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�
, GILSON GIRALDI

�
, RODRIGO SILVA

��� �
, ANTONIO A. F. OLIVEIRA

��
LNCC–NationalLaboratoryfor ScientificComputing-

Av. GetulioVargas,333,25651-070Rio deJaneiro, RJ,Brazil�
gilson,walter � @lncc.br�

LCG–ComputerGraphicsLaboratory, UFRJ-COPPE-
Mail Box 68511, 21945-970Rio deJaneiro, RJ,Brazil�
strauss,rodrigo,oliveira � @lcg.ufrj.br

Abstract. In this paper we presentanew approachwhich integratestheT-Surfacesmodelandisosurfacegenera-
tion methods in a general framework for surfacereconstruction in 3D medicalimages.T-Surfacesis adeformable
modelbasedonatriangulationof theimagedomain, adiscretesurfacemodel andanimagethreshold. Two typesof
isosurfacegenerationmethodsareconsidered:thecontinuationonesandthemarching ones.Theformer is useful
during thereparameterizationof T-Surfaceswhile thelater is suitableto initialize themodelclosertheboundary.
Specifically, in a first stage,the T-Surfacesgrid andthe thresholdareusedto definea coarserimageresolution.
This field is thresholded to get a 0-1 function which is processedby a marching methodto generatepolygonal
surfaceswhoseinteriormaycontainthedesiredobjects. If apolygonalsurfaceinvolvesmorethanoneobject,then
theresolution is increasedin thatregion andthemarching appliedagain.Next, we applyT-Surfacesto improved
the result. If theobtainedtopology remains incorrect, we enablethe userto modify the topology by an interac-
tive methodbasedon theT-Surfacesframework. Finally, we demonstratetheutility of diffusion methodsfor our
approach.

1 Introduction

ParametricDeformableModels,whichincludesthepopular
snake models [7] and deformablesurfaces[10], are well
known techniquesfor boundaryextraction andtracking in
2D/3D images.

Thesemodelsconsistbasicallyof anelasticcurve (or
surface)which candynamically conform to object shapes
in responseto internal (elastic)forcesandexternal forces
(imageandconstraint ones).

However, for most of thesemethods the topology
of the structures of interestmust be known in advance
sincethe mathematical model cannot dealwith topologi-
cal changeswithoutaddingextramachinery [10].

Recently, McInerney andTerzopoulos [10] proposed
theT-Snakes/T-Surfacesmodel to addtopological capabil-
ities (splits and merges) to a parametric model. The ba-
sic idea is to embeda discretedeformablemodel within
the framework of a simplicial domaindecomposition(tri-
angulation) of the image domain. In this framework,
the reparameterizationis basedon the projection of the
curve/surfaceoverthetriangulationandonaCharacteristic
Function which distinguishesthegrid nodesinterior of the
(closed)curve/surfacefrom theotherones.Thesetof sim-
plices in which the CharacteristicFunctionchangesvalue
(Combinatorial Manifold) gives asimpleway to reparame-
terizethemodel.

This reparameterizationprocessallows to reconstruct
surfaceswith significantprotrusionsand objectswith bi-
furcations. Furthermore,that processcandealeasilywith
self-intersectionsof thesurfaceduringthemodel evolution.
Also, T-Snakes/T-Surfacesdepends on somethreshold to
definea normal force which is usedto drive themodel to-
wardsthetargets[10].

Basedon theseelements(discretesurfacemodel, sim-
plicial decomposition framework and threshold) we pro-
posein this paper asemi-automatic segmentationapproach
for ��� medical imagesbasedonisosurfaceextractionmeth-
odsandtheT-Surfacesmodel.

Amongtheisosurfacemethods[13], two typesarecon-
sideredin thispaper:continuationandmarching methods.

Continuation methodspropagatethesurfacefromaset
of seedcells.Thekey ideais to usethespatialcoherenceof
theisosurfaceduringits extraction [13, 1].

As we have already stressedin previousworks[4, 5],
continuationmethods areusefulduring thereparameteriza-
tion andinitializationof T-Surfacesmodelif sometopolog-
ical andscalerestrictions for thetargetsaresupposed.

In this paperwe discardtheserestrictions. We show
thatcontinuation methodsremainsuitablein thereparame-
terizationprocess.However, Marching methods should be
usedto initialize T-Surfacesclosertheboundary. Theseare
thestartingpoints of this work.



