

The Abalone Interpolation

A Visual Interpolation Procedure for the Calculation of Cloud Movement

 Elke Hergenröther Antonio Bleile Don Middleton Andrzej Trembilski
Fraunhofer Institute for ask – Innovative The National Center Fraunhofer Institute for
 Computer Graphics Visualisierungslösungen for Atmospheric Computer Graphics
 GmbH Research
 hergenro@igd.fhg.de bleile@ucar.edu don@ncar.ucar.edu trembils@igd.fhg.de

Abstract

For the production of smooth animation of flow
simulation out of only several data steps many
interpolated intermediate data steps are needed.
Especially for the meteorological visualization of moving
clouds for TV broadcasting purposes such interpolations
are of high importance. The traditional method for the
animation production is to fade one dataset out and to
fade the next dataset in. The visual result is not very
realistic if the clouds should move quickly and the
distances between them are too great, because blending
produces no clouds movements. In this paper we present
the Abalone Interpolation for the calculation of visually
realistic cloud movements. The presented solution is not
only suitable for meteorological visualization but also for
visual preparation of the flow calculation results.

Keywords: Cloud movement, interpolation, simulation.

1. Introduction

Numerical weather simulation models, like these of
the National Center for Atmospheric Research (NCAR) or
the German Weather Service (DWD), produce twice a
day large quantities of simulation data, which must be
visualized for the presentation on television. Even if the
simulation programs internally generate high amounts of
finely resolved data they can only store data blocks lying
30-60 minutes apart because of the extremely high storage
requirement and also the long time needed for the storage
process itself. On the other hand, for the presentation of
weather forecast on television, time-lapse animations of
up to 30 seconds are needed.

2. Problem description and related work

Nowadays the standard TV weather visualization

software like TriVis [1], [2], [3] uses blending for cloud

animation. The clouds of data time step i disappear slowly
as clouds of data time step i+1 slowly appear. If in two
following time steps the clouds are close to each other,
the spectators hardly notice this, but if there are wide
cloudless areas in-between, the animation appears quite
bad, because clouds are popping up and disappearing
again. This method does not take advance of the wind
field data, which is always another result of any weather
simulation. For the generation of a realistic animation we
need moving clouds. The simulation of the cloud
movement is the purpose of our Abalone interpolation
algorithm. One of the problems is to find the
corresponding cloud areas in two following time steps.

Figure 1. Did clouds B and C develop from
 cloud A?

Figure 1 shows the initial situation: the first data set
(left side) contains only one cloud, in the other data set
(right side) there are two clouds different positions.
During the animation the spectator will find out if the
cloud A corresponds with cloud B, or with cloud C, or
even with both of them (after it divided) or maybe with
none, because B and C just appeared as a product of a
different atmospheric effect.

So the main problem is how to solve this
correspondence problem having two data steps being 30-
60 minutes apart. A method for solving this problem is to
search for some specific features, which can be found in
clouds of both data sets. With these features and the wind
data set a prediction can be made about the probable
movement of the cloud. However, clouds quite quickly
change their appearance and the air humidity, which is the
base value for extracting a cloud from the simulation data

?

A

B

C

set. The humidity is always very close to 100%, so the
feature extraction from a cloud data set is quite a problem.
A single cloud has nothing really special to be easily
identified and recognized by an algorithm. We hoped to
find a general solution of this, which with some luck
could be reused to visualize similar flow field problems.
We found an idea for the solution after playing a game of
"Abalone". An Abalone player has to build groups of his
spherical stones on a playing grid and uses them to move
his opponent's (smaller) stone groups out of the grid. Now
think of the black stone groups as of clouds and of white
stone groups as of the air masses around them. The white
stones move the black ones over the grid and vice versa.
A wind flow field replaces the human-controlled
movements. In this way not only the clouds are
considered as particles (though they are our main interest)
but also the surrounding air masses. In this way the whole
grid is considered as being full of particles and now the
solution is much easier.

