optimization problems. However,
Snyder first finds a tight interval estimate D(X,T) using
global optimization, and then compares it with r to decide
whether to discard X, whereas we test 7 as we explore the
parameter domain I, thus avoiding a complete global op-
timization at each step. Moreover, Snyder does not use a
cache for accelerating the search and does not develop the
computation of bisectors.

As mentioned in Section 4.1, our method needs post-
processing for applications that need a geometric model
of the result. This characteristic is shared with other in-
terval methods for geometric modeling. We feel that the
reconstruction methods mentioned in Section 4.1 should
give good results, but testing these methods was beyond the
scope of this paper.
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7 Future work

We are currently working on the extension of the methods
presented here to the computation of curve/curve bisectors
and medial axes. (The medial axis of a curve is a kind of
self-bisector.) The solution of these problems seem to re-
quire complete global optimization, at least during part of
the solution. Cache trees will be even more important in
this case.

The dependency problem mentioned in Section 3 di-
rectly affects the efficiency of interval algorithms that
use IA: the larger the overestimation, the longer it will take
to discard subregions. It is natural then to consider alter-
natives to IA that suffer less from the dependency problem
and can provide tighter estimates. Affine arithmetic [3] is
one of these tools, and its use in interval methods has re-
sulted in faster algorithms for several problems in computer
graphics [4,5,7, 16, 17]. Our next step is to use affine arith-
metic instead of interval arithmetic in the global processing
algorithms we have described here. We expect that perfor-
mance will be improved, specially when computing esti-
mates G(T') for pieces of the curve and the corresponding
distance estimates D (X, T).
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