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Abstract. The boundary identification represents an interesting and difficult problem in image process-
ing, mainly if two flat zones are separated by a gradual transition. The most common operators work
very well for sharp edges, but fail for gradual transitions. In this work, we have done a characterization
for gradient by a study of the opening residues. This characterization is useful to identify and classify
sharp and gradual transitions between two consecutive flat zones according to a size criterion.

1 Introduction

The boundary identification represents an interesting
and difficult problem in image processing, mainly if
two flat zones are separated by a fuzzy region (grad-
ual transition). The most common operators work well
for sharp edges, like Sobel and Roberts [1], but fail for
gradual transitions. The gradual transitions can be de-
tected by a statistical approach proposed by Canny [2].
Another approach to cope with this problem is through
mathematical morphology operators based, for exam-
ple, on the notion of morphological gradient and multi-
scale morphological gradient [3]. From this approach,
it is not possible to classify the detected transitions ac-
cording to a parameter of size, i.e., we can not identify
the transitions of a specific size because these transi-
tions, identified at a certain scale i, correspond to all
the transition with size smaller than i.

To cope with these problems, we will consider a
hierarchical analysis of an image, with respect to a size
parameter, as it was proposed by Leite and Guimarães
[4]. The method, based on this representation, takes
into account the behavior of the residues related to the
transitions defined at the different hierarchical levels
of the image representation. Also, in this work, we are
interested only in directional information, more specif-
ically, in 1D image. Thus, we propose a directional and
parametrized transition detection algorithm based on
morphological residues that considers linear structur-
ing elements. Here, the parametrization is useful to
classify the different kinds of transitions according to
the given size parameter.

This paper is organized as follows. In Sec. 2, we
define some basic concepts of mathematical morphol-
ogy. In Sec. 3, we describe the multi-scale gradient
operator proposed by Soille and we also propose a new
variant of this operator. In Sec. 4, we define the hier-
archical decomposition. In Sec. 5, we propose a new
algorithm to identify the boundaries according to a
parameter of size. Finally, some conclusions and dis-
cussions are given in Sec. 6.

2 Basic concepts

In this section, we describe some basic morphological
operators considered in this work (see [3, 5] for more
details). Let B be a flat structuring element (SE) and
let λB = {λb | b ∈ B}, λ ≥ 0 denote the structuring
element B of size (i.e., the radius) λ.

Definition 2.1 (Morphological gradient) Let δλ
and ελ be the dilation and erosion with a structuring
element B of size λ, respectively. The morphological
gradient ρλ of size λ is defined by

ρλ = δλ − ελ (1)

The morphological gradient, also called thick gra-
dient, gives the maximum variation of the function in
a neighborhood of radius λ. If the size λ equals the ra-
dius of the transition between regions of homogeneous
grayscale, the morphological gradient will output the
contrast value between these regions. However, the
output of this gradient is represented by thick edges.
Another interesting morphological operator that ex-



tracts light regions of the image, smaller than a certain
SE, is the white top-hat defined as follows.

Definition 2.2 (White top-hat) Let γλ be an open-
ing by a structuring element B of size λ (γλ = δλελ).
The white top-hat WTHλ of size λ corresponds to the
residue of the opening, and is defined by

WTHλ = Id− γλ (2)

where Id is the identity operator.
The white top-hat represents the residues related

to the specific size, λ, of the SE. If we generalize this
concept to a range of SE, then we can define the gran-
ulometry as follows.

2.1 Granulometry

The granulometry, (ψλ)λ≥0, first conceived by Math-
eron [6], describes quantitatively the “coarseness” of
an image and is a basic morphological concept used,
for example, in pattern recognition. The granulom-
etry decomposes the image in classes of components
according to the used structuring element.

Definition 2.3 (Granulometry [6]) Let (ψλ)λ≥0

be a set of image transformations depending on a pa-
rameter λ. This set constitutes a granulometry iff the
following properties hold:

∀λ ≥ 0, ψλ is increasing (3)
∀λ ≥ 0, ψλ is anti-extensive (4)

∀λ ≥ 0, µ ≥ 0, ψµψλ = ψλψµ = ψmax(λ,µ) (5)

Equation 5 above implies an idempotent opera-
tion, that is, ψλ[ψλ] = ψλ. Typically, the set of trans-
formations ψλ is a decreasing set of algebraic openings
given by any convex structuring element B and its ho-
motetic representation (λB = {λb | b ∈ B}, λ ≥ 0) [5].

