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Abstract 
 

The off-line signature verification rests on the 
hypothesis that each writer has similarity among 
signature samples, with small distortion and scale 
variability. This kind of distortion represents the 
intrapersonal variability [3]. This paper reports the 
interpersonal and intrapersonal variability influences in 
a software approach based on Hidden Markov Model 
(HMM) classifier [1,5,7]. The experiments have shown 
the error rates variability considering different forgery 
types, random, simples and skilled forgeries. The 
mathematical approach and the resulting software also 
report considerations in a real application problem.   

1.  Introduction 
 

The signature verification problem is in theory a 
pattern recognition task used to discriminate two classes, 
the original and forgery signatures. Each signature class 
has a minimization and maximization hypothesis, 
respectively. The first one is based on the similarity 
among different signature samples of the same writer, 
called intarpersonal variability. The second one is based 
on discordance among different signature samples 
introduced by other writer, called interpersonal 
variability [3]. Based on those hypotheses it is possible to 
define classifier to be able to discriminate the original 
and forgery signature samples. In many cases this is not 
totally true, in function of the signature samples 
instability presented by many writers (see Figure 1a and 
1b) and the similarity presented by different writers (see 
Figure 2a and 2b). 
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Figure 1. The super-imposed examples of the same 
writer's specimen skeletons, using the gravity center with 
system axis center: (a) unstable samples; (b) stable 
samples 
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Figure 2. The super-imposed examples of the same 
writer's specimen skeletons, using the gravity center with 
system axis center: (a) writer number 64; (b) writer 
number 97 

 

 The forgery types offer another particular 
complexity in the intrapersonal variability. The first type, 
called random forgery, is usually represented by a 



signature sample that belongs to a different writer of the 
signature model (see Figure 3b). The second one, called 
simple forgery, is represented by a signature sample with 
the same shape of the genuine writer’s name (see Figure 
3c). The last type is the skilled forgery, represented by a 
suitable imitation of the genuine signature model (see 
Figure 3d). 

 

Figure 3. Type of forgeries: (a) genuine signature; (b) 
random forgery; (c) simulated simple forgery; and (d) 
simulated skilled forgery 

 

Every type of forgery requests a different 
recognition approach. Methods based on static approach 
are usually used to identify random and simple forgeries. 
The reason is that these methods have shown to be more 
suitable to describe characteristics related to the signature 
shape. For this purpose, the graphometry-based approach 
has many features that can be used, such as calibration, 
proportion, guideline and base behaviors [7,8]. In 
addition, other features have been applied in this 
approach, like pixel density [4] and pixel distributions 
[6]. However, static features do not describe adequately 
the handwriting motion. Therefore, it is not enough to 
detect skilled forgeries. 

A skilled forgery has almost the same shape of the 
genuine signature. In this case, if a writer presents a large 
variability among genuine signature simples, it is more 
probably that to have a skilled forgery accepted with 
genuine. In other words, the intrapersonal variability 
maximization aids the forgery acceptance. In this case, 
methods based on pseudodynamic approach have shown 
to be more robust to identify this forgery type, since they 
are able to capture handwriting motion details. But, high 
critical method produces more genuine signature 
rejection.  

2.   System Outline 
 

This work demonstrates how a grid approach is 
adapted to the signature parts, according to their stability 

[2,7].  In a first level, the objective is to modeling the 
space around the signature traces, using too static 
features. In a second level, the proposal is to modeling 
the signature traces, using a pseudodynamic feature (see 
Table 1).   

 

Table 1. The feature set table 

 

 

 

 

 

 

 

 

Each column of cells is converted into a 
characteristic vector, where each vector element has one 
or more representative numeric values, depending on the 
feature used. We used a signature binary image into the 
grid, to account the number of pixels in each cell (see 
Figure 4). We used too, the pixel distribution feature. It 
represents the pixel geometric distribution in a cell. For 
this purpose, the black pixels are projected in 4 
peripheral cell sensors from the central axis of the cell. 
Each sensor provides a numerical value that corresponds 
to the total of projected pixels. This numerical values as 
normalized by the sensor size (see Figure 5). We also 
have used a signature skeleton image [9], into the grid to 
determine the predominant stroke slant in each cell (see 
Figure 6).  

 

Figure 4. The pixels density example 

Feature 
Name 

Feature Type Analysis 

Pixels Density Static Graphic Space 
Occupation 

Pixels 
Distribution 

Static Graphic Space 
Occupation 

Axial Slant Pseudodynamic Traces   

 



 

Figure 5. The pixels distribution example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The axial slant example 

 

Afterwards, we have generated a set of codebooks 
for each feature. To this end, we used a Vector 
Quantization process [4,5,7], based in the k-means 
algorithm. In the learning phase, we have generated a 
HMM λ = {A, B, π} signature model, adapted to each 
writer. Moreover, the cross-validation procedure was 
used to dynamically define the optimum number of states 
for each specific signature model (writer model). The 
selected topology was a left-right model [1], because it 
better represents the Latin handwriting characteristics. 
The best validation probability pcv(O/λ) was used to 
define the most suitable probability model pt(O/λ), for 
one specific number of states. This model was used to 
define the threshold parameters. The objective is to 

determine the acceptation and rejection thresholds taking 
into account a specific writer (see Figure 7).  