Specifically, in afirst stage,weusetheT-Surfacesgrid
to definea coarserimageresolutionby samplingthe im-
agefield over thegrid nodes. Theobtainedlow resolution
imagefield is thresholded to get a binary field, which we
call an Object Characteristic Function. This field will be
searchedfor the isosurfacegenerationmethod. The ob-
tainedresultmay be a rough approximation of the target.
However, the surfacesobtained are in general not smooth
andtopological defectslike holesmay happens. Besides,
dueto inhomogeneitiesof theimagefieldsomecomponents
of theobjectsmaybesplitedaswell asmergeddueto the
low imageresolutionused.We improve theresultby using
theT-Surfacesmodel.

The grid resolutionis application dependent. How-
ever, an important point of our method is its multireso-
lution/multigrid nature: having resolved (segmented) the
imagein a coarser(grid) resolution we candetectregions
wherethegrid hasto berefinedandthenapplythemethod
againonly in theseregions.

For noisyimages,diffusionmethodscanimproveboth
the isosurfaceextractionandthe T-Surfacesresult. If the
extractedtopology remains incorrect,evenat thefinestres-
olution, we proposean interactive procedure,basedon T-
Surfacesframework, to forcemerges/splits.Thismethod is
anextensionof thatonedescribed in [4].

In thefollowing section,T-Surfacesframework is de-
veloped. In section3 we describeprevious works. Sec-
tions 4,5 discussthe isosurfacegeneration methods in the
T-Surfacescontext. In section6 we present our method.
The experimentalresultsareshown on section7. Finally,
we compareour method with relatedones (section8) and
presentfinal conclusions.

2 T-Surfaces

The T-Surfaces approach is composedbasicallyby three
components [10]: (1) a tetrahedral decomposition (CF-
Triangulation) of the imagedomain �
	���
 ; (2) a parti-
cle model of the deformablesurface;(3) a Characteristic
Function � definedon the grid nodeswhich distinguishes
the interior ( ����������� ) from the exterior ( ����������� ) of a sur-
face� : � �!�"	#� 
%$ �'&�(*) � (1)

where �+�-,.�0/ ) if ,213�4��������� and �5�-,6�%/ &7( otherwise,
where, is a nodeof thegrid.

Following the classicalnomenclature, a vertex of a
tetrahedron is calledanode andthecollectionof nodesand
triangle edgesis called the grid 8:9 . A tetrahedron (also
calleda simplex) ; is a transverse oneif thecharacteristic
function � in equation(1) changes its valuein ; . Analo-
gously, for anedge.

In this framework, thereparameterizationof a surface

is done by [10]: (1)Taking the intersections points of the
surfacewith thegrid; (2)Find thesetof transversetetrahe-
dra(Combinatorial Manifold); (3)For eachtransverseedge
choose an intersectionpoint belonging to it; (4) Connect
thesepointsproperly.

In this reparameterizationprocess,thetransversesim-
plicesplaya central role. Givensucha simplex, we choose
in eachtransverseedgeanintersectionpoint to generatethe
new surfacepatch. In general, we will have threeor four
transverseedges in eachtransversetetrahedron (Figure 4).
Theformergivesatriangular patchandthelaterdefinestwo
triangles.So,at theendof thestep(4) we havea triangular
mesh.Eachtriangleis calleda triangular element [10].

Asanexample for 2D,considerthecharacteristic func-
tions ( � � and � � ) relative to the two contours picturedin
Figure1. Thefunctionsaredefinedontheverticesof aCF-
triangulation of the plane. The verticesmarked arethose
where <>=@? � � � ( � � �+/ ) . Observe that they areenclosed
by a merge of the contours. This merge canbe approxi-
matedby a curve belonging to theregion obtainedby trac-
ing the transversetriangles. The samewould be true for
morethantwo contours (andobviously for only one).

Figure1: Two snakescolliding with the insidegrid nodes
andsnaxelsmarked.

2.1 Discrete Model

A T-Surface,canbe seenasa discreteform of the classi-
cal parametric deformablesurfaces[10]. It is definedasa
closedelasticmesh.Eachnodeis calledanode element and
eachpairof nodesACB ( A@BED � is calleda model element.