2.2 Image simplification

Another important operator explored here, namely ul-
timate erosion [3], is associated with the simplification
of the images. Its definition is given next.

Definition 2.4 (Ultimate erosion) The ultimate
erosion represents the set of all components of an im-
age that disappears from one erosion step to the other,
when we consider increasing SE. It is defined for a bi-
nary image X and a grayscale image f as follows.

ULT(X) =
⋃
λ

{ε1(λ)(X)\Gε1(λ)(X)[ε1
(λ+1)(X)]} (6)

ULT(f) =
∨
λ

{ε1(λ)(f)−Gε1(λ)(f)[ε1
(λ+1)(f)]} (7)

where G is the morphological reconstruction by the di-
lation operation [3, 5]. “\” and “−” mean set difference
and grayscale difference, respectively.

3 Multi-scale gradient based on WTH

The possibility to detect smooth variations between
flat zones by considering morphological gradient opera-
tors provides an important tool to identify fuzzy transi-
tions. Nevertheless, the result of these operators yields
thick edges as a result and, also, false edges (merge of
the gradual boundaries) that can be produced if the
distance between two transitions is smaller than the
width of the used structuring element. According to
[3], these problems can be avoided if we consider the
multi-scale gradient proposed by Soille in [3]. In this
section, we describe this gradient and propose a variant
of this operator based on the morphological ultimate
erosion.

3.1 Soille’s gradient

The multi-scale gradient model proposed by Soille can
be represented by the block diagram in Fig. 1. Accord-
ing to this model [3], the problem of thickness intro-
duced by the morphological gradient (Equation 1) is
avoided by the application of erosions on the thick im-
age, the size of the SE used by these erosions depends
on the size of the SE used by morphological gradient.
To avoid the merge of boundaries, a white top-hat is
applied to the morphological gradient before these ero-
sion operations, the WTH will identify basically the
peaks of the image of the gradient. For example ([3],
p. 117), the edges originated by both sides of a small
region merge because the width of these transitions
(edges) is larger than of the region itself, and a subse-
quent erosion would not split them back. In fact, when
morphological gradients coming from two distinct tran-
sitions the resulting thickness is larger than the width
of the considered SE, and to obtain the regions with
size related to the SE, we can use the white top-hat.

Definition 3.1 (Soille’s morphological multi-
scale gradient) The Soille’s morphological multi-
scale gradient at scale λ is given by:

ρS
λ = ρλ ∗ L1ε(λ−1)WTHλρλ (8)

where ρλ, ε(λ−1) and WTHλ represent the morpholog-
ical gradient of size λ, the erosion of size λ− 1 and the
white top-hat of size λ, respectively. Lk represents the
thresholding operation at level k. “*” means multipli-
cation operation.

The main problems of this approach are closely
related to the choice of the SE family. The first of
these problems concerns the quality of the detection.
For example, let us consider a 1D signal (Fig. 2(a))
and a homotetic family of SE. If we apply the Soille’s
gradient on such a configuration the transition is not
well identified at the corresponding scale (Fig. 2(b)



Figure 1: Soille’s multi-scale gradient.
and (c)). In general, this operator produces good re-
sults when the image presents linear transitions thanks
to the homotetic family of SE, but in other cases, the
results are not interesting, as in Fig. 2(c), in which
this result corresponds to the supremum of the gra-
dient values at levels in the range [1, 4]. The second
problem concerns the elimination of regions due to the
introduction of the erosion operation, as illustrated in
Fig 2(b). Finally, from this approach, it is not possible
to classify the transition according to a size parameter,
i.e., we can not identify the transitions of a specific size
k because these transitions, identified at a certain scale
i, are included in the set of transitions smaller than i,
where k ≤ i. Intuitively, this problem can be avoided
by the difference between two consecutive levels, but
the gradient values depend on the morphological gra-
dient that may vary at consecutive scales.

To deal with the above problems, we propose to
replace the erosion by the ultimate erosion operation.
In this case, we preserve the same properties of the
Soille’s gradient, that is, the computation of thin edges
without merging gradual boundaries. We also preserve
all regions smaller than the corresponding SE.

3.2 Multi-scale gradient based on ultimate
erosion

Here, we replace the erosion in Fig. 1 by the ultimate
erosion.

