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Abstract.

We present a fast and memory efficient algorithm that generates a manifold triangule® pessing through
a set of unorganized poinB % R3. Nothing is assumed about the geometry, topology or presence of boundaries
in the data set except thBtis sampled from a real manifold surface. The speed of our algorithm is derived from
a projection-based approach we use to determine the incident faces on a point. Our algorithm has successfully
reconstructed the surfaces of unorganized point clouds of sizes varying from 10,000 to 100,000 in about 3-30
seconds on a 250 MHz, R10000 SGI Onyx2. Our technique can be specialized for different kinds of input and
applications. For example, our algorithm can be specialized to handle data from height fields like terrain and range
scan, even in the presence of noise. We have successfully generated meshes for range scan data of size 900,000
points in less than 40 seconds.

1 Introduction pled surface (for instance, that the surface is manifold with-
out boundaries) are possible ways to eliminate these arti-
Yacts. The other extreme in the sampling problem is that the
surface is sampled unnecessarily dense. This case occurs
when a uniformly sampled object with a few fine details
can cause too many data points in areas of low curvature
variation.

Sometimes the input data might contain additional in-
formation for easier reconstruction. For example, in data
from laser scanners that generate samples uniformly on a
there (or a cylinder, depending on its degrees of freedom),

The surface reconstruction problem can be loosely stated a
follows: Given a set of pointB which are sampled from a
surface inR3, construct a surfacé so that the points d?

lie onS. A variation of thisinterpolatorydefinition is when

S approximateghe set of point$ .

Surface reconstruction has wide ranging applications
including scanning complex 3D shapes like objects, rooms
and landscapes with tactile, optical or ultrasonic sensors
are a rich source of data for a number of analysis and ex-

ploratory problems. Surface representations are a naturaadjacent data points have a very high probability of being

fons s surface-based visualzations (ike mformaton coadiacent o each other i the fnal mesh. W refer o these
textures on surfaces). The challenge fo(r surface reconstruc ata sets asrganized point cloudsThis information can be
) . . : ) X exploited by some algorithms, including ours, to give quick
tion algorithms is to find methods which cover a wide va- b y g 9 gveq

riety of shapes. We briefly discuss some of the issues in results.
y of shapes. yd Another issue in surface reconstruction is the presence
volved in surface reconstruction.

We assume in this paper that the inputs to the surfaceOf no_is_e_ and outlier_s in the original d_ata. The mode of data
reconstruction algorithm are sampled from an actual sur- acquisition has a direct |mpact on this. For exfample, range
face (or groups of surfaces). A proper reconstruction of scan data can be very noisy when the_surface}s not onen;ed
these surfaces is possible onl'y if they are “sufficiently” sam- transverse to _the scanning beam. Noisy data mtrgducg high
pled. However, sufficiency conditions like sampling theo- frequency artl_fat_:ts in the reconstructed surface (like micro-

i S facets) and this is a cause of concern for many algorithms.
rems are fairly difficult to formulate and as a result, most

of the existing reconstruction algorithms ignore this aspect Finally, the recentthrustin research to build augmented
. ) reality and telepresence applications has introduced an in-
of the problem. Exceptions include the work of [Att97, y P bp

ABKOS] teresting variation of the surface reconstruction problem.

It tHe surface is imoroperly samoled. the reconstruc- Consider an application where multiple cameras or camera-
. : broperty pied, : projector pairs are used to extract the geometry of dynamic
tion algorithm can produce artifacts. A common artifact

. . L scenes at interactive rates[RW@8]. In this scenario, the
is the presence of spurious surface boundaries in the model

) . " X . surface reconstruction algorithm should be able to handle
Manual intervention or additional information about the sam- 9



extremely large data sets (order of many millions of points) The common theme in spatial subdivision techniques
and provide a suitable surface representation without sig-is that a bounding volume around the input data set is sub-
nificant latency. One of the main motivations for this work divided into disjoint cells. The goal of these algorithms is

is to develop an approach that handles bmtjanizedand to find cells related to the shape of the point set. The cell
unorganizegoint clouds very efficiently in time and mem-  selection scheme can be surface-based or volume-based.
ory requirements. The surface-based scheme proceeds by decomposing
the space into cells, finding the cells that are traversed by
the surface and finding the surface from the selected cells.
) o _ . The approaches of [HDD92, EM94, BBX97, Att97] fall

