
Multiscale Moment-Based Painterly Rendering

DIEGO NEHAB1 LUIZ VELHO2

1PUC-Rio – Pontifı́cia Universidade Católica, Rio de Janeiro
diego@tecgraf.puc-rio.br

2IMPA – Instituto de Matemática Pura e Aplicada
lvelho@impa.br

Abstract. In this paper we present a new method for painterly rendering of images. Our method extends the
image-moment stroke placement algorithm in two ways: we employ a multiscale scheme for computing strokes
and we provide a parametrized mechanism for controlling stroke distribution. In addition, we present a specialized
image abstraction for the algorithm.

1 Introduction

The evolution of computer graphics led naturally to the de-
velopment of different types of visualization techniques.
Initially, the focus was on photorealistic rendering, where
the goal is to generate synthetic images that are indistin-
guishable from real photographs [17]. More recently, there
has been a growing interest in non-photorealistic rendering
techniques that emphasize the expressive depiction of vi-
sual information [3].

Non-photorealistic rendering is, by definition, a very
broad area of research that encompasses many rendering
styles in various application contexts. Two useful criteria
for the classification of non-photorealistic rendering tech-
niques are: the type of source data; and the nature of the
simulated process.

Techniques are classified according to source data into
object-space methods that use the 3D model of a scene to
create the rendered image [10, 14], and image-space meth-
ods that work directly on the 2D image [4, 5]. Hybrid meth-
ods take advantage of both 3D and 2D data to produce the
final result [8].

Most non-photorealistic techniques are inspired in tra-
ditional visual art forms, such as painting (oil [5], wa-
tercolor [1, 18]), drawing (pen-and-ink [7, 2, 22], pen-
cil [19, 21], charcoal [23]), and printing (etching, engrav-
ing [12, 13]). Here, both the physical process and the
medium provide a paradigm for computation and interac-
tion.

In this paper we present a new method for painterly
rendering of images that improves upon previous work in
the area.

1.1 Related work

Painterly rendering simulates the appearance of painted im-
ages. The basic primitive in this technique is a brush
stroke. Images are generated by applying a sequence of

brush strokes to a 2D canvas. A brush stroke has various
attributes, such as position, shape and color [20].

In object-space methods, brush strokes are first asso-
ciated with the 3D geometry of objects in a scene, and
then projected to the image plane defined by a virtual cam-
era [10]. In image-space methods, brush strokes are placed
on the output image, based on 2D information derived from
input images [4].

Interactive methods allow the user to guide the render-
ing process in a manual or semi-automatic manner, by indi-
cating where strokes should be placed [4]. Non-interactive
methods render the image automatically based on input pa-
rameters and data analysis [5]. Some methods process a
sequence of images exploiting temporal coherence [9, 6].

The technique described in this paper is a non-
interactive, image-space method. It is based on the image
moment-based stroke placement algorithm [15, 16]. The
main original contributions in our work are: a multiscale
scheme for computing the strokes, a parametrized mecha-
nism for controlling stroke distribution, and an image ab-
straction specially optimized for the algorithm.

1.2 Overview

This paper is organized as follows. Section 2 reviews the
moment-based painterly rendering method. Section 3 de-
scribes the additions proposed in the new method. Section 4
concludes with final remarks and a discussion of ongoing
work.

2 Review of the image-moment painterly rendering

Given a source image and a stroke template image, the
painterly rendering algorithm outputs a painted version
of the source image. The method proceeds as an artist
who progressively strokes a canvas trying to reproduce the
source image on it. The algorithm outlined in the this sec-
tion, which is the result of previous work [16], generates



images similar to that shown in Figure 1(b).
The process can be divided into two phases: analysis

and synthesis. In the analysis phase, a list of strokes is cal-
culated from the source image. In the synthesis phase, the
strokes are painted over a blank canvas. We proceed with
the description of the synthesis process, which will make
clear to the reader the requirements to be fulfilled by the
analysis process, explained subsequently.

2.1 The synthesis phase

The synthesis process receives as its input a list of strokes
to be painted. The algorithm works with strokes that are
described by the following set of attributes: color, loca-
tion, orientation and size. According to these parameters,
painting a stroke on a canvas corresponds to the process of
scaling, rotating, and using the stroke template image as a
transparency map to be blended on the output image, in the
correct position and with the appropriate color.

Figure 2: Example of stroke list painting.

