
Towards Local Control for Image-Based Texture Synthesis

LEANDRO TONIETTO, MARCELO WALTER

PIPCA - Mestrado em Computação Aplicada
UNISINOS - Centro de Ciências Exatas e Tecnológicas
tonietto/marcelow@exatas.unisinos.br

Abstract. New advances in image based texture synthesis techniques allow the generation of arbitrarily sized
textures based on a small sample. The generated textures are perceived as very similar to the given sample. One
main drawback of these techniques, however, is that the synthesized result cannot be locally controlled, that is,
we are able to synthesize a larger version of the sample but without much variation. We present in this paper a
technique which improves on current fast texture synthesis techniques by allowing local control over the result.
By local control we mean a final texture that is still perceived as a whole but presents variations in size of the
basic elements. Our solution generates the final texture from a small collection of the same sample at different
resolutions, adequately interpolated. We illustrate our results with some examples, including natural textures such
as animal coat patterns, which exhibit local variations that can be adequately captured by our algorithm.

1 Introduction

Recently, new techniques have been introduced which al-
low the synthesis of textures by constructing larger textures
from a small sample [7, 19, 6]. The larger texture has the
same visual appeal as the smaller texture, and can be gen-
erated relatively fast. This availability of tileable textures
with arbitrary size has many applications in image process-
ing and computer graphics tasks.

In the context of Texture Mapping [2], for instance,
these image based texture synthesis techniques have ad-
dressed one of the main drawbacks of real-world textures
used as texture maps, which is their usual low resolution.
Another class of problems in the context of texture map-
ping arises in applications where the texture has many local
variations. Real-world scanned images cannot capture the
full richness of real textures due to limitations in the scan-
ning process. To illustrate this problem, imagine trying to
scan a full leopard skin and use it as a texture. The skin
has local variations which are hard to capture on a single
texture image.

In this context a natural question arises: can we use
these recently introduced image based texture synthesis tech-
niques to generate from a small sample textures with local
variations, such as a full leopard skin? As introduced, the
techniques do not have a mechanism for allowing local con-
trol. By local control we mean to obtain a final texture that
is perceived as a whole but presents small variations in size,
color, and shape of the basic elements. These type of vari-
ations occur naturally in many textures. In Figure 1 we
illustrate the case with a leopard. Overall, we perceive the
leopard skin as a whole but locally it has variations which
add richness to the overall effect.

We introduce in this paper an extension in the texture

Figure 1: Local Variations on Natural Textures. Notice how
the basic round elements decrease in size and eventually
become individual dots.

synthesis algorithms that grow the texture one-pixel-at-a-
time. Our extension provides a mechanism for adding local
variation in the size of the basic elements of the generated
texture. In general, the small sample will not contain all rel-
evant information needed to synthesize a full texture with
all local variations. Our approach modifies the small sam-
ple in a controlled way to allow for local variations in the
final result. Our solution brings us closer to being able to
generate the full leopard skin from a small sample, but does
not completely solve it yet, as we explain in the conclusions
section.

In Figure 2 we illustrate the basic idea of our work.
On (a) we have a small sample which is used to generate
the result on (b). The result has the same overall visual
appeal as the sample on the left, but the basic round green
element decreases in size towards the bottom of the image.

This possibility of textures with local variations has a
distinct advantage in texture mapping tasks. Texture map-
ping is the main technique for adding rich visual details to



virtual objects without simulating them explicitly. The idea
is simple: instead of modeling the visual details, they are
captured in a image and this image is then mapped to the
surface of the object. These visual details are referred to
as the texture of the object and express the objects surface
characteristics. In practice, one of the main problems of
using texture mapping is that good texture maps are hard to
come by. They are usually small real-world images scanned
in. Our work allows us to generate textures which are hard
to obtain from scanning in real-world materials.

(a) (b)

Figure 2: A generated texture with local variations. (a)
Sample (b) Our result. The sample has

���
x
���

pixels and
the result has ����� x

� ��� pixels. Notice the smooth decrease
in size of the basic round green element towards the bottom
of the image.

