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$EVWUDFW��The problem of image data fusion includes several techniques for data integration from different 
sensors about a given object. The process can be divided in two stages: (a)  pixel interpolation on each observed 
image to equalize their resolutions; and (b) synthesis of the fused image using the interpolated images. This 
work proposes the use of projection  onto convex sets (POCS) techniques in both stages of the image data 
fusion process: on the interpolation stage,  by creating intermediate pixels more adapted to the local 
characteristics of the observed images; and on the synthesis stage, by generating a final multispectral image that 
incorporates the best spatial and spectral characteristics of the initial images. As an example, the algorithm is 
applied to Spot satellite images. 

��� ,QWURGXFWLRQ�
The interpolation and the data fusion of images are 
techniques used for compatibility and integration of 
images, from different sensors, of the same object. The 
interpolation tries to equalize the spatial resolution of the 
different data sources, while the data fusion combines the 
data obtained in the previous step, by providing an image 
with the best characteristics of each combined image. In 
the case of remote sensing, multispectral images have 
good spectral resolution and panchromatic image have 
good spatial resolution so the data fusion process attempts 
to synthesize an image with the best characteristic of each 
original image.  

There are several methods for image data fusion 
described in the literature. One group of methods is based 
on the IHS transformation, which is  used in a large variety 
of works as in Haydn et al.[10] and Brum [03], who used 
the panchromatic and multispectral bands of the SPOT 
satellite to generate three synthetic bands with the 
resolution of the panchromatic band and ideal synthetic 
bands close to the original multispectral bands. Extensions 
of these ideas are based on linear projection techniques as 
Principal Components Analysis and Projection Pursuit, as 
in Byrne et al. 04], Orlando et al. [16] and Petrakos et 
al.[18]. 

The idea that in high-resolution multispectral images, 
the energy of the spectral features is concentrated in low 
frequencies and the energy of the spatial features (edges) 
is concentrated in high frequencies origins a large variety 
of methods as in Aiazzi [01], who combine interpolated 
multispectral  images with a panchromatic band, 
subtracted of this low pass version, or using a multirate 
filter bank as in Ghassemian [05] and Bethume et al [02].  
Following these steps, some works have applied the 
wavelet transforms techniques, as Gazerlli e Soldati [06], 

Núñez et al. [15], Scheunders [21], Gómez et al [07] (but 
merging multispectral and hyperspectral images). 

Mascarenhas et al. [13] proposed the simulation of a 
degraded SPOT panchromatic band by linear combination 
of multispectral bands as an example of a potential method 
to decrease the data rate on the link between the satellite 
and the ground.  Latter Mascarenhas et al. [14] proposed a 
new data fusion method using bayesian statistical 
estimation theory that uses the multispectral and 
panchromatic bands of SPOT satellite to generate ideal 
synthetic multispectral bands, close to 10x10m spatial 
resolution. 

The use of local correlation coefficients for data 
fusion was proposed by Hill et al [11] and Zaniboni and 
Mascarenhas [23]. The latter method used locally adaptive 
correlation coefficients in the interpolation phase and, in 
the synthesis, a new method was proposed by performing a 
projection onto the linear subspace that defines the least 
squares solution of the synthesis problem. 

This work explores the projections onto convex sets 
(POCS) methods both in the interpolation, for the 
definition of the locally adapted correlation coefficients, 
and in the synthesis, by projecting the interpolated images 
on the subspace of solutions.  

���±�0XOWLVSHFWUDO�DQG�3DQFKURPDWLF�,PDJHV�
 
Multispectral images are obtained by sensors with narrow 
spectral bands, and for this reason, they have good spectral 
resolution. On the other hand, panchromatic bands have 
poor spectral resolution, but better spatial resolution. In 
this work, we will treat multispectral and panchromatic 
bands generated by the HRV sensor of the SPOT satellite, 
whose characteristics are presented  in Table 1.  
 
 
 



  

Type of 
Image  

Band 
 

Spectral Band 
(µm) 

Spatial Resolution 
(m) 

Panchromatic 1 0,51-0,73 10x10 
Multispectral 1 0,50-0,59 20x20 

 2 0,61-0,68 20x20 
 3 0,79-0,89 20x20 
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The POCS techniques have been applied to the solution of 
a wide variety of problems. As a rule, vector-space 
projections do not furnish “optimum” solutions such as 
those associated with minimum-mean square error, 
maximum entropy, maximum likelihood, maximum D�
SRVWHULRUL estimation and others, but the projection 
methods, specifically convex projections methods, always 
yield a solution consistent with a set of constraints 
furnished by the user. 
In its most general form, the practical application of a 
POCS method has the following framework: we want to 
recover, design or determine an unknown value using 
some information that is known in the form of constraints.  
The unknown value is treated as a vector in a Hilbert 
space, and the known constraints are described in the form 
of  closed convex sets in this space.  Without loosing 
generality, assume that there are a total of P sets & � ��& ���
���& �  available.  Each set is usually associated with a single 
constraint although sometimes it is convenient to include 
multiple constraints in a single set. Then, the intersection 
of all these sets, say �

�
� && 10 == � , will contain all the 

possible solutions to the problem because each solution 
satisfies all the available information about the unknown.  
With the sets defined by projection equations called 
projectors, an initial value is successively projected on all 
constraint sets, until it converges to a value or arrives to a 
satisfactory solution [22].  

��� ,QWHUSRODWLRQ�
The following method was proposed by Mascarenhas et al 
[14] and complemented by Zaniboni and Mascarenhas 
[23].The POCS version of the method will be presented in 
section 3. Basically, we want to interpolate images of 
20x20m resolution to make them compatible with images 
of  10x10m resolution. Both the pixel values on the 
original grid, as well as those on the interpolated grid, are 
regarded as random variables.  The local linear estimation 
of the interpolated pixels is performed under the minimum 
mean square error criterion, by using the orthogonality 
principle [12]. For simplicity, the separability of the 
correlation structure on the spatial and the spectral 

domains [11] is assumed. Furthermore, we also assume 
separability of the spatial correlation structure in the 
horizontal and vertical directions and a first order 
Markovian model in each direction. This assumption has 
also been widely used in the image processing literature 
[20].  

A 3x3 neighborhood on each of the three 20m 
resolution multispectral bands (B1, B2 and B3) of the 
satellite image is used to linearly estimate four 10m 
resolution pixels covering the central pixel of the 
neighborhood on each band, as shown in Figure 1.  

Therefore, we use 27 pixels (nine on each band) to 
estimate 12 pixels (four on each band). The vector 
obtained by lexicographically ordering the observations on 
the 3x3 neighborhood over the three multispectral bands, 
that is, ordering first by columns, then by rows and finally 
by bands, is denoted by the (27x1) vector y. 

Let �x  be the (12x1) vector obtained by a similar 
lexicographic ordering of the estimated pixels on the 
central 2x2 neighborhood over the three multispectral 
bands. So, the non-homogeneous linear estimator will 
have the form: 

E$\[ +=ˆ  (01) 
Under a Bayesian approach for estimation, through 

the orthogonality principle [10], the matrix A and the 
vector b will be obtained by: 

∑∑ −= 1� �� �$  (02) 

and, 

[ ] [ ]\([(E 	 	
 	 ∑∑ −−= 1 , (03) 
leading to, 

[ ] [ ])(ˆ 1 \(\[([ � �� � −+= ∑∑ −  (04) 
where [ ][(  is the statistical expectation, ∑ 
 � is the cross 
covariance matrix of [ and \, and ∑ � � is the auto-
covariance matrix of \ We adopt the physically reasonable 
assumption that, in the interpolated process, the expected 
values should not be modified, i.e., 

[ ] [ ]\([( =  (05) 
Under the separability assumption and lexicographic 
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 ordering, the covariance matrices will be given by [2]: 
)()()( �� ��� ��� � && Σ⊗⊗=∑  (06) 

)()()( �� ��� ��� � && Σ⊗⊗=∑  (07) 
The symbol ⊗  represents the Kronecker product of 

two matrices and h, v and s represent, respectively, the 
horizontal, vertical and spectral directions. Observe that 
the Kronecker product does not commute, i.e., A⊗ B ≠ 
B ⊗ A [03]. Therefore, depending on the order of the 
factors, different results could be obtained. However, the 
adopted lexicographic ordering by rows, columns and 
bands imposes the unique ordering given by equations 
(06) and (07) to represent the correlation structure 
between the involved pixel values. 

Under the first order Markovian spatial correlation 
structure, the matrices (& � )� �  e (& � )���  will be given by: 
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where ρ �  is the correlation coefficient on the horizontal 
direction. The same structure is valid for (& # )� �  and (& # )��� , 
by substituting ρ �  by ρ # . The specification of the powers of�
ρ �  and ρ #  depends on the distance between pixel positions 
in the horizontal direction, by adopting the Markovian 
structure. It is implicitly assumed that the distance between 
adjacent pixels on the original multispectral bands is unity. 
The specification of the correlation coefficients allows an 
adaptation of the method to the image local characteristics.  