Silver [4], [5], [6], [7], [8], [9], [10] found a solution
to the problem of correspondence of a flow field features
in two following time steps. She extracts objects from the
flow field and follows their movements, developing a
strategy for the reduction of memory usage. The detailed
form of the object was not interesting for the special
problem investigated by Silver. The aim was not to find
time-interpolated data steps but the recognition of given
features in given following time data steps. In contrast to
this our purpose is to interpolate the given cloud data
steps in time to get more data steps to produce a smooth
animation of clouds. For a smooth and realistic animation
for broadcasting purposes a highly detailed data is of high
interest. In fact for the interpolation of detailed objects
morphing could be a suitable method. Most of the
morphing algorithms can be classified into two classes:
parametric correspondence method or implicit function
interpolation method. The parametric correspondence
method algorithms search for corresponding points on the
boundary of the bodies to be transformed into each other.
Examples for this kind of algorithms are the Sedeberg
method [11] and the method of Alexa [12]. For the
function based method a function is developed for the
start and the target body. Then the start function is
transformed into the target function in a possibly smooth
way. There are two kinds of functions used for this: the
inside/outside function or the characteristic function. The
inside/outside function is binary, which means that ‘0’
means the actual position is outside of the object and ‘1’
means it is on the object boundary. The signed distance
function is more explicit, it gives the euclidic distance
between the actual position and the next point on the
object boundary. Morphing algorithms based on this type
of function generate very plausible results already when
using very simple interpolations. After Türk et.al.[13] the
parametric method is mostly quicker and needs less

memory than the function-based method. The drawback is
that the transformation of objects with different topology
is more complicated than with the function-based method.
The function-based method has also less problems with
self-penetrating faces. Türk et al. [13] combined the
parametric method with the function-based method and
developed a smooth transformation for objects in every
dimension. For using one of these methods you need to
know for which objects the interpolation should be
calculated. We do not know this (see figure 1) therefore
morphing is not the best solution of our problem. But one
part of the morphing-algorithms is the solution of the
correspondence problem and we have a correspondence
problem. The solution of our problem is not the
computation of correspondence of polyhedral bodies but
the analyze the whole volume of the model. The Abalone
Interpolation computes the correspondence of two volume
data sets of a fluid simulation.

3. Abalone interpolation algorithm

The Abalone Interpolation Algorithm is subdivided
into two sub-algorithms, which is comparable with one of
Silver's tracking procedure [10]. First, the movement of
the clouds and the air is traced over the time steps, which
have to be interpolated. Then the time steps have to be re-
traced to find the corresponding clouds. This is done
indirectly by interpolating the (scalar) humidity values of
the particles. In the following we discuss these two parts
in more detail.

3.1. Particle tracing

To follow the movement of the particles through the
interpolated data steps, the wind flow fields have to be
interpolated through the time. Therefore we compute the
flow simulation using Runge-Kutta's 4-th order
interpolation, which is the best trade-off between
computation time and correctness of the result [14].

Figure 2.: Particle tracing through all

interpolated flow fields.

dataset to
(start-dataset)

dataset tn

(end-dataset)

t1
t2

tn-2

tn-1

...

Knowing the interpolated wind flow fields we can
start the computation of the particle movement. We start
putting a particle on every grid point of the given data set.
In fact, there are only two kinds of particles: cloud
particles and non-cloud particles. We now trace their
movement through all interpolated time steps, starting
with the data set t0. Figure 2 shows possible ways of
particles starting from t0 to tn which is the second given
meteorological data set. The intermediate data sets t1 – tn-1
are the interpolated ones.