2 Related Work

Texture synthesis is an old research subject in both Image
Processing and Computer Graphics fields, with research go-
ing back as far as the late seventies [12]. The many differ-
ent models and approaches have always tried to generate
textures either to validate texture models (mostly in Im-
age Processing tasks) or simply to use the result in some
application. The idea of using a sample as input informa-
tion to create the result has always been present (see for in-
stance [12, 13, 3, 8]). Until recently, despite progress, such
techniques were either too slow to be of practical use or the
results were not general enough to be useful [9, 4, 15].

The work of Efros and Leung presented in 1999 [7]
introduced a new simple way of looking at this problem by

“growing” a texture one pixel at a time from an initial seed.
The color of a given pixel is determined by scanning over
square patches of the sample texture that are similar to the
patch on the texture being generated. A random patch in
the sample is selected among the few satisfying the simi-
larity criterion. The similarity is measured with a 	 � norm
(sum of squared differences) weighted by a Gaussian ker-
nel. The original Efros and Leung’s algorithm is slow and
recent extensions have improved its performance, particu-
larly the work of Wei and Levoy [19]. They have used a
raster scan ordering to transform noise pixels into the result
texture and have also improved the performance of the al-
gorithm by using a multi-scale framework and vector quan-
tization. Their approach also minimizes the 	 � norm in
RGB space but without any weighting.

More recently, Efros and Freeman introduced yet an-
other way of synthesizing image-based textures by stitching
together random blocks of the sample and modifying them
in a consistent way [6]. They call the technique “image
quilting”. The idea improves dramatically on the one-pixel-
at-a-time approach since it builds the texture at a much
coarser resolution while being able to keep high frequen-
cies of the sample. The same idea of using patches from the
sample to synthesize the result was explored by Liang et al
[11]. In this work they were able to achieve real-time gen-
eration of large textures using special data structures and
optimization techniques.

Finally, there are a few alternative solutions to texture
synthesis from samples which can be used. One of them
is procedural texture synthesis, artificially generating the
needed textures using a model. Of course, procedural mod-
els are mostly targeted to a particular effect. For instance,
in the context of mammalian coat patterns biological inspi-
ration is used to drive the procedure [16, 22, 18]. For these
type of textures the control of desired results is always a po-
tential drawback. A complete overview of the current state-
of-the-art in procedural texture synthesis techniques is out
of the scope for this paper. We direct the reader to the book
by Ebert et al [5] for a good overview of procedural texture
synthesis techniques.

All the above recent techniques are very good at syn-
thesizing arbitrarily sized textures that are perceived as very
similar to the given sample. However, they do not address
the synthesis of textures with local variations as we are ad-
dressing here. They do have the potential to be explored in
this way, and that is our main contribution in this work.

3 Algorithm

Our algorithm is an extension on the basic algorithm of Wey
and Levoy [19] and therefore we start this section with a
brief overview of their approach. Figure 3 illustrates the
general idea.



(a) (b)

Figure 3: Illustration of Wey and Levoy’s synthesis algo-
rithm. (a) Sample being scanned for the best match (b)
Noise pixels being transformed into the final texture. The
images have been enlarged to illustrate the algorithm.

The algorithm starts with a small texture sample as in-
put (Figure 3 (a)). This sample will be used to contruct a
texture with the same overall visual appeal as the sample.
Even though it is not strictly necessary, the synthesized tex-
ture is usually larger than the sample. In order to do this
a noise texture is transformed in a raster scan ordering one
pixel-at-a-time (Figure 3 (b)). Starting with the pixel at the
upper leftmost corner, the algorithm searches on the sam-
ple for the best match measured with a 	 � norm in �����
space. The search uses a user-defined neighborhood size.
The sample is searched using continuous boundary condi-
tions (toroidal). In Figure 4 we illustrate one result of Wey
and Levoy’s algorithm.

(a) (b)

Figure 4: Wey and Levoy’s texture synthesis. (a)
���

x
���

sample. (b) � ��� x � ��� synthesized result.

The idea is simple and easy to implement. The original
paper also introduced mechanisms to accelerate the com-
putation. As we can see from the result, Wey and Levoy’s
algorithm is very good at synthesizing new textures that are
visually indistinguishable from the sample. This is the good
and the bad news at the same time. If one wishes a texture
sligthly different, the algorithm does not provide any mech-
anism for that.

