A Boundary Extraction Approach Based on Multi-resolution Methods and the T-Snakes
Framework

GILSON A. GIRALDI!, EDILBERTO STRAUSSY?, ANTONIO A. F. OLIVEIRA!,

!Federal University of Rio de Janeiro
Computer Graphics Laboratory-COPPE
Mail Box 68511, CEP 21945-970, Rio de Janeiro, RJ, Brasil
2Federal University of Rio de Janeiro
Department of Electronics Engineering (DEL-EE)-COPPE
Mail Box 68511, CEP 21945-970, Rio de Janeiro, RJ, Brasil
{giraldi, strauss,oliveira}@lcg.ufrj.br

Abstract.

In this paper we present a new approach which integrates the T-Snakes model and a multi-resolution

method in a unified framework for segmentation and boundary extraction. In a first stage, a local scale property of
the objects is used to define a triangulation of the image domain and a sampling (coarsest resolution) of the image
field. The low resolution image is threshold to get a 0-1 field which is processed by a simple continuation method
to generate polygonal curves whose interior contain the desired objects. If the polygonal curve envolves more than
one object, then the resolution is increased in that region and the method will be applied again. This stage gives a
rough approximation of the desired boundaries which will be improved by the T-Snakes to get the final result. We
demonstrate the method for 2D medical imaging in the experimental results and indicate how it can be extended

to 3D in the future works.

1 Introduction

In image analysis, the boundaries of the objects of interest
are important features. These boundaries may be applied in
shape analysis, motion tracking and segmentation [4].

The Active Contour Models, also called snakes, are
well known techniques for boundary extraction and track-
ing [14]. Basically, there are two types of snake models:
the implicit ones and the parametric ones [27].

Implicit models, such as the formulation used in [15,
23], consist basically of embedding the snake as the zero
level set of a higher dimensional function and to solve the
corresponding equation of motion.

The parametric snake models consist basically of an
elastic curve (or surface) which can dynamically conform to
object shapes in response to internal forces (elastic forces)
and external forces (image and constraint forces). Such ap-
proach is more intuitive than the implicit models. Its math-
ematical formulation makes easier to integrate image data,
an initial estimate of the boundary, desired contour proper-
ties and knowledge-based constraints, in a single extraction
process [4].

In the original snake model, proposed by Kass at al.
[14], the topology of the structures of interest must be known
in advance since the mathematical model can not deal with
topological changes.

To address this limitation McInerney and Terzopou-
los [16, 18, 17] proposed the T-snakes model. The basic
idea is to embed the snake model within the framework of a
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simplicial domain decomposition to provide a way of doing
topological changes (splits and merges) of the snakes dur-
ing their evolution. One advantage of the T-Snakes frame-
work is its generality as the same approach can be applied
over both 2D and 3D scenes.

Besides the domain triangulation, the T-Snakes depends
on some threshold to define a normal force which is used to
drive the snake(s) towards the targets [16, 18, 17].

In our work, we also assume that the image intensity
patterns of the objects can be characterized by a threshold
or some statistics of the image field [16, 18, 17].

More specifically, we assume a local scale property
for the objects of interest and use this property to reduce the
resolution of the image. Also, we suppose that the bound-
aries have the properties of closedness, orientedness and
connectedness [20].

In a first stage, we use the local scale property to de-
fine a coarsest image resolution that guarantees not split the
objects. From the corresponding grid we make a simple CF
triangulation of the image domain. The low resolution im-
age field is thresholded to get a binary function, which we
call an Object Characteristic Function. Then, a simple con-
tinuation method, the door-in-door-out algorithm, is used to
generate a set of close polygonal curves whose interior may
contain zero, only one or more than one object.

Now, a set of scalar features and corresponding lower
and upper bounds, priorly defined, are used to analyse these
curves [21]. The simplest features are the area enclosed and



the polygonal perimeter.

The regions containing zero objects are in general eas-
ily discarded by the area lower bound. Regions whose areas
are larger than the upper bound may contain more than one
object of interest. Hence, the grid resolution in those re-
gions is increased to improve the segmentation.

The polygonal curves so extracted are in general rough
approximations of the boundaries of interest. We improve
these approximations by using the T-Snakes model [16] whose
framework is the basic one for our method.

We have tested the method in 2D images. However,
our approach can be extended for 3D images as we indi-
cate in the section 6. The method proposed shares the basic
elements of our work [7] for initializing snake models.