In this paper, we present a fast and efficient projection- ,nqer this category. The differences in their methods lie in
ba_sed algorithm for surfgce rgconstructlon from unorgan_lzeqhe cell selection strategy.

point clouds. Our algorithm incrementally develops an in- The volume-based scheme decomposes the space into
terpolatory surface using the local estimated surface orien-ce|is, removes those cells that are not in the volume bounded
tation of the given data points. The main contributions of by the sampled surface and creates the surface from the

1.1 Main Contributions

this paper include: selected cells. Most algorithms in this category [Boi84,
. . . Vel95, ABK98] are based on Delaunay triangulation of the
t Asymptotic Performance: Each iteration of our al- input points

gorithm advances the reconstructed surface boundary The distance function of a surface gives the shortest

_by f:dho?smgto_ne pO'T O?t'_t andéomﬂlﬁtes Elirt]he facets distance from any point to the surface. The surface passes
incident on 1t in constant ime. £ven though the wors through the zeroes of this distance function. This approach

case lthe_o reuga! run—ume.complexnyG}s(n log .n)’ n leads to approximating instead of interpolatory surfaces [FiDR
practice it exhibits linear time performance with a very CL96]

small constant of proportionality. The basic idea behind incremental surface construc-

t Speed:We have tested our algorithm on a number of tiop is to build.—up the surfage using surface-oriented prop-
data sets ranging from 10,000 to 100,000 unorganized€'tiés of the input data points. The approach of Mencl
points. It takes about 3-30 seconds to reconstruct the@"d Muller [MM98] use graph-based techniques to com-
mesh. We have also tested our algorithm on an orga-p_lete the_surface. Bqlssonnat’s surfa<_:e cqntourlng algo-
nized point cloud of size 6.5 million. After simplifying rithm [Bq|84] starts with an edge and iteratively at_taches
this data to around 900,000 points, it took us about 40 further triangles at boundary edges of the emerging sur-

seconds to generate the mesh on a 250 MHz, R10000@ce using a projection-based approach to generate mani-
SGI Onyx2 with 16 GB of main memory. folds without boundaries. The Spiraling-Edge triangulation

technique proposed by Crossno and Angel [CA97] is simi-
t Memory efficiency: Our algorithm has minimal mem-  lar to our algorithm. Differences include the fact that they
ory overhead because it goes through a single pass ofmake several limiting assumptions about the data, includ-
all data points to generate the mesh. We do not main-ing normal and neighborhood information for each point.
tain the computed triangles in our data structure be- Bernardini et. al. [BMR99] describe a ball-pivoting al-
cause our method does not revisit them. Only the input gorithm to grow the surface locally. Gopi et al. [GKS00]
data has to be stored. use localized Delaunay triangulation to compute the final

neighborhood in the triangulation.
t Robustness:In the special case of terrain data or data

from common center-of-projection scanning devices,
our algorithm can tolerate high noise levels. The error 3 Algorithm Overview

introduced by noise has to be bounded, however. ) ) ] ) ]
The input to our algorithm is a set of unorganized points

with no additional information (like normals). The output
is atriangulated mesh which interpolates the input point set.
The problem of surface reconstruction has received signif- Our algorithm starts at a data point, and finds all its incident
icant attention from researchers in computational geometrytriangles. Then each of its adjacent vertices in the boundary
and computer graphics. In this section, we give a brief sur- of the triangulation is processed in a breadth-first fashion
vey of existing reconstruction algorithms. We use the clas- to find their other incident triangles. Thus the boundary of
sification scheme of Mencl et. al. [MM98] to categorize the completed triangulation propagates on the surface of the
the various methods. The main classes of reconstructionpoint cloud till it processes all the data points. In the rest
algorithms are based apatial subdivisiondistance func-  of the paper, we refer to the point being processed as the
tionsandincremental surface growing reference pointR.