The basic idea of our algorithm is to build the result
from a small collection of the same sample at lower res-
olutions. The idea of using the same sample at different
resolutions dates back to 1983 with the introduction of MIP
maps [21], although mip maps are used on a different con-

text (filtering of texture maps) and uses linear interpolation
between levels.

The final texture in our case will be a collection of
texture “patches”, each of which is synthesized using Wey
and Levoy’s algorithm but using as input the same sample
at different resolutions. In order to have a smooth transition
between patches we define a transition area.

(a) (b) (c) (d)

Figure 5: Input information for our algorithm. The mul-
tiresolution sample: (a) Original
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sample (b) 70% (c)
50% (d) 40%

In Figure 5 we illustrate one possible input for our al-
gorithm. We show a given sample at the original resolution
and three versions of this sample at lower resolutions. The
total amount of reduction is controlled by the user as a pa-
rameter of the algorithm (in this case 40%).
The main parameters of our algorithm are:

� Size of output texture image - ���
Size of the desired texture measured in pixels.

� Number of patches - 	
This parameter controls how many patches will be used
to build the result. We number the patches 	
	 (highest
resolution), 	�� and so on.

� Size of the transition area between patches - 

Between two patches, we will have a transition area
specified by a given number of scan lines.

� Size of the neighborhood around a given pixel � - ��� ���
This is a parameter already present in Wei and Levoy’s
synthesis algorithm, and has the same meaning in our
context, that is, it specifies how many pixels are used
for finding the best match on the sample. The intuition
behind this parameter is that each texture sample has
an ideal neighborhood size which adequately captures
the size of the texture elements present in the sample.

� The percentage of size reduction - �
Specifies how much smaller than the original sample
it will be the lowest resolution sample. For instance,
with 	�� �

and ��� ��� � we will have 	�	 at the original
size, 	�� with a resolution 75% smaller than 	�	 and 	��
with a resolution 50% smaller than 	�	 .

Figure 6 illustrates schematically our approach. In this fig-
ure we have 3 patches 	�	 , 	�� , and 	�� . The coarser patch
is 	�	 . For each patch we associate a sample (for instance
samples ����� , �! "� , and ��#$� of figure 5).



Figure 6: The different patches used for generating a tex-
ture, in this case three.

Our algorithm follows the single resolution synthesis
procedure of Wei and Levoy by incrementally modifying
noise pixels into the final texture on a raster scan ordering.
The difference in our case is that depending on where we
are generating the next pixel (that is, which scanline we are
in), we will look for the best match in the corresponding
sample.

Between patches we define a transition area. In this
transition area we use a different approach to synthesize the
pixel color. The goal is to have a visually-smooth transi-
tion such that the user does not perceive it. The pixel color
will be choosen randomly from either one of the two adja-
cent samples, controlled by a probability. The probability
of which sample we will look for the best match is deter-
mined by which scanline we are in. If we are computing
the pixel color in a transition area between patches � and
� , for instance, pixels in a scanline closer to patch � will
have a higher probability of being chosen from the sample
associated with � , but they can also be chosen from the
sample associated with � . Pixels in scanlines middle way
through the transition area will be chosen roughly half from
the sample associated with patch � and half from the sam-
ple associated with patch � , and so on.

This random transition, controlled by a probability de-
termined by which scanline of the transition area we are in,
seems to work well in practice, as illustrated in the results.
This was a key insight, since we tried other possibilities
(such as linear interpolating the colors of the two samples)
and the results were not good.

In the next two figures we show how the parameters
change the final result. In Figure 7 we illustrate the effect of
decreasing � (maximum reduction size) and in Figure 8 we
illustrate the effect of modifying the size of the transition

(a) (b)

(c)

Figure 7: Changing the maximum size reduction. (a) � �
��� � , (b) ��� ��� � and (c) � � ��� � . For (a),(b), and (c) 
������
pixels, ��� ������� , �$��� ������� � ��� pixels, 	���� .



area, from � to
� � to ��� scanlines. As expected, the increase

in size of the transition area smoothes out the overall result.
With 
 � � we can notice the border between individual
patches.