This paper is organized as follows. The next section
discusses multi-resolution/multigrid methods in image anal-
ysis related to this work. In section 3 we present the T-
Snakes model. The segmentation/boundary extraction frame-
work which is the contribution of this paper is presented on
section 4. On section 5 we discuss 2D experimental results.
Finally, we present our conclusions and future works.

2 Related Works

The method presented in this paper adopts the basic phi-
losophy of some non-parametric multi-resolution methods
used in image segmentation based on Pyramid and Quadtree
approaches [5, 2, 12]. These are data structure able to rep-
resent an image at different levels of resolution.

The basic idea of these approaches is that as the resolu-
tion is decreasing, small background artifacts become less
significant relative to the object(s) of interest. So, it can
be easier to detect the objects in the lowest level and than
propagate them back down the structure. In this process, it
is possible to delineate the boundaries in a coarser resolu-
tion and to re-estimate them when increasing the resolution
[12,2].

The work described here uses a multiresolution ap-
proach which starts at a coarsest resolution defined through
the prior knowledge of scale and is adaptive in the sense
that resolution is only increased at the locations where this
is considered necessary. To increase the resolution we just
refine the coarser grid and sample the image over the grid
nodes corresponding. The refinement structure has the form
of a local uniform nested refinement [3] pictured on Figure
1.

Figure 1: Representation of the multiresolution scheme.
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Multi-resolution methods can be useful for problems
in image analysis and computer vision which can be ex-
pressed as the minimization of energy functions. In [10]
we found such an approach, called “multiscale relaxation”
which have been used for snake models [19]. In that ap-
proach, the global optimization problem is solved within
a sequence of particular subspaces of the original space
of possible configurations. Each subspace defines a new
“coarse” energy function whose parameters are derived from
the original (full resolution) objective function. The con-
strained optimization is implemented in [10] using a coarse-
to-fine procedure on a pyramidal structure.

On the other hand, we have the multigrid relaxation
methods like the one presented in [24]. In this case, the
resolution of the image is not reduced (it is always the full
one). However, the grid resolution used to discretize the
minimization problem goes from a coarsest one to a finest
one.

In this paper, the approach is multigrid/multi-resolution
when segmenting the image but not when applying the T
Snakes. This deformable model is used at the end of the
boundary extraction stage. We do not need to use multi-
scale relaxation methods in this final step because we take
the full resolution of the image for evolving T-Snakes. Be-
sides, when appling T-Snakes it is supposed that the grid
resolution is enough for completing the boundary extrac-
tion. Hence, we do not use multigrid relaxation methods
during the T-Snakes evolution.

3 T-Snakes Framework

The T-Snakes approach is composed basically by three com-
ponents [16, 18, 17]: (1) a triangulation (simplicial decom-
position) of the domain of interest, in our case a closed
subset D C R2%; (2) a particle model of the snake; (3)
a characteristic function x defined on the grid nodes
which distinguishes the interior (Int(s)) from the exterior
(Ext(s)) of a snake s:

x:Dc R > {0,1} 1)

where x (p) = 1 if p € Int(s) and x (p) = 0, otherwise,
where p is a node of the triangulation.

Following the classical nomenclature, a vertex of a tri-
angle is called a node and the collection of nodes and trian-
gle edges is called the (simplicial) grid I';.

An edge in which the characteristic function x changes
its value is called a completely labeled edge. A triangle o
which contains a completely labeled edge is called a tra-
verse triangle.

In this framework, the reparameterization of a contour
is done by [16, 18, 17]: (1) taking the intersections points
of the snake with the triangulation; (2)Update the charac-
teristic function y; (3) carrying out topological changes by



using the characteristic function x to distinguishing the in-
side from the outside of the snake(s).

As an example, consider the characteristic functions
x1 and x relative to the circle and ellipse on Figure 2, re-
spectively. The functions are defined on the grid nodes of
a CF-triangulation of the plane. The vertices marked are
those where max {x1, x2} = 1. Observe that they are en-
closed by a merge of the contours.

This merge can be approximated by a (polygonal) curve
which can be easily obtained by a simple numerical contin-
uation method based on the following property [1]:

Property 1 (Door-In-Door-Out Principle). A triangle
has either zero or exactly two completely labeled edge.

Based on this property we can design an algorithm to
generate the frontier of the region where x (p) = 1. The
idea is to find an initial traverse triangle and then use one
of its completely labeled edge as the door-out to go to-
wards the next traverse triangle. The sequences of trian-
gles 0o, 01, ..., 04 and edges 19, 71, ..., T4 SO generated, have
pairwise different elements [1]. The algorithm can be sum-
marized as follows.