3.2. Interpolation of the particle values

After the particle tracing is done it has to be checked,
if they changed their status after the flight. This can be
done, by checking if they landed in the same medium (air
or cloud) as they started. If they did not, their values have
to be interpolated. Otherwise the particles keep their
value. In our sample implementation of the Abalone
algorithm we do not have a binary case. We use the
particle humidity, which is a scalar value produced by the
meteorological simulation. In Figure 3 the four cases are
shown which can occur:

1. A non-cloud particle lands in a cloud

2. A cloud particle lands out of a cloud

3. A cloud particle lands in a cloud

4. A non-cloud particle lands out of a cloud

Figure 3. The Interpolation of the particle values

In cases 3 and 4 the scalar humidity value will
approximately stay constant. In cases 1 and 2 the particle
value has to be interpolated during the flight. We use a
linear interpolation for this computation. In Figure 3 the
interpolation needed is visualized.

4. “ Proof of concept”

The presented algorithm can be divided into two parts.
At first a particle with its own scalar value is set at every
data grid point. These particles are traced through the
interpolated wind flow fields. The second part of the
algorithm compares the starting values of the particle and
the scalar value of the data grid point where the particle
lands and – if needed - interpolates the scalar value of the
particle for the intermediate data sets t1 - tn-1. The method
is simple and usable for visual interpolation of given data
sets. What we still need is a proof that it works and meets
the specification. This proof can be found in the next
section.

4.1. Analysis of the Abalone-interpolation

Abalone Interpolation is a general algorithm for visual
interpolation of flow-dependent data sets. It should be
used for visual processing of the data, which should not
be altered by its usage. As the algorithm should only be
used for visual analysis of data, physical correctness is not
provided. This feature provides the advantage of
independency of the original fluid problem and results in
a general usage of the algorithm as a visualization tool.
We start with given meteorological simulated humidity
data sets m0 ... mu and the corresponding wind data sets.
We call the mi data set t0 and the mi+1 data set tn during
the abalone interpolation. This section discusses the
assumptions we made, describes every single module of
our procedure and shows that the result is correct as long
as the assumptions are right.

4.1.1. Correspondence condition

We assume that there is a direct coherence between
the wind and the movement of the clouds, hence if a
particle was in a cloud in the data set t0 and lands again in
a cloud in a data set tn then we assume it was in a cloud
for the whole time. We assume a correspondence between
the clouds from the data sets mi and mi+1. The existence
of this correspondence is a basic condition, which has to
be met for the correctness of the procedure. If this
correspondence condition is not met, the error can not be
found directly, but can be detected using a higher time
resolution of the given data set m.

4.1.2. Interpolation of the cloud movement of m0 ...

mi mi+1 ... mn

If the correspondence condition is met it becomes
clear, why the movement of the clouds from mi to mi+1 can
be computed. We can now also compute how clouds
divide into several parts. Indirectly the dissolving of old
clouds and the development of new clouds can be

0 %

100 %

dataset to

(start-dataset)

dataset tn

(end-dataset)

1.

20 %
40 %

60 %

80 %
2.

3. 4.

computed, too. In case 2 (see section 2) a cloud particle
from data set t0 lands out of any clouds in date set tn. If
the correspondence condition is met, we can assume that
the part of a cloud, which was represented by the particle
was dissolved. The cloud existing in the meteorological
data set mi disappears in mi+1, which could be for instance
caused by rain. In the same way a development of a new
cloud can be computed. Of course, if the interpolation
works between mi and mi+1 it works for the whole set of
the given simulation data m0,..., mi, mi+1, ..., mn .

4.1.3. Extrapolation of particle values

For the implementation of the algorithm we should
take into consideration that the particles do not flow
exactly to a given grid point but in most cases land
somewhere between the grid points. It means that for
every interpolated data set the extrapolation of the particle
values has to be computed (see figure 4). The
extrapolation of the particle values correspond to the
trilinear interpolation of the grid point values.