(a) (b) (c)

Figure 8: Changing the size of the transition area. (a) 
�� �
scanlines, (b) 
 � � � scanlines and (c) 
 � ��� scanlines.
For (a), (b), and (c) ��� ��� � , ��� ��� � � � , 	 � �

, ��� =
� ��� x

� ��� .

Another important implementation point is that, as we
move from sample to sample, we are decreasing the param-
eter ��� ��� (size of neighborhood) accordingly to the per-
centage of size reduction � .

4 Results

In this section we present a few results generated with our
algorithm. Although the key idea is very simple, we were
able to generate interesting results which we believe would
be useful in the context of image processing and computer
graphics tasks. In general, the synthesized textures pre-
sented a smooth transition between patches. Table 1 illus-
trates our main results. The many samples were taken from
a few sites (for instance [10, 14, 1]). We have used both
structured and non-structured texture samples. We consid-
ered all results “believable” in the sense that we do not per-
ceive discontinuities, with the exception of the brick wall
texture. Although the size of the bricks decreases gradu-
ally, the random transition did not work well in this case.
Maybe alternative “mixing” of patches would give us better
results.

Our system was implemented in Java and even though
we are using the single resolution synthesis procedure of
Wei and Levoy’s, it is reasonably fast. The textures took
from a few minutes to about 30 minutes to generate, de-
pending basically on the value for ��� ��� (size of the neigh-
borhood) and the original size of the sample (on an AMD
Athlon 1Ghz machine with � �����  RAM).

5 Conclusions

We introduced in this paper a mechanism to allow the syn-
thesis of arbitrarily sized textures from a small sample, and
the generated texture exhibits local variations in size of the
texture elements. Our algorithm is an extension on the work
of Wei and Levoy [19] and generates the final texture from
a small collection of the same sample at lower resolutions.
Our results show that this simple idea introduces variations
on the generated result which are useful in many applica-
tions.

In our current implementation the only possible vari-
ation is in the size of the basic elements which define the
texture. We are currently investigating other possibilities
for controlling the final result and would like to be able
to control color as well. The results we have shown used
patches arranged in a rectangular fashion with transition ar-
eas also rectangular, varying from top to bottom. Of course
this is not the only possibility. We are currently investigat-
ing the possibilities of other arrangements as well. In the
case of simulating a leopard skin, for instance, one would
have to control the synthesis procedure over a possibly ar-
bitrary domain. The two difficulties here are how does one
define where each patch goes and how to adequately com-
pute a transition between them. As presented, our technique
is not yet able to synthesize a full leopard skin from sam-
ples. Our results do not exhibit any variation on the shape
of the texture elements (as illustrated in the real leopard
texture of Figure 1) but we could envisage a system where
a given sample is modified in the synthesis procedure ac-
cordingly to some rules. We believe our system is a first
step towards this more ambitious goal.

In the context of texturing objects our goal is to gener-
ate the texture directly on the surface of the object (as done
in [20, 17]) but controlling it using the geometric attributes
of the shape, such as curvature. For natural objects such
as patterned animals, there is a correlation between local
variations in the fur and the underlying body of the animal.
Intelligent texture synthesis should use this correlation to
ease texturing tasks.

References

[1] Absolute Background Textures Archive.
http://www.grsites.com/textures/.

[2] E. E. Catmull. A Subdivision Algorithm for Computer
Display of Curved Surfaces. Ph.d. thesis, University
of Utah, December 1974.

[3] G. Cross and A. K. Jain. Markov random field texture
models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 5(1):25–39, January 1983.

[4] J. S. de Bonet. Multiresolution sampling proce-
dure for analysis and synthesis of texture images.



In Turner Whitted, editor, SIGGRAPH 97 Confer-
ence Proceedings, Annual Conference Series, pages
361–368. ACM SIGGRAPH, Addison Wesley, Au-
gust 1997. ISBN 0-89791-896-7.

[5] D. Ebert et al. Texturing and Modeling: a Procedural
Approach. Academic Press, 1994.