2 Previous Work



There are three assumptions we make about the datdriangulation.
set. The sampling of the data liscally uniformy which
means that the distance ratio of the farthest and closest neigfiriangulation : Finally, the remaining points i6r are then
bor of a sample in the given sampling of the object is less connected in order arouri®l to complete the triangulation.
than a constant value. The second assumption is to distin-
guish points from two close layers of the object. The closest
distance between a_poiﬁtin one layer gnd another Iaygr is 4 Surface Reconstruction
at least,m, where,, is a constant andh is the shortest dis-
tance betweeR and another pointin its layer. The third as- In this section, we describe our approach to surface recon-
sumption is about the smoothness of the underlying object.struction in detail. The output of our algorithm is an inter-
The normal deviation between the any two triangles inci- polatory, non-self-intersecting triangular mesh of the given
dent on a vertex should be less tharr 9This assumption  point cloud.
is used in justifying our choice of tangent plane in section The implicit function theorem of smooth surfaces forms
4.1, the basis of our approach. Without loss of generality, it
Our algorithm can be broadly divided into three stages: states:‘Given an implicit surfaceS - f(x;y;z) = 0, and
bucketing point pruning and finally thetriangulation step a pointP on it, such that the tangent plane$oat P is par-
Bucketing: In this stage, the data structure is initialized allel to the(x;y) plane, thenS in the neighborhood of
with the input data. Our data structure is a depth pixel ar- can be considered as a height functibix; y; h(x;y)) = 0,
ray similar to thedexelstructure [Hoo86]. We maintain a a local parameterization on its tangent planeBy a suit-
2D pixel array into which all data points are orthographi- able rigid transformation of the coordinate frame, any other
cally projected. The points mapped on to the same pixel point onS can be made to satisfy the above theorem.
are sorted by their depth)(values. Our algorithm is a greedy method and works with two
parameters:;,,, which quantifies our definition dbcally
Point Pruning: This step is similar to clustering algorithms uniform samplingandfi, which gives a lower bound on the
used by other triangulation schemes [HDE2]. We first angle between consecutive neighbors of a point on a bound-
apply adistance criterionto prune down our search for ary of the surface. Typicallyi is a large obtuse angle. In
candidate adjacent points in the spatial proximityRof It our implementation, we have deto be 120. All other pa-
is executed in two stages. In the first stage, the simplerrameters, which are required for the implementation of the
L1 metric is used to define the proximity arouRd Our algorithm are derived from. In order to improve the qual-
algorithm takes an axis-aligned box of appropriate dimen- ity of triangulation, we can optionally specify a minimum
sions centered @ and returns all the data points inside angle parametef]. It is not necessary for the completion
it. The major difference in our approach compared to other of our algorithm, though.
approaches is the use déxellike data structure for this  Terminology: We categorize the data points at any given
stage. By using our data structure, this search is limited tostage of our algorithm afsee, fringe, boundaryand com-
the pixels around the pixel wheR is projected. Another  pletedpoints. Thefreepoints are those which have no inci-
advantage of this data structure is explained in Section 5dent triangles. Theompletecpoints have all their incident
where the information about the characteristics of the scan-triangles determined. Points that lie along the current sur-
ning device, used for collecting the data points, is used to face boundary are eith&inge or boundarypoints.Bound-
improve the robustness of the algorithm. The second stageary points are those points which have been chosen as a
of pruning uses the Euclidean metric, which further rejects reference point but have some missing triangles due to the
the points that lie outside sphere of influenceentered at  maximum allowable angle paramefterFringe points have
R. The choice of the box dimensions and the radius of the not yet been chosen as a reference point.
sphere are described in the next section. The points chosen  We maintain two invariants during our algorithm’s ex-
after the pruning using the Euclidean metric are called the ecution:
candidate pointef R, Cg. Invariant 1: No free fringe or boundarypoint can be in
Visibility Criterion: Next, we estimate the tangent plane the interior of a triangle (because of our distance criterion).
atR, and projectR, Cr, and the mesh boundary in their Invariant 2: At the end of each iteration, the point chosen
vicinity on this tangent plane. The projected point<Ce{ as the reference point becomesampletecor aboundary
are therordered by anglaroundR. Points inCg that are point. This is used later to prove claims about occluded
occluded fromR by the mesh boundary in the projection points (for visibility criterion).
plane are removed. Our algorithm starts with the bucketing step by ortho-
Angle Criterion This is an optional step, which tries graphically projecting the data points onto ttiexeldata
to remove “skinny” triangles &R, to improve the quality of ~ structure. The following steps are used to choose the right
set of points to be connected to the reference pgRint