Figure 4. The particle value extrapolation

4.1.4. Interpolation of the cloud movement of mn ...

mi+1 mi ... m0

Until now we only showed that the interpolation
works in the direction from m0 to mn.. We did not
determine if it works in the reverse direction mn m0. If
the Abalone Interpolation was a bijective function, the
correctness could be shown easily. Unfortunately, during
the interpolation more than one particle of t0 can land in
one voxel of the grid tn. Other voxels of the data set tn get
no particles at all. The interpolation is not bijective. In
figure 5 the result of the algorithm (as presented so far) is
shown.

Figure 5: The last iteration of Abalone (t29)

differs from the next original data set
(t30)

The data set interpolation is very smooth. However

the last computed interpolated data set t29 is very different
from the given meteorological data set t30. We guessed
this difference is resulting from particles moving into and
out of the voxel mesh. Until now we were not speaking
about the particles moving into or out of the analyzed area
in ti (0<i<n). The particles leaving the area are
automatically considered. Even if the value of a particle
getting out of the area at tn is not known, we can make
some assumptions about it, which make it possible to
compute its value. We found the following assumption
working best: If a particle leaves the grid area at ti (0<i<n)
it keeps it last value. On the other hand particles, which
started outside the area of the dataset cam move into the
area by the wind. They can also develop from ascending
vapor. A quite obvious but memory intensive method to
solve this problem is to introduce a “backward
interpolation”. The starting data set is declared to be the
final one and vice versa. The flow field is also reverted. In
this way the incoming particles are integrated into the
Abalone computation. During the backward interpolation
they are treated as particles moving out. Finally the
forward and backward interpolated data sets are weighted
and combined. In this way both kinds of particles are
integrated into the Abalone Algorithm.

Figure 6 demonstrates that the introduction of the
backward interpolation the particles moving into and out
of the grid are integrated into our method. The
interpolation results change smoothly from data set t0 to
tn.

0 %

20 %
40 %

60 %

80 %

100 %

40 %

tn

to

t0 t1

t29 t30

Figure 6: Results of the combined backward

and forward interpolations.

5. The compiled Abalone Interpolation:

The different steps of the Abalone-Interpolation can
be compiled to one procedure as follows:

- Interpolation of the wind vector data for every frame
- Computation of the forward interpolation with mi = t0

and mi+1 = tn and for the backward interpolation with
mi+1 = t0 and mi = tn . These computation include the
following steps:
- Tracing the particles through all the frames t0 to

tn.
- Interpolation of the humidity value of the traced

particles
- Extrapolation of the humidity value of a particle

at the surrounding grid values.
- Weighted combination of the data sets computed by

the forward and backward interpolation.
- Isosurface generation or raytracing

The described procedure for visual interpolation of
flow-dependent data needs quite much memory:
3n*resX*resY*resZ. The computation time is linear with
the number of data steps, O(n), but there is a high
constant, depending on the number of interpolation steps
and the size of the data grid. Thus an optimization of the
procedure is a needed.

6. Optimization with “Divide and Conquer”

As described so far, the particle values are interpolated
first and then extrapolated on the data grid. During the
visualization we found that the clouds in the interpolated
frames loose some of their volume. These losses are
caused by the interpolation and extrapolation. By
inevitable numerical errors noise is introduced into the
procedure, which is perceived as a volume loss of the
clouds (see also figure 6). To avoid the volume losses we
had to leave out the extrapolation. At first, as in the not-
optimized version, the wind vector data sets are
interpolated. However in the next step the particles are not
traced any more but a divide and conquer method is used
(see figure 7). For every grid point of data set tn/2 we find
the starting position of a particle from tn which lands at
this grid point. We also look for the further way of the
particle and find the grid position where the actual
particle is going to land in tn. The humidity values of the
grid in t0 and tn are well known, so the value of the
particle can be interpolated as before. This calculation
step has to be repeated recursively. In this way all grid
values of ti (0<i<n) can be calculated. In this way the
extrapolation can be left out and we save also 50% of the
memory compared with the original procedure, because
the particle positions do not need to be buffered for all the
computed frames. Only the wind fields have to be still
held in memory. However even the interpolated winds
can be computed on the fly for a further memory
optimization, but only on the cost of higher computation
time in the interpolation step.

