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Abstract. Digital change detection methods have been broadly divided into either pre-classification spectral 
change detection or post-classification change detection. Since all spectral change detection methods are based 
on pixel-wise operations, or scene-wise plus pixel-wise operations, accuracy in image registration and scene-
to-scene radiometric normalization is more critical for these methods than for other methods. A wide range of 
algorithms has been developed to adjust linear models. This paper proposes an automated radiometric 
normalization process that automatically extracts the training dataset, and uses a non-parametric smoother to 
adjust a non-linear mapping in order to minimize the effects of the influences of radiometric differences on 
image interpretation and classification. In order to investigate how the proposed normalization improves the 
performance classification, and assess the effectiveness of this technique, we carried out classification 
experiments on three image sets, and compare their results.  

1. Introduction 
The largest number of change detection techniques is 
found in the spectral change detection category [7]. These 
techniques utilize data from two images to generate new 
single-band, or multi-band unclassified image representing 
spectral change. The spectral change data must be further 
processed by other analytic methods such as a classifier to 
produce a labeled land cover change product. It has been 
shown that transformations designed to normalize or 
bypass radiometric differences between the raw images 
usually improves the results of change detection. However, 
removing or normalizing noises arising from atmospheric 
effect, changing view and illumination geometry, and 
instrument errors, are challenges of satellite-based land 
cover characterization. In an ideal remote sensing system 
all images in a long time series could be corrected for 
atmospheric and illumination effects and calibrated to 
surface reflectance factors for direct comparison. 
Numerous studies have shown this to be an elusive, if not 
unattainable, goal and image-based relative calibration 
procedures generally perform better. Relative radiometric 
correction procedures can be applied to scale all images to 
a single reference, and adjust the radiometric properties of 
subject images to match the reference. This kind of 
normalization does not require ancillary datasets on. For 
instance, atmospheric temperature, relative humidity, 
and/or aerosol backscatter that are normally very 
demanding when it comes to the logistical and personnel 
time required. Most relative calibration procedures assume 
that the reflectance-stable pixel values from the late image 
are a linear function of the early, including effects from 

sensor calibration and the atmosphere. A wide range of 
algorithms has been developed to adjust linear models. 
Many situations, however, present non-linear behavior. 
Figure 1 shows the quantile-quantile plot (qq-plot) of 
bands 5 of multispectral images, from different dates, 
acquired from the Thematic Mapper sensor of the Landsat 
7 satellite taken from a region in Brazil. The purpose of the 
qq-plot is to determine if the samples in two datasets come 
from the same distribution type.  If the samples come from 
the same distribution (same shape) even if one distribution 
is shifted and re-scaled from the other  
Figure 1. QQ-plot of band 5 of two multispectral images 

acquired, in different dates, from the Thematic Mapper 
sensor of the Landsat 7 satellite.  
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(different location and scale parameters) the plot will be 
linear. The plot in Figure 1 shows strong non-linear 
behavior in band 5. A non-linear approximation for 



  

regression functions would be more appropriate. As soon 
as we leave the relatively straightforward world of 
linearity, we are faced with an infinitude of possible 
choices of models. 

The task of approximating the regression function can 
be done essentially in two ways. First, the quite often-used 
parametric approach is to assume that the approximation 
regression curve has some pre-specified functional form. 
Second, as an alternative one could try to estimate the 
regression curve non-parametrically without reference to a 
specific form. The non-parametric smoothing approach 
offers a flexible tool in analyzing unknown regression 
relationships. 

This paper proposes an automated radiometric 
normalization process to adjust a non-linear mapping to 
minimize the effects of the influences of radiometric 
differences on image interpretation and classification. This 
process computes tables, for each band of image, generated 
with a non-parametric regression technique.  

Most relative image-to-image calibration models 
require that the percentage of total changed pixels in the 
image is small relative to the entire image. One outstanding 
issue is how to identify the subset of non-changing pixels 
automatically. We propose a correlation-based method for 
automated extraction of set of pixels used to adjust the 
model, the training set. “Chips”, or extracts of images 
process the images band to band in order to generate a 
correlation map for each band. These maps are used to 
guide the composition of the training set. With this selected 
set of pixels we adjust the non-parametric regression to 
perform the relative correction. 

In order to investigate how the proposed 
normalization improves the performance classification, and 
assess the effectiveness of this technique, we carried out 
classification experiments on three image sets, and 
compare their results. We used multitemporal data sets 
composed of multispectral images acquired from the 
Thematic Mapper sensor of the Landsat 7 satellite taken 
from a region in Brazil under severe degradation process. 
These three sets have the same reference image, with the 
original radiometric characteristics, but the second image 
was radiometrically corrected by different methods. In the 
first set the second image was corrected by simple linear 
regression, the most used method. In the second set robust 
regression was used. Robust regression eliminates or 
attenuates outliers and is used in relative radiometric 
correction because it interprets the changing pixels as 
outliers. Finally, the second image in the third set was 
corrected by the proposed technique. 

This paper is organized as follows. The next section 
presents the procedure used to select the training set of the 
used techniques, a subset of non-changing pixels. Section 3 
reviews the techniques used for comparison purposes: 
linear regression and robust linear regression. Sub-section 
3.2 describes the proposed technique radiometric 
normalization. Section 4 describes an evaluation 
experiment and discusses the results. 

2. Automated Extraction of Training Set  
Relative radiometric correction is a correction method 

that applies one image as a reference, and adjusts the 
radiometric properties of subject images to match the 
reference [3], [9], [11]. Rectified images appear to have 
been acquired with the reference image sensor under 
atmospheric and illumination conditions equal to those in 
the reference scene [3]. If atmospheric and calibration 
parameters are available for the reference date then 
atmospheric correction procedures based on radiance 
transfer models can be applied to the images [3]. 