R on a projection plane. We find this ordering directly
by projectingCr on a plane. The choice of the projec-
° o tion plane is an important issue, and dictates the robust-
ness of our algorithm. According to the implicit function
theorem, the best projection plane would be the tangent
plane atR. One can adopt more robust algorithms like the
one described in Hoppe et.al [HDM2] or Amenta et.al.
[ABK98]. An alternate cheaper approach to compute the
projection plane normal is by averaging normals of exist-
ing triangles incident oR. Since we are interested only in
the relative ordering of points arouR] we use this latter
approach in our implementation. The ordering of taa-
didatepoints Cr) aroundR in this plane will be incorrect
only if there is a triangle incident oR with its normal de-
viating by more than 90from the projection plane normal.
Our choice of projection plane is justified by our assump-
tion about the smoothness of the underlying object. We
assume that the object from which the input is sampled is
4.1 Point Pruning smooth enough so that the variation in the tangent planes
for proximate points is very small.

(®)

Figure 1: (a) Visibility test around R. The black points are
behindR’s boundary edges, the white points are occluded
by other edges, and the poMtis eliminated as R is behind
its boundary edges. (b) Completed mesh at R

Pruning by Distance Criterion: Points far away from the
reference poinR are not likely to be adjacent to it. We
eliminate them by applying the distance criterion in two
stages. Initially, we employ the cheafdesq metric to nar-
row down our search. It is performed by constructing an
axis-aligned box of suitable dimension arolRdnd choos-
ing all thefree, fringe andboundarypoints inside the box.
By using ourdexelarray, this is a logarithmic time opera-
tion with small constant.

The dimension of the box is derived fropas follows.
In a general case&R (a fringe point) already has a few in-
cident triangles. Lem be the minimum distance frofR
to its existing adjacent vertices. From our definitioriaf
cally uniform samplingthe farthest neighbor dR can be
at most,,m away. This gives an estimate on the dimension
of the box. WherR has no incident triangles (for example,
at the very beginning), we find the closest poinRasing
the dexelarray representation and fimd. The minimum
distance between the points in the above boxRnikfines
the previous estimate ofi. Using this newm, the next step
further prunes the chosen set of points in the proximity of
R.

Angle Ordering: A main step in our algorithm is to or-
der points inCr projected orPr by angle aroundR. We
now describe a fast and inexpensive method to perform this
ordering.

We define a new local coordinate system where the
reference poinR is the origin andPg is thexy-plane. Ini-
tially, each candidate point d® is projected orPg in this
coordinate system. Let this set of projected candidate points
be CE. The ordering aroun® is based on the angle)
between thex-axis of the local coordinate system and the
vector from origin to the projected candidate point.

The setCP, is partitioned by the quadrants in which
they lie. In each of these quadrants we order the points
based orsin?( ). We usesin?( ) because it is almost lin-
ear within a quadrant and is inexpensive to compute. The
actual angle in the projection plane is computed using a
look-up table and a simple linear interpolation. We now or-
der the points within each quadrant and finally merge these
four ordered sets. We use the actual angle to identify holes,
boundaries, and skinny triangles in the model.

We call a sphere of radiusm centered aR as the
sphere of influencéSg) aroundR. The second stage of
pruning uses a strictdr, metric and returns all points in-
side Sg. These points are theandidate point{Cg) of

Pruning by Visibility: We use the angle ordering Gﬁ to
efficiently perform the next stage of pruning based on visi-
bility in the planePg. It eliminates the points which poten-
R. We would like to make an observation about the candi- tially form a seIf—mtersectmg mesh. We Qeflne theeLind- :
. : X . ary edge®f a point as the set of edges incident on that point
date point set. The radius 8f is dependent om, which . :
- . that lie on the current surface boundary. Any edge with no
changes from one vertex to another. Therefore, it is possi-, . o
: ) : triangle formed on one of its side, issmundary edgeAll
ble that a vertex might be in thesphere of influencef R, : X
. . boundary edgesonnecfringe and/orboundary pointsOn
but not vice-versa. But this asymmetry does not affect the he other hand led he ed hich
topology of the reconstructed mesh the other an nter.na edgesre t € edges whic connect
) completecpoints with any other point. We projeR, Cg,