The partial result for the stroke list used to paint Fig-
ure 1(b) can be seen be seen in Figure 2. The computation
of such a list of strokes is the task of the analysis phase of
the algorithm.

2.2 The analysis phase

The first step in the creation of a stroke list is the definition
of the stroke distribution. In a second step, each stroke in
the distribution has its parameters computed.

The stroke distribution is based on the observation that
high-frequency details in the source image should be repre-
sented by many small strokes, whereas low-frequency re-
gions should be represented by fewer larger strokes.

The stroke parameters result from the analysis, with
the help of the image-moments theory, of the neighborhood
in the source image where the stroke is to be placed. Since
the same tools provide the information needed for the com-
putation of the stroke distribution, their use is introduced
first.

2.2.1 Computing stroke parameters

The goal of each stroke is to approximate a neighbor-
hood in the source image. From each neighborhood, the
image-moment based approach determines the correspond-
ing stroke parameters in two steps. The first step computes
a color difference image between the region and the color
at the center of that region. The second step determines the
remaining stroke parameters based on the image moments
of the color difference image created in the first step.

The color difference image attempts to measure the
distance between the color of the stroke and the color of
each point in the source image neighborhood being consid-
ered. Ideally, the resulting image shows a picture of the
shape that a stroke of that color should have if was to ap-
proximate the region. In other words, the operation isolates
the segments of the region that can be better represented
with the chosen stroke color.

The quality of the computed parameters depends on
the quality of the segmentation produced by the color dif-
ference image. In particular, low contrast images may con-
sistently give rise to similar stroke parameters. To increase
the contrast, a function is used to map color difference val-
ues into the intensity values actually stored in the resulting
image.

The stroke parameters corresponding to a rectangle
that closely matches the shape of the color difference image
of the region being approximated is then computed with the
help of image moments. Image moments are summations
over all pixels of the image, which capture the notions of
area, position and orientation. See [16] for formulas and a
detailed explanation of the theory.

2.2.2 Determining the stroke distribution

The frequency information needed for the definition of a
stroke distribution is obtained with the computation of a
stroke area image — an image in which the value of each
pixel corresponds to the area of a stroke approximating its
neighborhood. The area of a stroke associated to a position
in the source image is computed from the color difference
image between the color at the position and its neighboring
image, also with the use of image moments.

The stroke distribution is given by a stroke positions
image, in which each position is marked by a dot. This
image is generated from the stroke area image by a spe-
cial monochrome dithering algorithm. The algorithm used
to create the stroke distribution must be designed to con-
centrate strokes around the dark regions of the stroke area
image, and to avoid large regions without strokes. To this
end, the previous study used a modified version of a space-
filling curve dithering algorithm, in which the accumulated
intensity values were inversely proportional to the area of
the stroke.



(a) (b)

Figure 1: Painterly rendering process

(a) (b)

Figure 3: Stroke area and positions images.

Figure 3(b) shows an example of how the stroke posi-
tions image should look. This image was created from the
stroke area image of Figure 3(a) by our own parametrized
dithering algorithm. This new algorithm is detailed in Sec-
tion 3.

3 Original contributions to the algorithm

The ideas presented so far describe a complex process to
create images that resembles human hand painting, as seen
in Figure 1. Some aspects of the process can be improved,

other parts can be implemented in a way that deserves doc-
umentation. This session describes what was added by our
research.

3.1 Multi-resolution analysis

As expected, the stroke parameters, computed with the aid
of the color difference images and the image moments the-
ory, correctly approximate local source image neighbor-
hoods. Unfortunately, although small details can be cap-
tured within a neighborhood, features that occupy more
than the size of a single neighborhood cannot, and must
therefore be represented by a group of smaller strokes.
Unless the used stroke template image has a low opacity
overall, this composition becomes evident. Furthermore,
a needlessly large amount of small strokes must be used
to represent what could be approximated by fewer larger
strokes.