The nodeelementsarelinkedby springs,whosenat-
ural lengthwe set to zero. Hence,a tensileforce canbe
definedby: F$G B /IH@J F$ � B J where

F$ � B J /LKM�ON B J � ( (2)

whereK is ascalefactor. Themodelalsohasanormal force
whichcanbeweight asfollows [10]:P B /IQR��S'T�UV� B �C� B ( (3)

where�WB is thenormal vectorat nodeT , Q is a scalefactor,
and S'T�UV�WBX/ZY ) if �[�\A4B���]_^ and S*T�UV�WBX/ F ) otherwise
( ^ is athreshold for image� ). Thisforceis usedto pushthe
model towardsimageedgesuntil it is opposedby external
imageforces.



The forcesgiven in (2)-(3) are internal forces. The
external force is definedas a function of the imagedata,
according to thefeatureswe seek.Onepossibilityis:��`ba�UCc��E� P�d NeK*cf�g��h.iB / Fkj Bmlon>pqnr/ts*lo�6s �Mu (4)

Theevolutionof thesurfaceis governedby thefollow-
ing dynamical system:Awv i Dyx i\zB /LA iB Y2{wB}| F$G B i Y F$P B i Y F$ h~B i�� ( (5)

where {.B is an evolution step. During theT-Surfacesevo-
lution somegrid nodes become interior to a Surface. Such
nodesarecalledburnt nodes andits identificationis funda-
mentalto update the characteristic function [10]. To deal
with self-intersections of the surfacethe T-Surfacemodel
incorporatesan entropy condition: once a node is burnt
it stays burnt. A terminationcondition is obtained based
on thenumber of deformationsstepsthata simplex hasre-
maineda transverseone.

3 Previous Works

Thethreshold ^ usedin thenormal force(3) playsan im-
portant role in the T-Surfaces model. If it wasnot chosen
properly, theT-Surfaces canbefrozenin a region far from
thetarget(s)[9, 10].

Thechoice of ^ is morecritical whentwo objectsto
besegmentedaretoo closelike in Figure2. In this figure
thegrid nodesmarkedaretheoneswhoseimageintensity
falls bellow thethreshold ^ .

Figure 2: T-Snakeandgrid nodes marked.

For T-Surfacesmodel separatestheobjectspictured, it
hasto burn the marked grid nodes. However, the normal
forcegivenby expression(3) changesits signalnearthese
grid nodes. So,theforceparametersin expressions(2)-(3)
have to be chosenproperly to advance the T-Snake over
thesegrid nodes. However, parameters choiceremainsan
openproblem in snakemodels[6].

Thegrid resolutioncontrolstheflexibility of T-Surfaces.
A possibility to addressthis problem is to usea finer grid
resolution. However, this increasesthecomputationalcost
of themethod.

To addressthetrade-off betweenmodelflexibility and
thecomputationalcost,weproposein [4] to getaroughap-

proximationof thetargetsurfacesby isosurfacesgeneration
methodsandthenapplyT-Surfaces.

Specifically, aLocal Scale Property for thetargetswas
supposed: Given an object � anda point ,Z1�� , let N!�
be the radiusof a hyperball ��� which contains , andlies
entirely insidethe object. We assumethat N~��] ) for all,�1�� andtake theminimumof theseradius(say NC� Bg� ).

Thus,we canuse N~� Bg� to reducetheresolution of the
imagewithout losing the objectsof interest. This idea is
pictured on Figure 3. In this simple example we have a
threshold which identifiesthe object ( ^
� )e�@& ). In the
Figure3.awehaveaCFtriangulationwhosegrid resolution
is
)'&o��)'&

, andthefield thresholded.

(a) (b)
Figure3: (a) Original imageandCharacteristicFunction.
(b) Boundary approximation.

Now, we candefinea simplefunction, calleda Object
Characteristic Function, similar to function (1):�5��,.��/ )4( T�h �%�-,6���2^ ( (6)�5��,.��/ &7( d ��{wc'Ne��T�S�c (
where, is a nodeof the triangulation (grid nodesmarked
onFigure 3.a).

We cando a stepfurther, shown in Figure3.b,where
we presenta curve which belongsto thetrianglesin which
thecharacteristic function(markednodes)changesits value.
Observethatthiscurveapproximatestheboundaryweseek.
Thesecurves(or surfacesfor �4� ) canbeobtainedby iso-
surfaceextractionmethods andcanbeusedto initialize the
T-Surfacesmodel. Thesearethekey ideasof our previous
works[4, 5].