_Cho!c_e of PrOJectlon P'ar.‘E: Th_e trlangulatlon z?\rounR and theirboundary edgesn the planePg. If the line of
implicitly defines an ordering of its adjacent vertices around



edge which is also occluding. This eliminates all the in-
ternal edges from our consideration. Figure 2(a) shows an
example where boundary edges (lid¢ or/andV W) oc-
clude the poinQQ from R, but its endpoints are not Br.
Given that at least one &fV or VW is aboundaryedge,
it must be part of some existing triangle (like/ W in the
figure). This implies that one a&f, V or W (let us assume
U) must have already been chosen as a reference point. We
have to prove that if any one of these points was an earlier
reference point, then it should have chosen eifQesr R

@ ® (or both) as its neighbor(s). If it had chos@n(resp.R) as

its neighbor, therR (resp. Q) will lie on Q’s (resp. R’s)

Figure 2: (a) Determining occluding edges (b) AnX&Y invisible region, and) would be eliminated fronCy.
is obtuse, s@ < ¢. Furtherf <d+a<d+c<d-+c+te. In the Figure 2(b), let us choose one of .the edggs, say
ThereforejQUj < jUVj. UV, to complete our proof. LeX andY be the intersection

points of this edge with the projection 8. 6 XQY is

obtuse, because angle subtended by the diameter on the cir-
sight fromR to a projected candidate vertex is obstructed cumference is a right angle, aadX QY is clearly greater
by any edge, then that point is an occluded point. The ex-than that. Hence the distance= jXY j is the longest edge
istence of visibility between these points in the plane is a of the4XQY , which means thaa < c andb < c. Hence
sufficient but not a necessary condition for the visibility be- (d+a) < (d+c¢) < (d+c) + e, and by triangle inequality,
tween them in the object space. In the limit, when the local jJUQj = f < (d + a) < (d +c¢) +e = juV]. Similarly
surface approaches the tangent plane in a densely samplede can prove thgV Qj < jV Uj. This argument extends to
point cloud, it becomes a necessary condition as well. Weany edge that is placed similar b/ .

take a conservative approach and prune all the poir€xin From our distance criterion, we claim that vert@x
which are occluded frorR on Pg. must be adjacent ttJ. With Q as its neighborU com-
Points occluded fronR are determined as follows. pletes its triangulation by adding edg®@¥ andQW. This

implies thatR lies in the invisible region of), and hence

] ] cannot belong t€ as it will be eliminated by condition 2
1. Allthe points between consecutibeundary edgesf above. TherefordJV cannot be an occluding edge. O
R (shown by the dotted-line wedgeRin Figure 1(a))

are removed as they cannot be visible fr&n They The rest of the points which are ordered by angle around
are said to be in thiaisibleregion ofR. The black R can be triangulated as shown in Figure 1(b).
points in the figure are examples. Pruning by Angle Criterion: The triangulation we get

from the previous step is a valid one. However, to im-
2. Similarly, points are removed which hafin their prove the quality of triangulation, this pruning step removes
invisible region (for example, point in the same fig-  points that could potentially form triangles with very small
ure). We denote the set of points frdDg remaining angles (“skinny” triangles). This is not a necessary compo-
after this step a€y. nent for the working of our algorithm. Since our algorithm
does not introduce additionab{eine) points, it cannot al-
ways achieve the desired quality. It is a greedy approach,
'which would eliminate sliver triangles whenever possible.
We explain the working of this step using an example.

A straightforward approach of checking all possible " Figure 3, consider the pointd; andN. Let us assume
occluding edges is very expensive. We state the following that the angle aR of 4RN;Ns is less tharfl (the mini-
theorem which limits our search to very few edges. This Mum angle parameter). One of these points can be removed

theorem is true under the assumption about the smoothnes® improve the triangulation. The choice of the removable
of the underlying object. vertex is not arbitrary. For example Nf; is rejected, it gets

trapped inside the triangle (in the projection plane) formed
by R, Ny, and any one o3, N4, or N5. This violates
Invariant 1.

The following algorithm describes a way to avoid such
Proof: From Invariant 1, it is easy to show that if an inter- scenarios and to form a good triangulation whenever pos-
nal edge is occluding, there must be at least one boundarysible. Assume that we have to complete the triangulation

3. Finally, we eliminate points that are occluded fr&m
because of an existing edge in the mesh (for example
the white point in Figure 1(a)).

Theorem 4.1 Only theboundary edgesf the points in the
setCg can be possible occluding edges betwBemdCy.