In order to capture strokes over a wider range of sizes,
previous work [16] suggests, as a possible improvement,
that an adaptive method should be developed to vary the
size of the neighborhoods being analyzed throughout the
source image. As an alternative solution, we use a multi-
resolution approach during the analysis phase of the algo-
rithm. Stroke lists are collected for each resolution in a
pyramid built from the source image. The painted result at
each level is obtained by blending its strokes over the result



of the lower resolution level. The implementation1 of these
ideas can be seen in Program 1.

function MultiResolutionPainterlyRender(Source, Stroke, S, L)
local Pyramid = { Source }
local w, h
local l = 2
while l <= L do

w = GetWidth(Pyramid[l-1])/2
h = GetHeight(Pyramid[l-1])/2
Pyramid[l] = Copy(Scale(Pyramid[l-1], w, h, New()), New())
l = l + 1

end
local Canvas = BlankCanvas(w, h)
l = L
while l >= 1 do

w, h = GetWidth(Pyramid[l]), GetHeight(Pyramid[l])
Canvas = Copy(Scale(Canvas, w, h, New()), New())
local Sp, E = Spread(S, L-l), Enhance(S, L-l)
local List = StrokeList(Pyramid[l], S, Sp, E)
Canvas = PaintStrokeList(Stroke, List, Canvas)
l = l - 1

end
return Canvas

end

Program 1: The multi-resolution painter algorithm.

Figure 5 shows an example of painterly rendered im-
age created by the multi-resolution method. Although finer
details than those seen in Figure 1(b) are clearly visible,
Figure 5 required only 14475 strokes, whereas Figure 1(b)
required 18917.

Figures 4(a) to (d) depict the strokes at each resolution
level that, when composed together, create the final image
in Figure 5. The images are shown scaled to the same res-
olution to simplify comparison, and to illustrate the steps
followed by the algorithm. Notice the different stroke posi-
tion distributions at different levels, computed from blurred
images coming from the multiresolution pyramid.

3.2 Parametrized stroke positions image

The stroke list for higher resolution levels should not only
concentrate strokes on high frequency areas of the source
image, but also avoid placing strokes over lower frequency
areas. Otherwise, strokes coming from lower resolution
levels would be consistently obscured by the strokes com-
ing from higher resolution levels, producing a result no bet-
ter then the single-resolution approach.

To avoid this problem, the new procedure used to cre-
ate stroke positions images accepts two parameters, re-
ferred to as the spreading and the enhancing factors. The
spreading factor places an upper bound on the maximum

1The source code is presented in the Lua programming language, em-
bedded in our implementation. A full description of the software can be
found in [11].

Figure 5: Multi-resolution painted image.

distance between strokes, effectively controlling the over-
all stroke density. The enhancing factor controls the degree
to which the density of strokes increases when close to the
edges found in the stroke area image.

Before being considered, the value of each pixel is
passed through the function defined by Equation (1), along
with spreading and enhancing parameters.

se(v, s, e) =
1

(s2 − 1)ve + 1
(1)

This function was designed to map the value 0 into 1
(small area values generate more strokes) and the value 1
into 1

s2 (even large areas contribute to the generations of
strokes). The value 1

s2 was chosen so that a stroke po-
sition is issued after at most s2 pixels. Furthermore, the
effect of the enhancing factor is to accentuate small input
values, which are exactly those close to the black edges of
the stroke area image.

At each level, the spreading and enhancing factors are
computed as functions of the level and the size of the neigh-
borhoods. Experimental functions that presented good re-
sults and are used in our implementation are:

spread(s, l) = (s + 0.3) · l (2)

enhance(s, l) = 3 · (l + 1) (3)

In our implementation, the dithering proceeds by tradi-
tional error diffusion. Accordingly, foreach pixel, the error
accumulated due to truncation is spread to three of its adja-
cent pixels. However, in order to avoid undesirable periodic
artifacts, at each pixel we randomly shuffle the coefficients



(a) Level 4 (b) Level 3 (c) Level 2 (d) Level 1

Figure 4: Strokes at different resolution levels.

used to diffuse the error. Although the randomization of the
dithering process may not be useful to produce high quality
images, we are not interested in photo-realism. Therefore,
these simple ideas are enough to produce results with the
desired properties, as seen in Figure 6.

3.3 Optimized Image abstraction

During the two phases of the algorithm, the basic computa-
tions performed over images are: stroke area image, stroke
positions image, color image difference, image moments,
scaling, rotation and blending. The choice of an appropri-
ate image abstraction can simplify the task of efficiently
implementing these operations. In particular, the abstrac-
tion should simplify computations involving image neigh-
borhoods and avoid unnecessary memory allocations.

/* image data type */
typedef struct Tmono {

float *buffer;
int width, height, row;

} Tmono;
typedef Tmono *Pmono;

Program 2: C structure representing an image.