Continuation Algorithm (Door-In-Door-Out)

begin

find an initial traverse triangle oo € T’
find a completely labeled edge my of op;
end;
Repeat:
findo, € T, 04, # opn-1suchthat m,_; = o, N
On-1;
find a completely labeled edge 7,, of o, such that
Tn # Tn-1;5
stop when returning to the initial triangle o9 € T'.

The same algorithm can be used for more than two
contours (and obviously for only one) and for splits and
merges. The procedure complexity is O (V) where N is
the number of triangles. Also if D is compact, we can prove
the following property [1]:

Property 2. The sequences {o;}, {r;} are finite or
there is a finite integer ¢ > 0 such that o9 = 0.

Figure 2: Two snakes colliding with the inside grid nodes
and snaxels marked.
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3.1 Discrete Snake Model

A T-Snake [16, 17] is a discrete form of the classical snake
[14]. It is defined as a set of [V particles (snaxels), whose
positions {v; = (4, %),?=0,..., N — 1} are connected to
form a closed contour. Each pair of points v;, v;41 is called
a “model element ”. The snaxels are linked by springs
defined by a stiffness parameter a;, and a natural length
;. The corresponding elastic force is added to a rigidity
(smoothing) force and an external (image) force [18, 17].
These forces are given respectively by the following expres-
sions:

Elastic Force: a; = aje;ri(t) — aj—1ei—1ri—1(t). (2)

where ||r;(t)|| = ||vig1 — vil| and e; = ||r; (¢)]| — L,

1
5 (i1 + Ui+1)) NE)
Image Force: f; =~ VP, 4)
where b;, v; are force scale factors, P = — “VIH2 (I is the
image field).

A normal (balloon-like) force is also used to push the

snake towards image edges until it is opposed by the exter-
nal image forces. This force is given by:

Rigidity Force : 3; = b; <v,v —

Normal Force : F; = k; (sign;) n;,

&)

where n; is the normal at the snaxel v;, k; is the force scale
factor, and sign; = 1if I (v;) > T and sign; = —1 other-
wise (7' is a thresholded for the image I).

The T-Snake position is updated according to the fol-
lowing evolution equation:

oA = ot 4 by (af+ 8+ Ff + f), ©

where h; is an evolution step.

The T-Snake model incorporates also an entropy con-
dition: “once a node is burnt (passed over by the snake) it
stays burnt ” [16, 18, 17]. A termination condition is de-
fined based on the number of deformations steps (temper-
ature) that a triangle remains as a traverse one. A T-Snake
is considered to have reached its equilibrium state when the
temperature of all the snaxels fall below a pre-set "freezing
point”.

The T-Snake model can be summarized as follows [18,
17]. Until the temperature of all snaxels fall bellow the
freezing point: Compute the external and internal forces
and update the snaxels positions using equation (6). Com-
pute the intersection between the grid and the model el-
ements. Next, update the characteristic function (1) and
through it determine the corresponding set of traverse trian-
gles. For each traverse triangle find a model element which
separates the inside from the outside nodes. Discard the
other ones.



To update the characteristic function x given by ex-
pression (1), a classification algorithm [18] is designed to
determine which nodes were burnt during a deformation
step given by equation (6).

The threshold T used in the normal force (5) plays an
important role in the T-Snakes model. If it was not chosen
properly, the T-Snake can be frozen in a region far from the
target(s) [16, 18, 17].

The choice of T' is more critical when two objects to
be segmented are too close like in Figure 3. In this figure
the grid nodes marked are the ones whose image intensity
fall bellow the threshold 7.

Figure 3: T-Snake and grid nodes marked.

For the T-Snake to separate the objects pictured it has
to burn the grid nodes marked. However, the normal force
given by expression (5) changes its signal near these grid
nodes. So, the force parameters in expressions (2)-(4) have
to be chosen properly to advance the T-Snake over these
grid nodes. However parameters choice remains an open
problem in snake models [6].

Having in mind this limitations and the topological ca-
pabilities of the T-Snakes model we propose the following
method for segmentation and boundary extraction.

4 Our Segmentation Framework

The segmentation and boundary extraction method that we
propose in this paper is based on the following steps: (1)
Extract region based statistics; (2) Coarser image resolu-
tion and Triangulation; (3) Define the Object Characteristic
Function; 4) Boundary approximation by door-in-door-out
algorithm; 5) Apply T-Snakes model.