Figure 3: Pruning by Angle Criterion: (a) Ordering around
R and P; angles betwed N2, N3N4, andN4N; are less
thanfl. (b) N5 trapped indRP Ny, andN, trapped inside
ARN;N;

fromP to N; aroundR in Figure 3, wher&kP andRN5; are
consecutivdboundary edgesf R. We start our processing
by ordering the points arourRRl. In our example, this order-
ing would bePs = (N1; N2; N5; Ny; N3), and the ordering
aroundR is Rs = (N1;Ng; N3; Ng; N5). LetPg[i] (Rs]i],
respectively) be thé™" element inPs (Rs, respectively).
Without loss of generality, we assunfi[i] = N;. The

No. of | No. of | Init. Time | Rec. Time
Model points | Tris (insecs) | (insecs)

Club 16864 | 33660 | 0.2758 3.9644
Bunny 34834 | 69497 | 0.5961 9.1809
Foot 20021 | 39919 | 0.3802 5.2725
Skidoo 37974 | 75461 | 0.6680 8.536
Mannequin| 12772 | 25349 0.2405 3.9289
Phone 83034 | 165730 1.5634 26.597

Table 1: Performance of our algorithm: See Color Plate 1

skinny triangleRN3N,. It is important to note that even if
we had choseN; or N5 from the original possible adjacent
point set, we would have ended up in the same situation.

4.2 Triangulation

The remaining points fronCr after the various pruning
steps are the final adjacent points and are connected in or-
der aroundR to complete the triangulation in the object
space. If consecutive adjacent points subtend morefihan

following pseudo-code finds all possible adjacent points to (Maximum allowable angle parameter)Rtin the object

P aroundR, without trapping any other point inside the
triangle.

forl =i = jPgj
Let N; be the vertex ifPs]i]
Mark N; asconsidered
T(Nj) =fNk jk <j, N is not markedconsidered
if (T(Nj) =73)
thenN; can be an adjacent pointto P aroundR
elseN; cannot be an adjacent pointto P aroundR

In our example, we first seleBt[1] = N;. Since there
is noN such thak < 1 andNy is not markeatonsidered
N; is a possible adjacent point BbaroundR. This is also
true forPs[2] = Ny. Now considePg[3] = N5. Here, we
have two pointdN3 andN4 which are not markedonsid-
ered and hence belong to the sEf{N5). We can see that
N3 andN, are inside the4RP N5. ThereforeN5 cannot
be an adjacent point tB aroundR. In the general case,
the setT (N;) consists of precisely those vertices that will
be trapped ifN; were chosen as the adjacent point?o
aroundR. If we complete the above algorithis will also
be chosen as a possible adjacent point.

From the set of possible adjacent poifité; ; No; Nsg,

space, then they are not connected to form a triangle. This
maximum angle describes the characteristics of the holes in
the model, andR is considered as boundarypoint. All
thefreepoints in the adjacent point list are labeled@sge
points and are appended in order at the end of the queue.
The algorithm chooses the next point from the queue as the
new reference poirlR, and continues with the triangulation
aroundR.

5 Triangulating Terrain Data

Simple solutions are available to triangulate smooth terrain
data. In this section, we show that these algorithms can be
made as a special case to our 3D triangulation algorithm by
fixing the projection plane.

Typically, devices used for data acquisition generate
sample data in some order. In our algorithm, we can make
use of this order and the characteristics of the device to han-
dle noise. We have applied our method on a massive data set
of aroom (Color Plate 2 - top row) acquired by a laser range
scanner. This is a common Center-Of-Projection (COP) de-
vice which returns a very dense sampling as a spherical
depth map ((, ) map) of the environment around itself.
With adjacent samples of this high density sampling being
less than an inch apart, the noise in the samples is nearly

we can choose any vertex. For the sake of argument, let ugwo inches. If we apply our original algorithm to this noisy

chooseN; as the adjacent point 8 and form the triangle
RP Nj3. Now the same algorithm is applied g, and the

data set, the selected projection plane would be completely
altered by innumerable micro-facets formed in the vicinity

points Ny and N5 are ordered around it. It can be seen of a point.

that the poinitN, cannot be removed, as it will get trapped
inside the triangl&kN3N5. Hence, we cannot eliminate the