If we takea grid resolution coarserthen N � Bg� , theiso-
surfacemethod might split theobjects.Also, in [4] it is sup-
posedthat theobjectboundariesareclosedandconnected.
Thesetopological restrictions imply thatwe do notneedto
searchinsideagenerated connectedcomponent.

In this paperwe discardthesescaleand topological
constraints. Thus,we shouldbecareful to preserve thetar-
gettopology. An important point is themethodusedto gen-
eratethepiecewiselinearapproximations(Figure3.b).This
will bediscussednext.

4 Isosurface Extraction Methods

Isosurfaceextraction is one of the most usedtechniques
for the visualizationof volume datasets. Depending on



thedatatype(time-varying or stationary) andthedatasize,
many workshave beendone to improve thebasicmethods
in this area[13]. In this paperwe consider two kinds of
isosurfacegeneration methods: themarching onesandcon-
tinuationones.

In Marching Cubes,eachsurface-finding phasevisits
all cellsof thevolume,normallyby varying coordinateval-
uesin atriple ”for” loop[8]. As eachcell thatintersectsthe
isosurfaceis found, the necessarypolygon(s) to represent
the portion of the isosurfacewithin the cell is generated.
Thereis no attemptto tracethe surfaceinto neighboring
cells.Spacesubdivisionschemes(likeOctreeandk-d-tree)
have beenusedto avoid thecomputationalcostof visiting
cellsthatthesurfacedonotcut [3, 13].

OncetheT-Surfacesgrid is a CF one,theTetra-Cubes
is a natural choicefor us [2]. Like in themarching cubes,
its searchis linear:eachcell of thevolumeis visitedandits
simplices(tetrahedron) aresearchedtofindsurfacespatches.
Following marching cubes, its implementation usesauxil-
iary structuresbasedon the fact that the topology of the
intersectionsbetweena planeanda tetrahedron canbere-
ducedto threebasicconfigurations picturedonFigure4.

Figure4: Basictypesof intersectionsbetweena planeand
a simplex in 3D.

Unlikemarching methods,continuationalgorithmsat-
tempt to tracethe surfaceinto neighboring simplices[1].
Thus,givenatransversesimplex, thealgorithm searchesits
neighbors to continue the surfacereconstruction. Thekey
ideais to generatethecombinatorial manifold (setof trans-
versesimplices)thatholdstheisosurface.

Thefollowing definition will beuseful.Let’s suppose
two simplices ;�� , ; � , which have a common faceandthe
vertices, A�1r;�� and AC��1r; � both opposite the common
face.Theprocessof obtain A6� from A is calledpivoting. Let
uspresent thebasiccontinuationalgorithm [1].

PL Generation Algorithm:
Find a transverse triangle ; � ;� / � ; � � ; �#��;y��/ set of vertices of ; ;
while ���O;y�0�/ & for some ;�1 �
get ;�1 � such that �L��;y�0�/ & ;
. get A+1����O;y� ;
. obtain ;}� from ; by pivoting A into A��
if ;�� is not transverse
. then drop A from �L�O;y� ;
else

. if ; � 1 � then

. drop A from �L�O;y� , A7� from �#��;����

. else

.
�
� / � + ; � ;

. �#��;���� � / set of vertices of ;�� ;

. drop A from �L�O;y� , A7� from �#��;����
Differently from Tetra-Cubes,oncestartedthegener-

ation of a component, the algorithm runsuntil it is com-
pleted. However, the algorithmneedsa set of seedsim-
plicesto beableto generateall thecomponentsof an iso-
surface.This is animportantpointwhencomparing contin-
uationandmarching methods.

If we do not have guessesabout seeds,every simplex
shouldbe visited. Thus,the computationalcomplexity of
both methods are the same( �>�O ¡� where   is the num-
berof simplices).However, if we know in advance thatthe
target boundary is connectedwe do not needto searchfor
componentsinside it. Thus,the computationalcost is re-
ducedif compared with Tetra-Cubes. That is way we use
continuationmethodsin [4] to gettheinitial surfaces.

5 Isosurfaces Methods and T-Surfaces

The reparameterizationof T-Surfacesgives the link be-
tween the above isosurface generation methods and T-
Surfacesmodel. To explain this, let ustakeanObjectChar-
acteristicFunctiondefinedin section3.