The region based statistics can be extracted by image
histograms or pattern recognition techniques {25] (see [11]
for a recent review). These statistics can be represented
by a mean g and variance o of the image field I (always
supposed a grey level one) or any other field defined over
the image domain [13]. That means:

pEO=>|I(p) —p| < ko @)

where k is an used defined parameter [17].
In some appications, a threshold 7" could be defined to
characterize the object(s) of interest:
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pe0O=1(p)2>T ¥)

Given a point p € O, let 7, be the radius of a hyperball
B, that contains p and lies entirely in the object region; that
is, if ¢ € B, then I (¢) satisfies equation (8) ( or equation
(7)). We assume that for the objects of interest there is an
r; > 1 such that r, > 75 Vp, p € O. We call this a local
scale property of the objects.

Also, we suppose the following properties for the ob-
jects boundaries: (a) Closedness, (b)Orientedness, (c) Con-
nectedness.

The Object Characteristic Function of step (3) is sim-
ilarly defined as equation (1):

x:Dc®R—{0,1} (&)

where x (p) = 1if I (p) > T and x (p) = 0, otherwise,
where p is a node of the triangulation.

We must observe that due to the local scale properties
above it is possible to reduce the resolution of the image by
r; X r; without spliting the objects of interest.

The Figure 4 shows this fact. In that figure we have a
MRI slice of a head. A simple inspection shows that 7' =
5.0 is enough for defining function (9) and that the local
scale property can be characterized by r; = 5.

The corresponding object characteristic function is pic-
tured in Figure 4.b. Observe that we can search the grid
nodes until we find a traverse triangle and then apply the
door-in-door-out algorithm to get the corresponding polyg-
onal curve. As we are assuming properties (a)-(c), we do
not need to concern with the interior of the closed curves so
generated (Figure 5).

As we do not have object splits due to the local scale
property, we do not need to concern with merge of regions
also. Hence, the closed curves generated gives a rough seg-
mentation of the image. That is the main point of this work.

TN N

(@) (b)

Figure 4: (a)Original image. (b)Triangulation and Object
Characteristic Function.

Observe that according to the property 2 of section 3,
the door-in-door-out algorithm generates closed curves or
curves which start and end in the image frontiers [1]. So,
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Figure 5: Grid and boundary approximation.

a simple inspection discards open curves. Also, both prop-
erties 1 and 2 of section 3 assure that the polygonal curves
generated are simple [1], then (b) is always satisfied.

The remaining curves satisfy (a)-(c) above, as we can
see on Figure 7, which is the result obtained by applying
steps (1)-(4) to the image pictured on Figure 6. However,
some of those curves may be too small because they were
generated due to small artifacts or noise in the background.
Hence, they have to be discarded. Also, some curves may
contain more than one object of interest (see Figure 7).

Now, we can use a set of pre-defined features [21]. For
each feature we define upper and lower bounds based on a
prior knowledge of the objects. We have used only the area
enclosed by the curve. From the local scale property and
the trangulation used we can set the area lower bound as
4 (rl)z. The definition of the upper bound is an application
dependent task. For instance, in medical imaging analysis,
anatomical elements can be used.

It is important to stress that the upper bound(s) is not
an essential point for the method. It’s role is only to avoid
expending time computation in regions were the boundaries
enclose only one object.

Among the remaining curves, a simple inspection would
discard those ones which are bellow the area lower bound.
The ones whose interior have areas larger than the upper
bound will be processed in a finer resolution.

In fact, in images like in Figure 6, the outer scale cor-
responding to the separation between the objects may be
finner than the local scale property of the objects of inter-
est. The corresponding problem falls into a category known
as two-scale problems.

The commom characteristic feature of these problems
is that - the spatial scales vary dramatically from one region
to another. This happens in the regions on Figure 7 where
the segmentation is not completed yet. In those regions the
outer scale may be finer than the local scale of the object
(local scale property defined above). Hence, the coarsest
resolution could not separate the objects. To correct that
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result we increase the resolution in those regions to account
for more details.

For uniform meshes like the one in Figure 1 this can
be accomplished by a multi-resolution scheme whose data
structure is that one of Adptive Mesh Refinement methods
[3]. In these structures each node in the refinement level [
splits in 7™ nodes in level [ + 1, where 7 is the refinement
factor and n is the space dimension (7 = 2and n = 2 inour
case). Hence, in 2D, the node structure has 1]2 pointers to
the soons, n? pointers to the neighboors and one pointer for
the corresponding parent. Such scheme have been explored
in the context of Level Sets methods also [23].

Figure 6: Endocervical Columnar cells.

In some cases, despite the fact that the full resolu-
tion was used, some curves may have the interior with area
larger than the upper bound. If we have a statistics like in
expression (7) we can relax the threshold (I' — T + AT)
and apply steps (2)-(4) again, but only in the regions de-
tected.