We make use of the fact that the data set is in the spher-
ical coordinate system to solve this problem. In such a co-



ordinate system, this surface can be considered as a monoNo.of No. of | Init. Time~ | Rec. Time| Rec. Time
tonic surface with respect to a unique projection plane, namegints | Triangles| (insecs) | 1 (in secs)| 2 (in secs)
the (, 7) plane, similar to height field or terrain data. Since 143858| 267131 82.508 5.998 1.020
the perturbations in the data set due to noise are usudllg83577| 1707468 | 88.554 38.782 6.913

orthogonal to the projection plane, our algorithm is not af-

fected by it.
Table 2: Performance of the system for the Room range

Traditional 3D reconstruction algorithms are not well- _ A -
suited to handle terrain or range data. As a result, special-data set: See Color Plate 2. Reconstruction Time 2: without

ized algorithms [GH95] have been developed to explait the Visibility and angle criteria check™{ Includes the reading
simplicity of the input. However, in our algorithm, terrain time of the original data set — 6479713 points)

models are a special case where we fix the projection plane

to remain constant. Further, since estimating the projection
plane at each point is avoided, our algorithm runs signifi-
cantly faster as well.

club model, because of high curvature variations and non-
uniform sampling in the regions near the nose, eyes and
ears. For the same reason, we are able to handle massive
data sets of size in the order of millions of points in a few
seconds, as we are making use of height field data proper-
ties.

Our algorithm is a single pass algorithm, and does not
need to revisit the triangles once they are formed. We do
not produce any higher dimensional simplices (like tetrahe-
step of pruning (by- 1 metric), can be made to choose only dra [Boi84]) that require their removal to make the model
the points from the adjacedexelsof R. The radius oBg a valid manifold. We also do not change the triangulation
is set to a slightly higher value than the noise in the system.once they are completed.

As all the points irCr are visible fromR, visibility and an- Reduced memory requirement is another feature of our
gle checks can also be skipped. By setting the parametergigorithm. Our algorithm does not store the triangles formed
and removing these tests, it takes less than seven second$uring reconstruction in the main memory. Only those tri-
to reconstruct a data set of size around 900,000 points. Esangles which are incident oiinge and boundarypoints
sentially, we can think of our approach as a parameterizedare retained, as they are used for visibility pruning. Hence
algorithm where fixing certain parameters results in highly we are able to handle massive models with millions of data
specialized and efficient algorithms for different classes of points.

inputs. Table 1 shows the time taken by our algorithm on var-

In practice, we fix the dimensions of thiexelarray.  jous point clouds. The initialization time in the table in-
We retain one representative point if multiple points get cludes the time taken to read in the model and initializing
mapped onto the sanuexel This thins the high sampling  the data structure. All the timing measurements in this pa-
density, and forms a level of simplification. The dimensions per were made on a 250 MHz, R10000 SGI Onyx2 with 16
of thedexelarray controls the amount of simplification and GB of main memory. Table 2 shows the timing of our al-
the run time of the algorithm. Since all the processing time gorithm on the laser data. The initialization time includes
in our algorithm is dependent on the numbercahdidate  the time to read in the original model of around 6.5 mil-
points bounding this number is a major source of speed-up lion points, filling up the data structure and eliminating the
in handling terrain data. points. The two entries in the table show the timings for

The image in Color Plate 2 (top row) shows the tex- two different sizes of thelexel array 400£ 600 and 1000
tured reconstructed room model. The texture is created£ 1500.

from the intensity values returned by the laser device. The

image on the right shows the micro-facets in the floor of the 6.1 Robustness of our algorithm

room, in spite of point simplification. We avoid most of the robustness problems faced by purely
geometric methods (like noise and degenerate situations) by
our partially combinatorial approach. In our algorithm, we
The complexity of our algorithm is input sensitives. time face robustness problems in the projection plane evaluation.
spent is proportional to the model complexity. This can be For example, sharp curvature variations in the object might
seen from the results shown in Table 1. The bunny model,lead to incorrect estimates of the projection plane.

which has fewer points than the skidoo model, takes more To test the robustness of our approach to perturba-
time for reconstruction, due to its complexity. Similarly, the tions in the estimated tangent planeRytwe used one of
mannequin model takes almost the same time as that of thqust three projection planes(X;Y ), (Y;Z), and(Z; X),

5.1 Specializing our Algorithm

The underlying two dimensionalexel arrayis considered
as the( ;) projection plane with only one data point at
eachdexel The neighbors of a point in the final triangu-
lation can only be from its adjacedexels Hence the first

6 Performance and Results



whichever was close to the actual estimate. We were ablelBMR*99] F. Bernardini, J. Mittleman, H. Rushmeier,

to triangulate many models including the bunny model sat-
isfactorily. The execution time with this approach is much
less than the times listed in the Table 1 because we do not
need to explicitly transform the vicinity d® to its tangent
plane. But the disadvantage of this approach is that it has
a few favorable orientations of the model in the coordinate
frame, and different orientations gave different results.