Figure 7. Optimized Abalone Interpolation

The results are presented in three movies. Pictures of
the movies (figure 8 and figure 9) are attached on the end
of the paper. In the first fire movie (fire.mpg) you can see
the visualization of the original datasets. The frames are

100 %? %

0 %

50%

tn

Grid of
data set tn/2

to

tn/2

tn

t0

t30 t29 t28

t14 t15 t16

t2 t1

repeated. So it is easy to compare the original frames with
the interpolated frames (interp.fire.mpg). The cyclone
movie shows 37 original time steps with 18 interpolated
time steps in between. The grid resolution of the used
dataset is 80 x 96 x 35. The calculation of the abalone
interpolation takes 45 minutes and for rendering we need
14 seconds per frame on an AMD Athlon 1,2 GHz.

7. Summary and discussion

The most important condition for the proper work of
the Abalone Interpolation is the correspondence
condition. If the data does not fulfill this condition the
interpolation has errors, which are not perceivable in the
visualization. For meteorological applications this
condition can only be violated if the data set mi contains a
cloud, which is replaced by a completely new cloud in the
data set mi+1. If there is no information about the
disappearance of the old cloud and the creation of a new
cloud, the process will not be detected by our algorithm
(and, probably, by no other). This limitation can be
overcome by the addition of new meteorological
information. In this paper we do not do it, because we
wanted to keep the procedure universal. Of course it is
possible to extend the algorithm to adjust it for this
specifically meteorological problem. The universal
usability, an easy implementation and visually convincing
results are important advantages of the Abalone
Interpolation. The attached file interp.fire.mpg is an
example animation of a fire flow simulation and compare
them with the original fire simulation data set
visualization in file fire.mpg. Some frames from the
animations are shown in figure 8. The original goal of our
development was the visualization of meteorological
simulation data. The introduced procedure can be used to
generate more detailed and prolonged animations out of
given data sets. In this way details can be visualized in the
animation, which would not appear in a shorter film. The
optimized procedure needs only the memory for the
computation of the data set mi and mi+1. The computed
data can then be stored as a polygonal model of the
iso-surface or as a volume grid.

8. Future Work

Generally the Abalone Interpolation can process any
fluid simulation data. It would be interesting to find out if
the method can be reused for processing of data sets
which were not generated by fluid simulations, for
example finite element simulation data. Another
important step will be the integration of the rendering data
into rendering algorithms as these shown in [15], [16],
[17], [18].

9. Acknowledgements

The data used for the movies are simulated by Dr.
Ying-Hwa Kuo form The National Center for
Atmospheric Research (NCAR) in Boulder, Colorado. We
want to thank him for providing the data. Without this
interesting datasets the presentation of the results would
be much less attractive. We also want to thank
Hans-Joachim Koppert from German weather services
(Deutscher Wetterdienst) in Offenbach, Germany for his
helpful suggestions and for the data used in figures 5 and
6. Our sincere thank are given Dr. Florian Schröder from
ask – Innovative Visualisierungslösungen GmbH in
Messel, Germany. He supported the development,
because he always thought Abalone was a good idea.