 

Figure 7. A typical learning and cross-validation curve 
for a set number of states 

 

The medium threshold in question (1), defined by 
the pt, represents the learning probability logarithm, 
which is normalized by the observation sequence number 
L.  

 

 

 

 

 

(1) 

 

 

pi = ptn – (ptn.α1) (2) 

 

ps = ptn + (ptn.α2) . (3) 

 

In the signature verification procedure, we have 
used the Forward algorithm [1,7], with the objective to 
determine the verification probability pv. The L value 
also normalizes the probability logarithm pvn. The 
acceptation and rejection were defined by the equation 5 
(see Figure 8). 

Figure 8. The thresholds used to  delimit  the 
acceptation and rejection area in the validation 
process 
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(4) 

ps ≤  pvn  ≤ pi . (5) 

 

3.  The Evaluation Protocol 
 

The database was subdivided into two subsets with 
40 samples per writer: one subset contains 40 writers 
(1,600 genuine signature samples); and the other contains 
60 writers (2,400 genuine signature samples) [7]. We 
have added 1,200 forgery specimens in the second 
subset. These forgery samples were collected using 10 
different writers or forgers. Each forger generated a 
simple and a skilled simulated forgery, only one time and 
without training. 

The first database was used to create the codebooks 
for each feature. For this purpose, we selected the first 30 
samples. Based on that, we converted all databases in an 
observation symbol sequence. The first database was also 
used for the learning process. Each writer model was 
defined using 20 learning samples and 10 cross-
validation samples (the same 30 samples used in the 
VQ). The threshold parameters α1 and α2 in equations (2) 
and (3), were defined using the same 10 cross-validation 
samples, combined with the sets of 10 cross-validation 
samples from other 39 writers. This procedure was used 
for all subsets. The last remaining 10 samples were used 
to execute the first system experiment. This evaluation 
was important to define the best number of vertical cells 
and the codebook size for each feature.  

The second subset was used to validate the results 
obtained in the first experiment. To this end, a set of 
composed of 10 genuine, 10 simulated simple forgery 
and 10 simulated skilled forgery samples were used. The 
best codebook size and number of cells obtained in the 
first experiment were used in the second experiment. A 
multiple codebook technique was used to combine pixel 
density, pixel distribution and axial slant features. 

4. Experimental Results 
 

Table 2 shows the signature verification results 
obtained for each feature. The better number of cells and 
the codebook size from the first experiment were used in 
the second experiment. The objective is to produce the 
best feature combination in the proposed HMM 
framework. Table 3 shows the signature verification 

results for individual features using the second subset and 
taking into account all type of forgeries.  

 

Table 2. Signature verification results for random 
forgeries using the first subset 

 

Table 3. Signature verification results for individual 
features using the second subset 

 

In the second subset of signatures, 24 writers (40%) 
used their names in the signature model (see Figure 9a). 
Thus, we have a high probability to occurs similarity 
between the genuine signature model and a simple 
forgery (see Figure 9b). Although, the simple type II 
error rate has shown almost the same value of random 
error rate. The same observation is shown in Table 4, 
when we combine the three types of features in the same 
HMM [5,9]. However, the same does not occur with the 
skilled forgery in both experiments. We conclude that the 
system is not totally prepared to discriminate small 
differences between the genuine model and a test sample.  

 

 

             (a)                                         (b) 

 

Figure 9. (a) genuine signature and (b) simple forgery 
signature 
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Table 4. Signature verification results combining all 
features in one HMM classifier 

 

The decision threshold is adjusting with the 
objective to absorb the intrapersonal variability (see 
Figure 10b). It was possible by the α1 and α2 computation 
in the simulation procedure.  One important fact is the 
mean error stability present between p1 and p3  (see 
Figure 10a).  

 

Figure 10. (a) α1 and α2 definition curves and (b) 
threshold definition examples 
 

Table 5 shows a comparative among p1, p2 and p3 
alpha values. In p1 the model is more critical for 
intrapersonal and interpersonal acceptance, and in p3 the 
model is flexible. In other words, when the model is 
more critical the acceptance goes down, and the 
rejections go up for all type of forgery (p1 case). When 
the model is flexible the acceptance goes up, and the 
rejections go down for all type of forgery (p3 case).  

Table 5.  Comparative using different alpha values 

 

5.  Conclusion and Future Works 
 

The main objective of this work is to present a study 
about the interpersonal and intrapersonal variability 
influences in the signature writer’s model definition 
threshold. For this purpose, we have used simple 
features, different cell resolutions and multiple 
codebooks in a HMM framework. The simple and 
random forgery error rates have shown to be low and 
stable for all alpha values. This demonstrates the 
potential of the system in a real application. It is 
important to observe that there is no simples and skilled 
forgery sample in the learning database. The reelection 
between the type I and the type II error rate, in skilled 
forgery signatures, demonstrates that is necessary to 
define flexible parameters with the objective to adjust the 
threshold based on the intrapersonal variability. 
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