Among the remaining curves it may happen that some
of then still correspond to small artifacts too close in the
background. In general, these curves can be discarded only
by increasing the resolution.

After applying steps (1)-(4) we have a rough approxi-
mation of the object boundaries. The idea is to use a snake
model to get the final result. The T-Snakes model was
chosen firstly, because it can deal naturally with the self-
intersections that may happen during the evolution of those
curves. Secondly, by choosing T-Snakes, the steps (1)-(5)
encompass an unified framework based on the triangula-
tion, threshold and the Characteristic Functions for segmen-
tation and boundary extraction.



Figure 7: Solution for resolution 5 x 5.

The continuationdoor-in-door-out algorithm used shares

the basic elements used in iso-surface generation methods
in hierarchical 3D meshes [9]. But, these methods in gen-
eral do not use the scale and topological restrictions which
formalize our prior knowledge of the structures of interest.

5 Experimental Results

The result, corresponding to the three cells observed inside
a T-Snake near the upper-right corner of Figure 7, obtained
by using a grid with a finer resolution is shown in Figure 8.
In this case, only the full image resolution was enough to
segment the objects.

A good point of our method is that we do concern with
the outer scale only in run time. When we realize that a
boundary approximation obtained involves more than one
object, we have realized also that the scale used may be
larger than that one of the space between the objects.

Figure 8: Solution for resolution 1z 1.

The Figure 9 shows another example. The outer scale
is finner than the inner one due to the separation between
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some parts of the upper right object. The resolution 9 x
9 used was enough to separate the objects (9.a) but only
the finnest resolution (Figure 9.b) could resolve the regions
with higher curvature.

)

(@)

Figure 9: (a)Original image and boudaries approximation
with 9 x ¢ resolution. (b)T-Snake solution with 1 x 1 grid.

It is important to highlight that the T-Snakes model is
used only as a boundary extraction method. The segmenta-
tion process is given by the steps (1)-(4). So, the problem
pictured on Figure 3 is avoided as the T-Snakes is applied
only after the segmentations is (at least roughly) completed.
It is important to observe that the same idea was used by
Sarti at al [22] in the context of implicity snake models for
cytology analysis. However, their segmentation algorithm
based on Hough Transform, gradient-weighted threshold-
ing and watershed is very different from the one summa-
rized by steps (1)-(4) above.

The step A' in the equation (6) can be small (one or
two pixels at a time) without bring performance restrictions
as we are close the boundaries (in general). The proximid-
ity of the boundaries makes the parameters choice easier
wich is another advantage of our method. Also, the entropy
condition used stops the contraction force component of the
internal forces (2)-(5) which is a desired feature,

The Figure 10 shows the final result corresponding to
Figure 4. This figure is a particular slice from a set of 79
ones. We have applied our method for all of then with grid
resolution of 5 x 5 and threshold T = 5.0. The results
obtained were as good as the ones presented on Figures 11
and 12.

If desired, we can apply the Dual-T-Snakes model [§]
for thinning the frontier corresponding to the head bonne.
This is a further directions of this work.

A stmple observation of Figure 8 shows that there is
a cell whose boundary is incorrect, This happens due to
the threshold used. To correct this result we have to stab-
lish a method to relax the threshold to give a better result.
However, we have to be carefull because when relaxing the
threshold (T' — T + AT) we may split objects and so a
merge will be necessary.



Figure 10: Solution for MRI slice.

(@) (b)

Figure 11: (a)Boundary approximation with 5 x 5 grid.
(b)Final solution.

(@ (b)

Figure 12: (a) Boundary approximation. (b)T-Snake result
with b x 5 grid

6 Conclusions and Future Works

In this paper we present a new approach which integrates
the T-Snakes model and a multi-resolution method in a uni-
fied framework for segmentation and boundary extraction.

The method uses region based statistics, domain trian-
gulation and characteristic functions to initialize a T-Snakes
model closer to the boundaries of interest. The framework
can be used to process 2D images with target objects im-
mersed in a background.

Further directions are to extend the method for 3D by
using the T-Surface approach [17] and an extention of the
door-in-door-out algorthm for higher dimensions [1]. Also,
we need pattern recognition methods to stablish the local
scale property automaticaly [11].

The local scale property is a fundamental point for our
method. Without this property the method can not be ap-
plied efficiently. An approach to accomplish this limita-
tion could be the fuzzy connectedness segmentation [26, 7.
This method gives an alternative way to define the field to
be thresholded. We will investigate its efficience in further
works. Also, a policy to relax the threshold has to be de-
signed to correct some results.
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