Definition 3.2 (Multi-scale gradient based on ul-
timate erosion) Our morphological multi-scale gra-
dient ρU

λ based on ultimate erosion at scale λ is defined
by: ρU

λ = ρλ ∗ L1ULT(WTHλρλ) (9)

In Fig. 2(d) and (e) we illustrate the application
of the multi-scale gradient based on ultimate erosion,
considering a certain scale and a range of scales ([1, 4]),
respectively. The problem identified here is associated
with noise sensitivity, and with the fact that the tran-
sitions are not thin. Also, it is not possible to classify
the transitions regions according to a size criterion.

4 Gradient based on morphological residues

The classification of the transitions according to a size
information can be obtained by a decomposition of the

(a) Original

(b) Soille’s gradient (ρS
4 ) (c) Soille’s gradient

(d) Gradient based on ul-
timate erosion (ρU

4 )
(e) Gradient based on ul-
timate erosion

Figure 2: Morphological multi-scale gradient: (b,d)
correspond to the gradient values at a specific level
λ = 4, and (c,e) correspond to the supremum of the
gradient values at different levels (λ = [1, 5]).

image that is associated with a certain size parameter.
Leite and Guimarães [4] proposed a general framework,
based on the notion of morphological residues, to seg-
ment an image by considering information of a hier-
archical decomposition of this image with respect to a
size parameter λ. Here, we will study the relationships
between the size of the transitions and the morpholog-
ical residues related to these transitions.

4.1 The transition size information

The basic idea to detect transitions between flat zones
is to apply the morphological gradient (Equation 1).
In this work, we are interested only in directional in-
formation and consequently, we consider a linear SE.
Next, we define some basic concepts.

Definition 4.1 (Flat zone, n-flat zone and re-
gional maximum) Let g be a 1D image. A flat zone
of g is a maximal set (in the sense of inclusion) of con-
secutive points x with the same grayscale value. A
regional maximum is a flat zone N of level k such that
the points adjacent to N have a grayscale strictly lower
than k. An n-flat zone Fi is a flat zone with size greater
than or equal to n, i.e., |Fi| ≥ n where |X| means set
cardinality.

Definition 4.2 (k-Transition) Let g be a 1D image.
We denote by F the set of k-flat zones. A transition
T between two k-flat zones, Fi and Fj , is the range
[p0..pn−1] such that p0 ∈ Fi, pn−1 ∈ Fj , ∀m, 0 < m <



n− 1, pm 6∈ Fi

⋃
Fj and ∀l 6= i, j Fl 6⊂ [p0..pn−1].

Definition 4.3 (Dome) Let g be a 1D image. We
denote by M the set of regional maxima of g. A dome
of g is a connected component of the thresholding of
g at level 1. A single dome is a dome which contains
only one maximum Mi ∈ M.

Proposition 4.1 (Dome-transition) Let g be a 1D
image. We denote by ρλ(g) the morphological gradient
of size λ of the image g. Let T be a k-transition of g
having two adjacent k-flat zones, namely Rk

1 and Rk
2.

The k-transition T is represented by a dome on ρλ(g)
if |T| < min{|Rk

1|, |Rk
2|} and λ > d(|T|−1)/2e, where

dxe is the integer ceiling value of x.

Proof
A k-transition T is represented by a dome in

ρλ(g) if ∃p ∈ Rk
1 such that ελ(g)(p) = δλ(g)(p) and

if ∃q ∈ Rk
2 such that ελ(g)(q) = δλ(g)(q). These con-

ditions are true, if the radius λ of the SE used by the
erosion ελ and dilation δλ is λ < (|Rk

1| − 1)/2 and
λ < (|Rk

2| − 1)/2. Considering that the morphologi-
cal gradient compute the maximum grayscale variation
of a neighborhood of radius λ, and we are interested
in computing the variation of the grayscale between
two k-flat zones separated by a k-transition T, the ra-
dius λ must be λ > (|T| − 1)/2. Thus, there is at
least a point in this dome with this maximum varia-
tion. So, λ < (|Rk

1| − 1)/2 and λ < (|Rk
2| − 1)/2

imply in λ < min{(|Rk
1| − 1)/2, (|Rk

2| − 1)/2}. Fi-
nally, (|T| − 1)/2 < min{(|Rk

1| − 1)/2, (|Rk
2| − 1)/2},

i.e., |T| < min{|Rk
1|, |Rk

2|}. �

Unfortunately, in real cases, the n-transitions be-
tween two n-flat zones are noisy and we need to intro-
duce a filtering operation on the images, like the alter-
nated morphological filters [3, 5], to produce monotone
n-transitions. The size of SE used here can be associ-
ated with the size of the n-transitions that we would
like to analyze. In this work, we are interested only in
single domes. Each single dome can be represented by
two values, the top and the basis area numbers. The
top area and basis area correspond to the size of the
regional maximum of the single dome and the number
of points that belongs to the single dome, respectively.