The covariance matrix ∑V  is the covariance matrix 
between the multispectral bands and will be given by: 
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where  
2%'&σ  is the covariance between the bands L and M, 

and 
2( (σ  is the variance of the band L. 

The covariance matrix of the (12x1) vector [̂ , that 
gives the interpolated pixels, is easily found: 

∑ ∑∑∑∑ −==
)
* ++�+* +

)
+�+* $$ 1

ˆ  (11) 

where is $ given by the equation: 

 ∑ ∑ −= 1, ,- ,$   (12) 

It  should  be  observed  that the  (12x12) covariance 

 matrix ∑ .ˆ  carries not only spectral information, but 
also information about the interpolated pixels. 

��� &RUUHODWLRQ�&RHIILFLHQWV�
In Zaniboni e Mascarenhas [23], the technique of locally 
adapted correlation coefficients was used. The idea was to 
adapt the coefficients to local statistical changes of the 
image, using discrete higher values for ρ /  and ρ 0  when the 
region presents lower local differences between the pixels 
and discrete lower values when the region presents higher 
local differences between the pixels.  The values of ρ /  and 
ρ 0 were used in equations (08) and (09).  

   The new method proposed in this paper can be 
described by the follow steps: 

 a) For every pixel \ 1 2 3"2 4  with L=1,...,, , M=1,...,-, and 
Q=1,2 e 3 (where L represents rows, M  coluns and Q the 
multispectral band) on the multispectral images that will 
be interpolated, the horizontal, 6K 1 2 3"2 4 , and vertical, 6Y 1 2 3"2 4 , 
“sum of diferences” are computed over a 3x3 pixels 
neighborhood centered in \ 1 2 3"2 4 . This is the neighborhood 
that will be used in the interpolation process. 

6K 1 2 3"2 4  = ∑∑
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(b) The two-dimensional histogram of horizontal and 
vertical local roughness measures (6 /@1 2 3"2 4 �� 6 0"1 2 3"2 4 ) is 
computed for all pixels of the three multispectral images.  

(c) On this histogram, k two-dimensional centers are 
found (&K�&Y) A ��P = 1, ..., N� defining N regions by using 
the k-means clustering algorithm.  

 (d) In the interpolation process, for each y 1 2 2 3"2 4  
neighborhood, with Q=1,2 e 3, distances between the three 
local roughness measures, represented by the pairs (6K 1 2 3"2 4B2
6Y 1 2 3"2 4 ) and k centers (&K�&Y) A are computed, with P=1,...,N. 
as shown in Figure 2. 

(e) The lowest distance of each center P is 
considered the error margin of center P��δ A , described by 
equation (15) e illustrated by Figure 3: 
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(f) Each center (&K�&Y) A  associated with the margin 
δ A  generates the set , A , given by: 

( ){ }GGG [[&Y&K[[, δ≤−= ),(,:),( 2121  (16) 
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DQG���LQ�WKLV�H[DPSOH���

(g) The average of the points (6K 1 2 3"2 4N2 6Y 1 2 3"2 4 ), for Q=1,2 
and 3 is chosen as initial value ([ O ,[ P ) Q , and the projection 
is made using a parallel POCS algorithm, in other words, 
the projections of these values onto the N sets , A are 
calculated and the average is used as the answer of the 
iteration, new projections are made and a new average is 
calculated, until it converges for a value, called ([ O ,[ P )R . 

(h) Using the value  ([ O ,[ P )R , obtained on the previous 
step,  a mapping function is calculated to find the ρ 0  and 
ρ /  that will be used on the interpolation, so that high 
roughness measure values must be mapped to low values 
of ρ 0  and ρ / , and low roughness measure values must be 
mapped to high values of ρ 0  and ρ / . 

( ) ( )STU [[ 21,)1,1(, −=ρρ  (18) 

��� 6\QWKHVLV�
In the synthesis process, the POCS method for 
linear system solution substitutes the projection 

method for the least squares method solution.  Let 
us denote by yi, with i=1,...,3 the pixel vector of the 
three multispectral bands , with 20x20m 
resolution, corresponding to a given multispectral 
pixel E. Let us denote pj, with j=1,...,4 the four 
panchromatic image pixels values with 10x10m 
resolution, corresponding the same multispectral 
pixel E. Finally, let us denote by fk with k=1,...,12 
the synthetic pixel values with 10x10m resolution, 
four of them in each synthetic band, corresponding 
the same multispectral pixel E, as shown in Figure 
4.  
 