10. References

[1] Koppert, H.-J., Schröder, F., Hergenröther, E., Lux, M.,
Trembilski, A. : "3D Visualization in daily operation at the
DWD". Proceedings of the Sixth ECMWF Workshop on
Meteorological Operational Systems, Reading, England, 1998.
[2] Haase, H., Bock, M., Hergenröther, E., Knöpfle, C.,
Koppert, H.-J., Schröder, F., Trembilski, A., Weidenhausen, J.:
"Where Weather Meets the Eye -- A Case Study on a Wide
Range of Meteorological Visualisations for Diverse Audiences".
Proceedings of IEEE/EG VisSym'99 (Springer- Verlag), Vienna,
Austria, May 1999
[3] Haase, H., Bock, M., Hergenröther, E., Knöpfle, C.,
Koppert, H.-J.,Schröder, F., Trembilski, A., Weidenhausen, J.:
"Meteorology meets computer graphics - a look at a wide range
of weather visualisations for diverse audiences". Computers &
Graphics 24 (2000), pp. 391-397.
[4] D. Silver, R. Samtaney, N. Zabusky, J. Cao: “Visualizing
Features and Tracking Their Evolution,” In: IEEE Computer,
Volume 27 Nr.7, pp. 20 – 27, July 1994
[5] D. Silver, “Object-Oriented Visualization”, IEEE Computer
Graphics and Applications, Volume 3 Nr. 15, pp. 54 – 62, 1995
[6] D. Silver, X. Wang, “Volume Tracking”,R. Yagel and
Nielson, editors, IEEE Proc. Visualization ’96, Computer
Society Press, pp. 157 – 164, 1996
[7] D. Silver, X. Wang, ”Tracking and Visualizing Turbulent 3D
Features”, IEEE Transactions on Visualization and Computer
Graphics, Volume 3 Nr 2, pp. 129 – 141, 1997
[8] D.Silver, X. Wang, “Visualizing Evolving Scalar
Phenomena”, Invited Paper, Journal of Future Generations of
Computer System, 1998
[9] D. Silver, “Tracking Scalar Features in Unstructured
Datasets”, D. Ebert H. Hagen H. Rushmeier, editors, IEEE
Proc. Visualization ’98, pp. 79 – 86, Computer Society Press,
1998
[10] T. van Walsum, F. H. Post, D. Silver, F. J. Post, “Feature
Extraction and Iconic Visualization”, IEEE Transactions on
Visualization and Computer Graphics, Volume 2 Nr. 2, pp.
111-119, 1996
[11] Sederberg, T., Greenwood, E., “A physically based
approach to 2D shape blending”, Computer Graphics, 26, pp.
25-34, 1992

[12] Alexa, M.; Cohen-Or, D.; Levin, D. “As-Rigid-As-Possible
Shape Interpolation”, ACM SIGGRAPH 00, New Orleans, USA
[13] Turk, G.; O’Brien, J, “Shape Transformation Using
Variational Implicit Functions”, ACM SIGGRAPH 99, Los
Angeles, CA USA
[14] Frühauf,T. “Graphisch-Interaktive Strömungs-
visualisierung", Dissertation an der TH Darmstadt, FB
Informatik, GRIS, Springer Verlag, 1997.
[15] A. Trembilski: "Two Methods for Cloud Visualisation from
Weather Simulation Data", WSCG 2000, Plzen, Czech Republic,
pp. 192-196
[16] Andrzej Trembilski, Two Methods for Clouds Visualisation
from weather simulated Data, The Visual Computer,
International Journal of Computer Graphics, Volume 17, No 3,
May 2001, pp. 179-185
[17] Trembilski, A., Brossler, A., "Transparency for Polygon
Based Cloud Rendering", Proceedings of ACM Symposium on
Applied Computing (SAC), Multimedia and Visualization Track,
Madrid, Spain, March 10-14, 2002, pp. 785-790
[18] Trembilski, A., Brossler, A., "Surface-Based Efficient
Cloud Visualization for Animation Applications", Proceedings
of the WSCG'2002 - the 10-th International Conference in
Central Europe on Computer Graphics, Visualization and
Computer Vision'2002, University of West Bohemia in Plzen,
Czech Republic, February 4-8.th, 2002, pp. 453-460.

Attachment:

Figure 8: Some frames from a sample

visualization of a flow simulation of
a fire. See the video file fire.mpg for
the whole animation.

Figure 9: Some frames from a sample Abalone

Interpolation used for meteorological
visualization. See file cyclone.mpg for
the whole animation.