Proposition 4.2 (Single dome basis and top ar-
eas) Let g be a 1D image. We denote by ρλ(g) the
morphological gradient of size n of the image g. Let
Rk

1 and Rk
2 be two k-flat zones separated by a mono-

tone k-transition T of size (|T| < min{|Rk
1|, |Rk

2|} and
λ > d(|T| − 1)/2e. The top and basis areas of a single
dome that corresponds to a monotone k-transition T
are Top = 2λ−|T| and Basis = 2λ+ |T|, respectively.

Proof
From our hypothesis, a monotone k-transition T,

located between the positions a and b, that separates
two k-flat zones, R1 and R2, is represented by a dome
D in morphological gradient ρλ(g) of the image g (see
Proposition 4.1), so there is at least a point p ∈ D
such that its grayscale value is equal to the difference
h between the grayscale values of R1 and R2. Thus,
the point p belongs to a regional maximum of D. The
erosion and dilation of size λ shift T by λ positions (in
Fig. 3(b) and (c) we show an example of these opera-
tions), and consequently the adjacent k-flat zones are
also shifted. So, the k-transition T of g is related to
the k-transition T′ in the eroded image that is located
between the positions a′ and b′, and the k-transition
T of g is related to the k-transition T′′ in the dilated
image that is located between the positions a′′ and b′′.
To compute the morphological gradient, we subtract
the eroded image from the dilated image producing a
new image. As R1 and R2 are k-flat zones, the sub-
traction between the shifted k-flat zones in the eroded
and the dilated image produce a regional maximum of
grayscale h, and as the k-transition is monotone, the
dome D contains only a regional maximum. Thus, the
monotone k-transition of g is represented by a single
dome in the morphological gradient of g. The size of
the regional maximum, called top area, and the num-
ber of points that belongs to the single dome, called
basis area, correspond to the minimal and maximal
distance between the transitions T′ and T′′ in the di-
lated and eroded image (Fig. 3(d) shows an example
of the morphological gradient), so

Top = a+ λ− (b− λ) = 2λ− |T| (10)
Basis = b+ λ− (a− λ) = 2λ+ |T| (11)

�

Considering that the top and the basis areas are
associated with the size of the n-transition, and that
the n-transition can be represented by a single dome,
we can use the morphological residue information to
characterize the properties of the n-transition taking
into account that each n-transition on g (see Propo-
sition 4.1) is represented by a single dome on the
gradient image. The decomposition in morphological
residues can be useful in classifying the single domes,
more precisely, depending on the size of SE, two transi-
tions can be merged to form a single dome, i.e., accord-
ing to the features of this decomposition (as we will see
in the next section), a single dome can not represent a
n-transition.



(a) |T| = 2 (b) δ3

(c) ε3 (d) ρ3

Figure 3: Example of basis and top areas computed
from a linear structuring element of radius λ = 3.

4.2 Morphological residues

The morphological residues characterize the informa-
tion extracted from an image by considering a set of
granulometric transformations. The residues are given
by the difference between two consecutive granulomet-
ric levels, as follows:

Definition 4.4 (Morphological residues [5])
Let (ψλ)λ≥0 be a granulometry. The morphological
residues of residual level λ, Rλ, are given by the dif-
ference between the result of two consecutive granulo-
metric levels, that is,

∀λ ≥ 1, X ∈ Z2,Rλ(X) = ψλ−1(X)\ψλ(X) (12)
∀λ ≥ 1, f ∈ Z2,Rλ(f) = ψλ−1(f)− ψλ(f) (13)

where X and f represent a binary and a grayscale im-
ages, respectively. The morphological residues repre-
sent the components preserved at level (λ−1) that are
eliminated at the granulometric level λ.