[Boig4]

6.2 Limitations of Our Approach

Any projection-based approach gives different triangulation [CA97]
for different starting points. Our approach also suffers from

the same limitation. But once the seed point is fixed, the
triangulation is same for any transformation of the model. CL96]
The second limitation is also common to most surface re-
construction algorithms — sharp curvature variations. If the

faces incident on a vertex do not satisfy our criterion of sur-

face smoothness, then our algorithm might produce incor-

rect triangulations. For under-sampled and extremely non-[EM94]
uniformed models, our algorithm produces spurious model
boundaries, as shown in the Color Plate 2 (bottom row).

7 Conclusion [GH93]
We have presented a new projection-based surface recon-
struction algorithm from unorganized point clouds. The key

features of our method are speed and memory efficiency.
Further, it is a single pass algorithm and can make use Of[GKSOO]
the characteristics of the data acquisition phase to handle

noisy data. We have demonstrated the application of our
algorithm on various data sets, including a massive, noisy

range scan model of a room. We have successfully gen-

erated valid, non-self-intersecting, orientable manifold sur-

C. Silva, and G. Taubin. The ball-pivoting
algorithm for surface reconstructionlEEE
Transactions on Visualization and Computer
Graphics 1999.

J. D. Boissonnat. Geometric structures
for three-dimensional shape representation.
ACM Transactions on Graphics3(4):266—
286, 1984.

P. Crossno and E. Angel. Isosurface extraction
using particle system$EEE Visualization '97
pages 495-498, November 1997.

B. Curless and M. Levoy. A volumetric
method for building complex models from
range images. IMCM Siggraph pages 303—
312, 1996.

H. Edelsbrunner and E. Mucke. Three dimen-
sional alpha shapes.ACM Transactions on
Graphics 13(1):43-72, 1994.

Michael Garland and Paul S. Heckbert. Fast
polygonal approximation of terrains and height
fields. Technical report, CS Dept., Carnegie
Mellon U., Sept. 1995.

M. Gopi, S. Krishnan, and C. T. Silva. Surface
reconstruction based on lower dimensional
localized delaunay triangulation.Computer
Graphics Forum, Eurographi¢sl9(3):C467—
C478, 2000.

face meshes for point clouds of size a few hundred thousandHDD *92] H. Hoppe, T. Derose, T. Duchamp, J. McDon-

in a matter of tens of seconds. By fixing certain parameters

in our algorithm, we obtain highly specialized and efficient
methods for various input classes. We believe that such a
versatility and performance without any manual interven- [Ho086]
tion is a big win for our algorithm.
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Mannequ’in Model | Foot Model Club Model

TOP: 12772 points, 25349 triangles, TOP: 20021 points, 39919 triangles, TOP: 16864 points, 33660 triangles,
4.16 seconds 5.65 seconds 4.23 seconds

BOTTOM: Triangulation in the high BOTTOM: Triangulation in the regions BOTTOM: Notice the character '3' on
curvature regions of the model with of non-uniform sampling the side of the club and the letters on
non-uniform sampling the face

Bunny Model Phone Model Skidoo Model
34834 points, 69497 triangles, 9.77 secs 83034 points, 165730 triangles, 28.15 secs 37974 points, 75461 triangles, 9.19 secs

COLOR PLATE : 1



LEFT: Organized, noisy, massive range data set: 6.48 million points, 143858 points retained, 267131 triangles, 88.5 secs
RIGHT: Notice the noise and the microfacets on the floor of the room

LEFT: Ordering of the candidate points around the reference point on the projection plane. RIGHT: Final triangulation
around the reference point after rejection of points based on angle and visibility criteria.

Reconstructed surface of non-uniform and under-sampled point clouds
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