If we applytetra-cubesor continuation method to this
field, we get a set of piecewise linear (PL) surfacesthat
involve the structures of interest. From the way the PL
surfacesare generated, eachconnectedcomponent ¢£ so
obtainedhasthefollowing properties: (1) Theintersection; ��¤ ; � of two triangles ; � ( ; � 12¢£ is empty, a common
vertex or edgeof bothtriangles;(2)An edge ¥b1 ¢£ is com-
monto at mosttwo trianglesof ¢£ ; (3) ¢£ is locally finite,
that is, any compact subsetof �0
 meetsonly finitely many
cellsof ¢£ .

A polygonalsurfacewith suchpropertyis calledaPiece-
wiseLinearManifold (PL Manifold). Fromthereparame-
terizationprocessof section2, we canseethata T-Surface
is alsoaPL Manifold. Thus,theisosurfaceextraction meth-
odscanbestraightforwardusedto initializeT-Surfaceswith
theObjectCharacteristic Functionasthe initial Character-
istic Function.

But, whatkind of isosurfacemethod shouldbeused?
Basedon thediscussionof section4 about tetra-cubesand
PL generationwecanconcludethat,if wedonothavetopo-
logical andscalerestrictions (section3), marching meth-
odsaremoreappropriatedto initialize the T-Surfaces. In
this case,it is not worthwhile to attemptto reconstructthe
surface into neighboring simplicesbecauseall simplices
shouldbevisitedto find surfacepatches.



However, for theT-Surfacesreparameterization(steps
(1)-(4) of section2) the situationis different. Now, each
connectedcomponentis evolved at a time. Thusit is inter-
estinga methodwhich generatesonly theconnectedcom-
ponent beingevolved,thatis, thePL Generationalgorithm.

But, whatabout theseedpoints? Our implementation
of T-Surfacesusesa hashwhoseelementsarespecifiedby
Keys composedby two integers: the first one indicatesa
simplex andthesecondonetheconnectedcomponentthat
cutsthesimplex. There is oneentryfor eachsimplex of the
triangulation. This structureis simpleto implement.There
is noadditional costsof insertionor removal operationsand
thecostof verifying if a transversetetrahedron is or not in
thehashis �>� ) � .

Let ustakeanintersection point obtainedin step(1) of
the reparameterizationprocess.If it belongs to a simplex
thatis noton thehash(entryNULL), thenit is consultedif
thatsimplex is atransverseone.If true,thepointis storedin
thehashentryandthesimplex becomesa new seedto find
another connected componentthrough the PL Generation
Algorithm (section4). Eachsimplex soobtainedbecomes
a new entry on the hash. Following this procedure,when
thequeueof projectedpoints is emptywe canbesurethat
all the transversesimplicesareon the hash. Then, the T-
Surfacescomponentscanbeobtainedby traversingthehash
only once.

6 Reconstruction Method

The segmentation/surface reconstruction methodthat we
proposein this paperis basedon the following steps:(1)
Extract region basedstatistics;(2) Coarserimageresolu-
tion; (3) DefinetheObject Characteristic Function; (4) PL
manifold extractionby thetetra-cubes;(5) If need, increase
the resolution. Returnto step(3). (6) Apply T-Surfaces
model;(7) Userinteraction if need.

It is important to highlight thatT-Surfacesmodelcan
dealnaturally with the self-intersections that may happen
during the evolution of the surfacesobtainedby step(4).
This is animportantadvantage of T-Surfaces.

Among the surfacesextractedin step(4), theremay
be opensurfaceswhich startsandend in the imagefron-
tiers, small surfacescorresponding to artifactsor noisein
the background. The former is discarded by a simpleau-
tomatic inspection. To discardthe later, we needa setof
pre-definedfeatures(volume,surfacearea,etc),andcorre-
sponding lowerbounds.For instance,from thegrid resolu-
tion usedwe cansetthevolume lowerboundas ¦��\N7§M¨ ©4� 
 .

Besides,somepolygonal surfacesmay containmore
than one object of interest(seeFigure 5). Now, we can
useupperboundsfor thefeatures.Theseupper boundsare
applicationdependent(anatomical elements canbeused).

Thesurfaceswhoseinterior have volumeslarger than

theupperbound will beprocessedin afinerresolution. It is
important to stressthat theupperbound(s) is not anessen-
tial pointfor themethod. It’sroleis only toavoidexpending
time computation in regions were the boundariesenclose
only oneobject. When the grid resolutionof T-Surfaces
is increasedwe just reparameterizethe model through the
finergrid andevolve thecorrespondingT-Surfaces.