According to the transformation ψ, the set of
residues corresponding to (Rλ)λ≥1 contains the com-
plete granulometric information and defines a complete
hierarchical representation of an image in the sense
that the original image can be exactly reconstructed
from its residues:

X =
⋃
λ≥1

Rλ(X) (14)

f =
∑
λ≥1

Rλ(f) (15)

where X and f represent a binary and a grayscale

image, respectively. Furthermore, we can limit the
amount of information to be analyzed by considering
only the data defined at a certain resolution. To fol-
low, we define the residual levels in which the top and
the basis areas are preserved.

Definition 4.5 (Residue level numbers) The
residue levels Inf and Sup, for a single dome, cor-
respond, respectively, to the levels in which the top
and the basis areas are preserved in the morphologi-
cal residue representation. These values correspond to
Inf = d(Top/2)e and Sup = d(Basis/2)e.

5 Parametrized transition detection algorithm

As stated before, an image can be completely decom-
posed into morphological residues. Here, we consider
this decomposition for the morphological gradient im-
age to study the behavior of its single domes, that is,
we will verify if a single dome in the morphological
gradient image corresponds to a n-transition in the
original image. To facilitate the analysis of this de-
composition, we consider the residue mapping [4].

Definition 5.1 (Residue mapping [4]) Let g be a
1D image. We denote by (Rλ)λ≥0 the family of mor-
phological residues of g. Let M be a set of regional
maxima of g. For all points p ∈ M, we define a residue
mapping, M, as follows

M(p) = (M1(p),M2(p), · · · ,Mλ(p)) where

Mi(p) =
{

1, if Ri(p) ≥ 1
0, if Ri(p) = 0 (16)

where λ represents the last level in which the morpho-
logical residues are greater than zero.

If Mk(p) = 1 then the point p is preserved in the
residue of level k. Fig. 4(a) shows an example of mor-
phological gradient of size 4. If we compute the residue
mapping, M(.) for the regional maxima in Fig. 4(a)-
right, we have the following (for λ = 1, 2, ..., 7):

∀p ∈ A,M(p) = (0, 0, 0, 1, 1, 0, 0)
∀p ∈ B,M(p) = (0, 0, 1, 1, 1, 1, 0)
∀p ∈ C,M(p) = (0, 0, 0, 1, 0, 0, 0)

Fig. 4(b) shows an example of morphological gra-
dient of size 10. If we compute the residue mapping,
M(.) for the regional maxima in Fig. 4(b)-right, we
have the following (for λ = 1, 2, ..., 16):

∀p ∈ D,M(p) = (0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0)
∀p ∈ E,M(p) = (0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0)

Finally, from this mapping information, we can
easily extract some features of the analyzed compo-
nents.



Algorithm 5.1 (Parametrized transition detection algorithm by residue)

Input: |T|: the size of transition to detect
ξ: permitted error
f : 1D original image
k: the minimum size of each flat-zone

- Compute the morphological gradient of size λ ≥ |T| of the original image
- Compute the mapping, M(.), for the regional maxima of the above output image
- Compute the Top and Basis values according to Equation 10 and Equation 11
- Compute the First(.), Last(.) and k-Last(.) numbers based on the mapping M(.)
- Compare the First(.) number with the Top value, the Last(.) and k-Last(.) number
with the Basis value considering error ξ

Output: Transitions of size |T| are detected if both comparisons are true.

(a)

(b)

Figure 4: Example of 4-transitions. The image illus-
trated in (a)-left contains 3 4-transitions. The image
illustrated in (b)-left contains 3 4-transitions. (a)-right
and (b)-right illustrate the morphological gradient of
(a)-left and (b)-left of size 4 and 10, respectively.

Definition 5.2 (First, last and n-last numbers)
Let M(p) be a mapping of a point p and let n be

the minimum permitted size of a flat zone. We call
first number the index of the first appearance level of
p in M(p), i.e., the first level in which p is preserved.
We call last number the index of the last disappear-
ance level of p in M(p), i.e., the last level in which p
is preserved. We call n-last number the index of the
last disappearance level of p before the first b(n−1)/2c
consecutive zeros in M(p), if there is b(n− 1)/2c con-
secutive zeros in M(p), otherwise the n-last number is
equal to last number.