[6] A.A. Efros and W.T. Freeman. Image quilting for
texture synthesis and transfer. Proceedings of SIG-
GRAPH 2001, pages 341–346, August 2001. ISBN
1-58113-292-1.

[7] A.A. Efros and T.K. Leung. Texture synthesis by non-
parametric sampling. In International Conference on
Computer Vision, volume 2, pages 1033–1038, 1999.

[8] A. Gagalowicz and S. Ma. Model driven synthesis of
natural textures for 3-D scenes. In Eurographics ’85,
pages 91–108. 1985.

[9] D. J. Heeger and J. R. Bergen. Pyramid-based texture
analysis/synthesis. In Robert Cook, editor, Computer
Graphics (SIGGRAPH ’95 Proceedings), pages 229–
238, August 1995.

[10] MIT Media Lab. Vision texture. http://www-
white.media.mit.edu/vismod/imagery/-
VisionTexture/vistex.html.

[11] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and
Heung-Yeung Shum. Real-time texture synthesis by
patch-based sampling. ACM Transactions on Graph-
ics, 20(3):127–150, July 2001. ISSN 0730-0301.

[12] S.Y. Lu and K.S. Fu. A syntactic approach to texture
analysis. Computer Graphics and Image Processing,
7(3):303–30, June 1978.

[13] J. Monne, F. Schmitt, and D. Massaloux. Bidimen-
sional texture synthesis by markov chains. Computer
Graphics and Image Processing, 17(1):1–23, Septem-
ber 1981.

[14] J. Portilla and E. Simoncelli. Representation and syn-
thesis of visual texture. http://www.cns.nyu.edu/ lcv/-
texture/.

[15] E. Simoncelli and J. Portilla. Texture characterization
via joint statistics of wavelet coefficient magnitudes.
In Fifth IEEE International Conf on Image Process-
ing, volume I, pages 62–66, Chicago, Illinois, October
1998. IEEE Computer Society.

[16] G. Turk. Generating textures on arbitrary surfaces us-
ing reaction-diffusion. In Thomas W. Sederberg, ed-
itor, Computer Graphics (SIGGRAPH 91 Conference
Proceedings), volume 25, pages 289–298. Addison-
Wesley, July 1991. ISBN 0-201-56291-X.

[17] G. Turk. Texture synthesis on surfaces. Proceedings
of SIGGRAPH 2001, pages 347–354, August 2001.
ISBN 1-58113-292-1.

[18] Marcelo Walter, Alain Fournier, and Daniel
Menevaux. Integrating shape and pattern in mam-
malian models. In Proceedings of ACM SIGGRAPH
2001, Computer Graphics Proceedings, Annual Con-
ference Series, pages 317–326. ACM Press / ACM
SIGGRAPH, August 2001. ISBN 1-58113-292-1.

[19] Li-Yi Wei and M. Levoy. Fast texture synthesis using
tree-structured vector quantization. Proceedings of
SIGGRAPH 2000, pages 479–488, July 2000. ISBN
1-58113-208-5.

[20] Li-Yi Wei and M. Levoy. Texture synthesis over arbi-
trary manifold surfaces. Proceedings of SIGGRAPH
2001, pages 355–360, August 2001. ISBN 1-58113-
292-1.

[21] L. Williams. Pyramidal parametrics. In Com-
puter Graphics (Proceedings of SIGGRAPH 83), vol-
ume 17, pages 1–11, Detroit, Michigan, July 1983.

[22] A. Witkin and M. Kass. Reaction-diffusion textures.
In Thomas W. Sederberg, editor, Computer Graph-
ics (SIGGRAPH 91 Conference Proceedings), vol-
ume 25, pages 299–308. Addison-Wesley, July 1991.
ISBN 0-201-56291-X.



Table 1: Texture synthesis results. For all results � � = ����� x
� ��� , 	 � � , ��� ��� � , and 
 � ��� . First row: ��� ��� � � � ;

��� ����� ��� ; Second row: ��� ����� � � ; ��� ����� � � ; Third row: ��� ����� � � ; ��� ����� � � ;