For instance,in imageslikein Figure5, theouter scale
corresponding to theseparation betweentheobjectsmaybe
finer than the scaleinside the objectsof interest. Hence,
thecoarsestresolution couldnot separate theobjects. This
happensfor thebottom-left cellson Figure5.a. To correct
thatresultwe increasetheresolutionin thoseregions to ac-
count for moredetails(Figure5.b).Mathematicalmorphol-
ogyoperatorscouldbeusedalso[12].

However, for imageslike in Figure 5, somemanual
interventionmayberequired to split theupper-right cells.

Besides,dueto inhomogeneitiesof theimagefield (sup-
posedgrey level), someobjectsmaybesplitedin the step
(4). Sometimes,T-Surfacesmodelcannotmergethemagain.

(a) (b)

Figure5: (a) PL manifolds for resolution� � � . (b) Result
with thehighest(image) resolution.

To correcttheseproblems, theusercanmanuallyburn
somegridnodesto forcemergesor splits.Fromtheentropy
condition, thesenodesremain burnt until theendof thepro-
cess. This functionality canbe implementedby selecting
gridnodeswith apointer(mouse,for example),through im-
plicitly definedsurfaces(seesection7 bellow), or through
avirtual scalpel.

7 Experimental Results

7.1 User Interaction

Firstly, we will demonstratethepotentialof theuserinter-
actionprocedureto forcemerges.

In this example, we have threespheresof intensity
�@&

placedin a
)��@&+��)e�@&+��)e�@&

imagevolume. Thespheres
werepreviouslyextractedby theproposedmethodwith the
following parameters:grid

�ª���o�«�
, freezing point / )�& ,j / & u &7) , Q�/ ) u ¬�¬4¬ ; K�/ & u®­ �@& . Every spherehasradius� & (pixels).



In thiscase,themergeis forcedthroughanimplicit de-
finedsurfaceplacedbetweenthespheres(Figure6.a).Grid
nodesinsidethesurfaceareeasilydetectedby its equation
and thenburnt. During the evolution, the ¯ surfaceswill
merge and the final result is a connectedsurface(Figure
6.b).

Otherpossibility would be to burn manuallya setof
grid nodeslinking thespheres.Theideain this casewould
be that the new set of burnt grid nodesgeneratesa con-
nectedcombinatorialmanifold.

Now, let us demonstratethe manualsplit. Figure6.c
showsanexamplewherethesteps(1)-(6) wherenotableto
completethesegmentation. The3D imageis composedby¬

ellipsoidsof radius � & , ¯ � and° & andaspherewith radius� & , immersedin a
)��4&���)��4&o��)e�@&

noisevolume.
The segmentation canbe completedby userinterac-

tionbasedonthefollowingsteps:(a)Defineacuttingplane;
(b)Setto zerothegrid nodesbelonging to thetrianglesthat
theplanecutsandthatareinterior to theT-Surface;(c)Apply
steps(4)-(6)above.Thegridnodessettozerobecomeburnt
nodes. Thus, the entropy condition will prevent intersec-
tionsof thesurfacesgenerated.Hence,they will not merge
again.

(a) (b)

(c) (d)

Figure6: (a)Original objects. (b)Merge through the user
interactionmethod. (c)Partial result.(d)Final solutionafter
manual cut.

Figure 6.d shows the final result. The T-Surfacepa-
rametersare: K3/ & u ° � , Q±/ ) u � ¬ and j / & u &7) . The
grid resolution is

�5���²���
,freezingpoint is setto

)��
and

threshold̂_1�� ) ¬ &�(*) �@¯!� in equation (3).

7.2 Artery Segmentation

This sectiondemonstratesthe advantagesof applying T-
Surfaces plus isosurfacemethods. Firstly, we segment an
arteryfrom an ¦ &5� ¦4° � ­@¬ imagevolume obtained from
theVisible Humanproject. This in aninterestingexample
becausetheintensitypatterninsidethearteryis not homo-
geneous.

(a) (b)

(c) (d)

Figure7: (a) Resultof steps(1)-(4) with grid � � � � � .
(b)T-Surfacesevolution (step

)
). (c)Solution for initial grid.

(d)Final solutionfor grid
)���)���)

.

Figure7.ashowstheresultof steps(1)-(4) whenusing^
1³� ¬ ¦ ( � ¬ � to definethe object characteristicfunction
(equation(6)). Thetopology extractedis toodifferentfrom
thatoneof thetarget. However, whenapplying T-Surfaces
thesituationgetsbetter.