For some examples of mapping illustrated above,
we have the following: First(B) = 3, Last(B) = 6
and 4-Last(B) = 6; First(D) = 5, Last(D) = 15
and 4-Last(D) = 7; First(E) = 5, Last(E) = 15 and
4-Last(E) = 15. The last and n-last numbers are used
to differentiate the shape of the single domes, more

precisely, a single dome can be associated with a n-
transition if the last value is equal to the n-last value.
Also, the first and n-last numbers are closely related
to the top and basis areas of a dome, Top and Basis,
respectively. While the computation of these areas de-
pends on the transitions that we want to detect (see
Proposition 4.2), the first and n-last values depend on
the morphological decomposition information. So, to
find a n-transition T with Top and Basis measures,
according to a family of SE used, we need simply to
identify the points p of the image with First(p) equal to
Inf, n-Last(p) equal to Sup and Last(p) equal to Sup.
For example, to find the 4-transition of size |T| = 3 il-
lustrated in Fig. 4(a), we need to compute the theoret-
ical numbers (top and basis areas) that corresponds to
the single dome associated with this kind of transition.
Considering that the size of morphological gradient is
λ = 4, so Top = 2×4−3 = 5 and Basis = 2×4+3 = 11,
and consequently Inf = 3 and Sup = 6. Finally, we
must compare these values to the first, last and 4-last
values computed from the residue decomposition. In
this example, the single dome which contains the re-
gional maximum B corresponds to the 4-transition of
size 3. The same process can be realized to find the
4-transition of size 13 illustrated in Fig. 4(b). In this
example, we can verify that the two single domes have
the same top and basis values, but according to the
features of the residue decomposition, only the dome
which contains the regional maximum E corresponds
to a transition.

Algorithm 4.1 summarizes our approach for de-
tecting transitions of a certain size |T| on a gradient
image. Due to the presence of noise in real images, we
consider a range [|T|, |T|+ ξ] of allowable size.

In Fig. 5 we show an example of k-transition iden-
tification, where there are 2 sharp k-transitions, 3 grad-
ual k-transitions with different sizes (1, 2 and 3), where
k = 4. We apply our parametrized transition de-



(a) Original (b) |T| = 0 and ξ = 0

(c) |T| = 1 and ξ = 0 (d) |T| = 2 and ξ = 0

(e) |T| = 3 and ξ = 0 (f) |T| = 2 and ξ = 1

(g) Soille (ρS
3 ) (h) Ultimate (ρU

3 )

Figure 5: Examples for computation of gradients: (a) original image; (b-f) results of our algorithm applied to the
image illustrated in (a); (g) and (h) illustrate the thresholded results (L1) of the gradient proposed by Soille and
gradient based on ultimate erosion, respectively.



(a)

(b) |T| = 0 and ξ = 0 (c) |T| = 6 and ξ = 0

Figure 6: Example of video transition detections (see
[7, 8]): (a) visual rhythm by sub-sampling; (b) detected
cuts and (c) detected gradual transition is represented
by white vertical bars.

tection algorithm to identify and classify the transi-
tions according to their size. In Fig. 5(b) only the
sharp k-transitions are identified, in Fig. 5(c), Fig. 5(d)
and Fig. 5(e) the k-transitions of size 1, 2 and 3 are
detected, respectively. In Fig. 5(f) we identify k-
transitions within an interval of permitted size, accord-
ing to a given error. Finally, in Fig. 5(g) and Fig. 5(i)
we illustrate the thresholded result (L1) of the Soille’s
gradient and based on ultimate erosion, respectively,
in which the parameter of size is 3.

6 Discussions and conclusions

In this work, we propose a new method to characterize
and identify the directional boundary between consec-
utive flat zones according to a parameter of size. Our
method is based on a hierarchical decomposition of the
image components in morphological residues which al-

low the analysis of their transitions at different levels of
this decomposition. According to the parametrization
of our method, we can easily identify the transitions of
a specific size, while this identification is not so easy
from other methods, like Soille’s gradient. Also, dif-
ferently of the Soille’s gradient and its variant, which
considers each scale separately, our method consider
all hierarchical decomposition data to obtain the tran-
sition information. This is possible thanks to analysis
of morphological residues.

An interesting application of the method proposed
here concerns the video segmentation problem in which
we can classify the transitions according to a param-
eter of size. An example of this application is given
in Fig. 6 in which we apply the algorithm proposed
in [7, 8] to video segmentation. In this algorithm,
we can replace the gradient computation by our 1D
parametrized transition detection algorithm.
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