 
 
 
 
 
 
 
 
 
 

In the Bayesian synthesis process, the observation 
vector ] is made up of seven components: 

[ ]3214321 ,,,,,, \\\SSSS] V =  (19) 

The vector I�of synthetic pixels is made up by twenty-
seven components: 

[ ]121 III W �=  (20) 
The vector I is locally related to the observed vector z 

by using an observation matrix +, to be described later, 
through a linear model, i.e.,  

+I] =  (21) 
Since we wish to synthesize bands that are spectrally 

close to the multispectral bands, these synthetic bands are 
defined by ideal bands (vertical cutoffs) located over each 
one of multispectral Landsat bands B1, B2 and B3. Note 
that there is spectral overlap between the panchromatic 
band and the multispectral bands, as shown in Figure 5. 

The components of each row of the matrix + are 
defined by the fraction of the area under the ideal synthetic 
spectral sensitivity curves. The spectral relative response 
curves for each sensor will define the parameters of the 
matrix + (see equations (23) and (24)).  

More specifically, matrix H (12x27) is given in the 
form: 
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and 
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with L=1,...,3 and 
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where 3 is the area under the panchromatic band spectral 
response curve, 6 c  is the area under the ideal  ith band 
spectral response curve, i = 1, 2, 3, and 3∩6 c  is the area 
under the minimum of the panchromatic band spectral 
response curve and the ideal  Lth band spectral response 
curve, i = 1, 2, 3, and, 

d e

fd e
f e [

6[ ∩
=

4
1β , (26) 

where [ g h  is the area under the Nth multispectral band 
spectral response curve. The [ g h �∩�6i  6j � is the area under 
the minimum of the Nth multispectral band spectral 
response curve and the ideal Mth band spectral response 
curve, N = 1, 2, 3 and M = 1, 2, 3. We make the assumption 
of an infinite spectral response of the ideal synthetic bands 
within their limits. The factor 1/4 takes into account the 
different resolutions of the multispectral bands (20x20m) 
and the synthesized bands (10x10m). 

The solution of equation (21) found using POCS 
methods is a linear system solution, in other words, 

obtained by sequentially projecting the initial value onto 
sets, represented by the equations described by the rows of 
the + matrix, until arriving to a convergent value in the  
intersection of the constraint sets. The set 6 c  and the 
projector used for each +’s rows are given by the 
equations: 

{ }kkk ]I+I6 == ,: � (26) 

� I�� se I∈�6 c
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where + c  is the vector described by the L m n  row of  + matrix 
and ] c  is the L m n  element of vector ]. 

��� ([SHULPHQWDO�UHVXOWV��
The experiments were made using images over São José 
dos Campos, SP, Brazil. Figure 6 shows the image of  the 
original multispectral bands, with spatial resolution 
20x20m and Figure 7 shows the image of the  
panchromatic band.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The interpolation process result is shown in Figure 8.  
The POCS method is iterative and the average of the 
number of iterations  needed to converge for a result is in 
Table 2. 

In the synthesis process, one of the factors that can 
influence the obtained image is the choice of the order of 
the rows of the matrix H  that will be used for projection in 
the  POCS method.  This happens since the projector used 
in each row of matrix H (27), always provides the  nearest 
vector to the initial value, and there is an  infinite number 
of solutions, because the system of equations (21) is 
underdetermined.  The result of projections with a normal 
order and inverse order of + rows, and as initial values the 
result of multispectral images interpolation is shown in  
Figure 9. 
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Maximum Error Average Number of 
Iterations 

10-4 3,1496 

10-5 4,5139 

10-6 6,3328 

10-7 8,6162 

10-10 15,9616 

10-20 34,8097 

7DEOH���±�5HODWLRQVKLS�EHWZHHQ�WKH�WROHUDWHG�
PD[LPXP� HUURU� DQG� WKH� DYHUDJH� QXPEHU� RI�
LWHUDWLRQV�WR�FRQYHUJH�LQ�WKH�LQWHUSRODWLRQ��
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can better observe in the enlarged details in 

Figure 10, that the image projected using the normal order 
of the matrix + rows is closer to the original multispectral 
image (in the figure, enlarged with a 200% zoom.), and the 
projected image using the reverse order of the matrix + 
rows   is closer to the panchromatic image. This happens 
because the first matrix + rows contain the  restrictions of 
the panchromatic image with resolution 10x10m (sub 
matrices Α o , Α p  and Α q ), and the last lines contain the  
restrictions of the original multispectral images with 
resolution 20x20m (sub matrices Β o , Β p  and Β q ). The 
average number of iterations needed for the method to 
converge is 9,7164 for the normal order projection on 
matrix + rows, and 9,6201 for the reverse order projection 
on matrix + rows. 
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