Figures7.bshows theresultafterthefirst stepof evo-
lution. Themergesamongcomponentsimprove theresult.
After ¯ interactionsof theT-Surfacesalgorithm, thegeome-
try extractedbecomescloserto thatoneof thetarget (Figure
7.c).

However, the topology remains different. A problem
in this caseis that the separation betweenbranchesof the
arteryis coarserthanthe innerscaleof theobjectin some
regions. As a consequence,theusedgrid resolution do not



allow to completethesegmentationdueto theproblemdis-
cussedonsection3.

Thesolutionis to increasetheresolution. In this case,
the correctresult is obtainedonly with the finestgrid res-
olution � )+�#)+�L) � . Figure7.d shows the desiredresult
obtainedafter ´ interactions. Wealsoobservethatnew por-
tionsof thebrancheswerereconstructeddueto theincreas-
ing of flexibility given by the new grid to the T-Surfaces.
We should emphasizethat an advantageof the multireso-
lution approachis thatat the lower resolution, smallback-
ground artifactsbecome lesssignificant relative to theob-
ject(s)of interest.Besides,it avoidsthecomputationalcost
of usinga finer grid resolution to getcloserthe target(see
section3).

TheT-Surfaces parametersare j / & u &�) , Q«/ ) u®¬4¬�¬ ;K�/ & u®­ �@& . Thetotal numberof evolution is
) � . Thenum-

berof triangular elementsis
)'&�)'& ¯ for thehighestresolu-

tion andthe clock time of order of � minutes(seesection
8).

Sometimes, even the finest resolution may not be
enough to getthecorrectresult.Figure8.apicturessuchan
example. Amongtheproposalto addressthis problem (re-
lax the threshold, mathematicalmorphology [12], etc),we
testedthe anisotropic diffusion [11]. This methodenables
to blur smalldiscontinuities (improving thesurfaceextrac-
tion) aswell asto enhanceedges(improving theT-Surface
result).Appendix A discussthis technique.

Figure8.bshowsthecorrectresultobtained whenpre-
processingtheimagewith thatmethodandthenapplysteps
(1)-(6).

(a) (b)
Figure 8: (a)Example showing an incorrect result.
(b)Anisotropicdiffusionin a pre-processingphaseimprov-
ing final result.

8 Discussion

It is interestingto compareour approachto that onepro-
posedin [9]. In this approach, a set of small spherical
T-Snakes is uniformly distributedover the image. These
curves progressively expand to recover thegeometry of in-
terest.Thesamecanbedone for 3D.

Our approachcanbe viewed as an improvement for
that one. Our basicargument is that we shouldusethe

threshold to get seeds closertheobjectsof interest.Thus,
we avoid expend time evolving surfacesfar from the tar-
getgeometry. Besides,we have observedan improvement
in theperformanceof thesegmentationprocessif compare
with the traditional initialization of T-Surfaces (a implicit
definedsurfaceinsidetheobject)[10].

We testedthe precisionfor our approachwhen seg-
menting a sphereimmersedon anuniform noisespecified
by the imageintensityrange

&
-
)��@&

. We found a meaner-
ror of

) u � ¦ (pixels) with standard deviation of
¬Cu ¯�´ for a�o���o���

grid resolution.
Thiserroris dueto theprojection of T-Surfacesaswell

asthenoise.Following [10], whenT-Surfacesstops,wecan
discardthe grid andevolve the modelwithout it to avoid
errors due to the projections. However, for noisy images
theconvergenceof deformablemodelsto theboundariesis
poor dueto thenon-convexity of theimageenergy.

The GradientVectorFlow [14] is a methodthat can
be usedto efficiently addressthis problem for 2D and3D
images.Thismethodcanbedefinedby thefollowing equa-
tion: µ.¶µ � / ·�TmA%��KM�¹¸ lohM¸ �7l ¶ �WY�{f�¹¸ l>hM¸ �y� ¶ F loh�� (¶ �\� (¹& ��/ l>h
whereh is afunction of theimagegradient (for example, n
in equation 4). If

¶
is theimageintensityand {+/ & we get

a versionof theanisotropic diffusionequation discussedin
Appendix A.