The data structure described by Program 2 can be used
to store information about a newly allocated image (such
as the source image of Figure 7) and can also store in-
formation representing part of a previously allocated image
(such as the shared image on the same figure). The row
field always relate to the image that owns the buffer, i.e.
the image that was actually allocated, and allows routines
to correctly determine the position of each pixel in shared
regions.

Our experience shows that adapting a image process-
ing algorithm to deal transparently with the above image
representation, either as input or output, is an effortless

source−>width
source−>row
shared−>row

s
o
u
r
c
e
−
>
h
e
i
g
h
t

s
h
a
r
e
d
−
>
h
e
i
g
h
t

source−>buffer

shared−>buffer

shared−>width

Figure 7: Meaning of image structure fields.

task. Furthermore, the adapted version usually suffers no
measurable performance degradation. Therefore, every im-
age processing function in our implementation makes no
assumptions whether the buffers are shared or owned by
the images structures that point to them. A simple example
in C of such function is presented by Program 3.

This agreement allows the extensive use of shared re-
gions throughout all parts of the algorithm. Instead of sup-
plying neighborhood limits to each function in the API, an
image structure representing the neighborhood can be cre-
ated and the functions can operate directly over them. The



(a) s = 5, e = 2 (b) s = 5, e = 5 (c) s = 10, e = 4 (d) s = 10, e = 8

Figure 6: Parametrized stroke positions images.

int mono clear(Pmono in, float c)
{

int x, y, skip = in− >row − in− >width;
float *p = in− >buffer;
for (y = 0; y < in− >height; y++) {

/* process row */
for (x = 0; x < in− >width; x++)

*p++ = c;
/* skip part of row not belonging to region */
/* if image owns the buffer, skip is 0 */
p += skip;

}
return 1;

}

Program 3: Clearing an image.

code is greatly simplified by concentrating all clipping logic
in a single function and, since image parts are shared, there
is no performance loss due to memory allocation.

4 Conclusions

In this work we introduced a multi-resolution approach to
painterly rendering method by the local source image ap-
proximation. The development of this research gave rise
to a parametrized stroke distribution algorithm, easily im-
plemented. Finally, a specially designed image abstraction
simplified and optimized the implementation.

Figures 8 and 9 illustrate some results of using our
method. Figure 8 shows two versions of the canoe image
painted with different parameters for stroke distribution and
size. Figure 9 shows the train image. Note how the smoke
is rendered with large round strokes, while the railroad is
rendered with long thin strokes.

4.1 Future work

The image moment theory provides a powerful tool in the
creation of local source image approximations. The quality
of these approximations, however, is strongly dependent on
the quality of the local color difference images. In a future
work, we intend to investigate alternatives to the color dif-
ference images, attempting to produce better controllable
results.

In the present work, strokes computed at each level
have no influence on strokes computed at higher resolution
levels. One way this information could be taken into ac-
count would be to subtract the computed strokes from the
source image at lower resolution levels before computing
new strokes at higher resolutions.

The encoding and storage of stroke lists will also be
studied. By compacting the information provided by the
lists, it is possible to represent painterly rendered images in
a space efficient way. If the new segmentation techniques
lead to substantial improvements, it may even be possible
to encode photo-realistic images, transforming the scheme
into an image compression algorithm.

Acknowledgments

This work was developed at the VISGRAF Laboratory of
IMPA and TECGRAF of PUC-Rio.

We would like to thank Danilo Tuler de Oliveira and
Diogo Vieira Andrade who took part in the early stages of
this research.

The authors are partially supported by research grants
from the Brazilian Council for Scientific and Technological
Development (CNPq) and Rio de Janeiro Research Foun-
dation (FAPERJ).



References

[1] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims,
Kurt W. Fleischer, and David H. Salesin. Computer-
generated watercolor. Proceedings of SIGGRAPH 97,
pages pages 421–430, August 1997.

[2] Gershon Elber. Line Art Illustrations of Parametric
and Implicit Forms. IEEE Transactions on Visualiza-
tion and Computer Graphics, 4(1), January – March
1998. ISSN 1077-2626.

[3] Stuart Green, David Salesin, Simon Schofield, Aaron
Hertzmann, Peter Litwinowicz, Amy Gooch, Cassidy
Curtis, and Bruce Gooch. Non-Photorealistic Render-
ing. SIGGRAPH ’99 Non-Photorealistic Rendering
Course Notes, 1999.