Thefield obtainedby solving theabove equationis a
smoothing versionof l>h . Whenusedasanexternal force
for deformablemodelsit makesthemethods lesssensitive
to initialization. As theresultof steps(1)-(6) is in general
closeto the targetwe couldapply this methodto pushthe
model towardsthe boundary when the grid is turned-off.
This is a further direction of ourwork.

9 Conclusions

In this paperwe generalizeour previousworks [4, 5]. We
demonstratethatsteps(1)-(6) canbeappliedwithout scale
andtopological restrictions.Besides,we generalizethein-
teractiveprocedureto change thetopology of a surface.

Futuredirections for this work will be to generalize
theuserinteractionmethodby usingascalpelandallowing
theuserto dragthescalpelandto applythevectordiffusion
method describedonsection8.

10 Appendix A

Let ustake thenon-lineardiffusionequation asfollows:µ �[�O� (¹º.( ���µ � /�·�TmA%��KM�\� (¹º6( ���7lo�V� ( (7)



where � is a gray level image. Following Perona-Malik
[11], we supposethat the edgepoints are oriented in the� direction.Thus,equation(7) becomes:µ ���O� (¹º.( ���µ � / µµ � ��KM�O� (�º6( ���7��»��\� (�º6( ���¹� u (8)

If K is a function of the imagegradient: KM�O� (�º6( ����/UR�O��»[�\� (¹º6( ����� , we candefine ¼f����»���½¾U%�O��»V�À¿���» andthen
write equation(7) as:

� i /
µ �µ � /

µµ � ��¼f����»!���X/¾¼ � �O�*»��À¿���»'» u (9)

We are interestedin the time variationof the slope:Á�Â�ÃÁ i u If KM�\� (¹º6( ���%] & we canchange theorderof differen-
tiationandwith a simplealgebra demonstratethat:µ ��»µ � /

µ � iµ � /¾¼ � � ¿*� �»�» Y2¼ � ¿*� »�»�» u
At edgepoints we have �e»�»Ä/ & and �'»�»'»2��� & as

thesepointsarelocal maximaof the imagegradient inten-
sity. Thus, thereis a neighborhood of the edgepoint in
which the derivative

µ �e»VÅ µ � hassign opposite to ¼ � �O��»V� .
If ¼6�4����»��[] & theslopeof theedgepoint decreasein time.
Otherwiseit increases,thatmeans,borderbecomessharper.
So,thediffusionschemegiven by equation 7 allows to blur
smalldiscontinuities andto intensify thestrongerones. In
this work, we haveused¼ asfollows:

¼�/ÇÆÈ l��| ) Y¾É�s*lo�.s}Å~Ê�Ë � �
ÌÍ (

(10)

wheretheconstantÊ canbedeterminedby a histogramof
thegradient magnitude.
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http://www.cos.ufrj.br/relatorios/reltec99/,1999.

[7] M. Kass,A. Witkin, andD. Terzopoulos.Snakes:Ac-
tive contour models. International Journal of Com-
puter Vision, 1(4):321–331,1988.

[8] W. E. Lorensenand H. E. Cline. Marching cubes:
A high resolution3d surfaceconstruction algorithm.
Computer Graphics, 21(4):163–169, July1987.

[9] T. McInerney and D. Terzopoulos. Topologically
adaptablesnakes. In Proc. Of the Fifth Int. Conf. On
Computer Vision (ICCV’95), Cambridge, MA, USA,
pages840–845,June1995.

[10] T. McInerney andD. Terzopoulos. Topology adap-
tive deformablesurfacesfor medical imagevolume
segmentation. IEEE Trans. on Medical Imaging,
18(10):840–850, October1999.

[11] P. PeronaandJ. Malik. Scale-spaceandedgedetec-
tion usinganisotropic diffusion. IEEE Trans. on Pat-
ter Analusis and Mach. Intell., 12(7):629–639, July
1990.

[12] A. Sarti, C. Ortiz, S. Lockett, and R. Malladi. A
unifiedgeometric model for 3d confocal imageanal-
ysis in cytology. In Proc. International Symposium
on Computer Graphics, Image Processing, and Vision
(SIBGRAPI’98), pages 69–76,1998.

[13] P. SuttonandC. Hansen.Acceleratedisosurfaceex-
tractionin time-varyingfields. IEEE Trans. Vis. and
Comp. Graphics., 6(2):98–107, April-June2000.

[14] C. Xu and J. Prince. Snakes, shapes,and gradient
vector flow. IEEE Trans. Image Proc., pages359–369,
March1998.