[4] Paul E. Haeberli. Paint by numbers: Abstract im-
age representations. Proceedings of SIGGRAPH 90,
24(4):207–214, August 1990.

[5] Aaron Hertzmann. Painterly rendering with curved
brush strokes of multiple sizes. Proceedings of SIG-
GRAPH 98, pages 453–460, July 1998. ISBN 0-
89791-999-8. Held in Orlando, Florida.

[6] Aaron Hertzmann and Ken Perlin. Painterly rendering
for video and interaction. NPAR 2000 : First Inter-
national Symposium on Non Photorealistic Animation
and Rendering, pages 7–12, June 2000.

[7] Aaron Hertzmann and Denis Zorin. Illustrating
smooth surfaces. Proceedings of SIGGRAPH 2000,
July 2000. Held in New Orleans, Louisianna.

[8] Allison W. Klein, Wilmot W. Li, Michael M. Kazh-
dan, Wagner T. Correa, Adam Finkelstein, and
Thomas A. Funkhouser. Non-photorealistic virtual
environments. Proceedings of SIGGRAPH 2000,
pages 527–534, July 2000. ISBN 1-58113-208-5.

[9] Peter Litwinowicz. Processing images and video for
an impressionist effect. Proceedings of SIGGRAPH
97, pages 407–414, August 1997. ISBN 0-89791-896-
7. Held in Los Angeles, California.

[10] Barbara J. Meier. Painterly rendering for animation.
Proceedings of SIGGRAPH 96, pages 477–484, Au-
gust 1996. ISBN 0-201-94800-1. Held in New Or-
leans, Louisiana.

[11] Diego Nehab and Luiz Velho. A lua implementation
of image moment-based painterly rendering. Techni-
cal Report 01-11, IMPA, Visgraf Laboratory, 2002.

[12] Victor Ostromoukhov. Digital facial engraving. Pro-
ceedings of SIGGRAPH 99, pages 417–424, August
1999. ISBN 0-20148-560-5. Held in Los Angeles,
California.

[13] Yachin Pnueli and Alfred M. Bruckstein. Digdurer -
a digital engraving system. In The Visual Computer,
volume 10, pages 277–292, August 1994.

[14] Emil Praun, Hugues Hoppe, Matthew Webb, and
Adam Finkelstein. Real-time hatching. Proceedings
of SIGGRAPH 2001, pages 579–584, August 2001.
ISBN 1-58113-292-1.

[15] Michio Shiraishi and Yasushi Yamaguchi. Image
moment-based stroke placement. Technical Report
skapps3794, University of Tokyo, Tokyo Japan, May
1999.

[16] Michio Shiraishi and Yasushi Yamaguchi. An algo-
rithm for automatic painterly rendering based on local
source image approximation. NPAR 2000 : First In-
ternational Symposium on Non Photorealistic Anima-
tion and Rendering, pages 53–58, June 2000.

[17] François X. Sillion. The state of the art in physically-
based rendering and its impact on future applications.
Second Eurographics Workshop on Rendering (Pho-
torealistic Rendering in Computer Graphics), pages
1–10, 1994. Held in New York.

[18] David Small. Simulating watercolor by modeling dif-
fusion, pigment, and paper fibers. Proceedings of
SPIE ’91, February 1991.

[19] Mario Costa Sousa and John W. Buchanan. Observa-
tional models of graphite pencil materials. Computer
Graphics Forum, 19(1):27–49, March 2000. ISSN
1067-7055.

[20] Steve Strassmann. Hairy brushes. Siggraph,
20(4):225–232, August 1986.

[21] Saeko Takagi, Masayuki Nakajima, and Issei Fu-
jishiro. Volumetric modeling of colored pencil draw-
ing. Pacific Graphics ’99, October 1999. Held in
Seoul, Korea.

[22] Georges Winkenbach and David H. Salesin.
Computer-generated pen-and-ink illustration. Pro-
ceedings of SIGGRAPH 94, pages 91–100, July 1994.
ISBN 0-89791-667-0. Held in Orlando, Florida.

[23] Eric Wong. Artistic rendering of portrait photographs.
Master’s thesis, Cornell University, 1999.



Figure 8: Canoe: painted with different parameters.

Figure 9: Train.