One outstanding issue is how to identify the subset of 
non-changing pixels automatically. Hall’s concept of 
radiometric rectification is based on stable reflectance 
control sets derived from the extremes of the image 
scattergram. Other methods have used stable reflectance 
targets, or the so-called pseudo-invariant features [10]. 
Pixel values of these stable targets are used to find linear 
coefficients to scale each image to the reference. Such 
stable targets, however, may not be available in some 
areas, or may be obscured by clouds or missing data in 
some dates. Some approaches interpret changed pixels as 
outliers, and adopt a strategy to eliminate, or attenuate 
them. This approach, however, can be used only if the 
percentage of total pixels, whose digital numbers (DNs) 
has changed in the image, is small relatively to the entire 
image.  

To identify the subset of non-changing pixels 
automatically we used a correlation procedure, as the 
procedures used in location of ground points in geometric 
correction. “Chips” or extracts of image of size 21x21 
pixels were used in a procedure that processes the images 
from different dates band to band. This procedure results in 
a correlation map.   

A “chip” of the reference image is placed over the 
chip centered on the same coordinates in the other image. 
Then, bi-dimensional correlation between the “chips” 
pixels is calculated and recorded in a bi-dimensional map, 
with the same dimensions of the images, at the same 
position of the centers of the “chips” of two images.  This 
operation is repeated for all coordinates. It was assigned a 



  

correlation coefficient for each pixel, for all bands, 
obtained on the “chips” centered in these pixels.  

Figure 2 shows a contour plot of the correlation map 
of band 3 of two multispectral images acquired, in different 
dates by Thematic Mapper sensor of the Landsat 7 satellite 
taken from a region in Brazil, and the reference image of 
this image set.  For better visualization, this plot was 
divided in three regions: coefficients equal or lower than 
zero in black, coefficients between zero and 0.5 in gray, 
and coefficients greater than 0.5 in white.  

This procedure was repeated for all bands. After this, 
we apply a threshold criterion, for each band, based on 
overall correlation of the band, in order to select pixels that 
would belong to the training set used to adjust radiometric 
normalization. A pixel was assumed to belong to the 
training set if it had correlation coefficients in all bands 
greater than the respective thresholds. 

3. Parametric and Non-parametric Regression  
A regression curve describes a general relationship 

between an explanatory variable X and a response variable 
Y. If n data points have collected, the regression 
relationship can be modeled as 

( )      1i i iY m X , i ,..,ε= + = n                                        (1) 
with the unknown regression function m and observation 
errors εi. A look at a scatter plot of Xi versus Yi does not 
always suffice to establish an interpretable regression 
relationship. An example is given in Figure 3, a scatter plot 
where Xi and Yi are DN’s of band 5 of the same image set 
used in Figure 1. 

The aim of a regression analysis is to produce a 
reasonable approximation to the unknown response 
function m. By reducing the observational errors it allows 
interpretation to concentrate on important details of the 
mean dependence of Y on X. This curve approximation 
procedure is commonly called “smoothing”. This task of 
approximating the mean function can be done essentially in 
two ways. 

First, the parametric approach that is often used, and 
assumes that the mean curve m has some pre-specified 
functional form, for example, a line with unknown slope 
and intercept – the linear regression model and its robust 
variant, used in this work for comparative purposes.  

As an alternative one could try to estimate m non-
parametrically without reference to a specific form. The 
non-parametric smoothing approach offers a flexible tool 
in analyzing unknown regression relationships. 
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(a) Contour plot of correlation coefficients.  

 

 
 

(b) Reference image.  
 

Figure 2.  A contour plot (a) of the correlation map of 
band 3 of two multispectral images acquired, in different 
dates by the Thematic Mapper sensor of the Landsat 7 
satellite from a region in Middle West Brazil and the same 
band of the reference image (b).   
  

3.1     Linear Robust Regression  
A wide range of algorithms has been developed for 

radiometric normalization based on linear assumptions [1], 
[2], [10],[11]. A common form of linear radiometric 
rectification is 

 
 Yk =  ak.Xk+bk,                                                             (2) 

 
where Xk is the original value of DN of band k in image X  
and Yk is the normalized DN of the same band on other 
date. The derivation of the normalization coefficients, ak 
and bk, varies according to the selected modeling. Simple 
regression normalization [11], for instance, applies the 



  

least-squares regression equation in order to derive 
normalization coefficients.     
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Figure 3. Scatter plot of band 5 of two multispectral 
images acquired, in different dates by the Landsat 7 
satellite Thematic Mapper sensor from a region in Brazil. 
 

Regression and analysis of variance procedures 
depend on certain assumptions, such as, a normal 
distribution for the error term. Sometimes such an 
assumption is not warranted. For example, if the 
distribution of errors is asymmetric or prone to extreme 
outliers, it is a violation of the assumption of normal errors. 
Robust regression function is useful when there may be 
outliers. Robust methods are designed to be relatively 
insensitive to large changes in a small part of the data. 

The robust regression used in this work for comparison 
purposes in Section 4 uses an iteratively re-weighted least 
squares algorithm, with the weights at each iteration 
calculated by applying the bi-square function to the 
residuals from the previous iteration. This algorithm gives 
lower weight to points that do not fit well. The results are 
less sensitive to outliers in the data as compared with 
ordinary least squares regression.  

3.2     Non-parametric Regression  
The non-parametric approach to estimating provides a 

versatile method of exploring a general relationship 
between two variables. It gives predictions of observations 
yet to be made without reference to a fixed parametric 

model, and constitutes a flexible method of substituting for 
missing values or interpolating between adjacent X values.  

The basic idea of non-parametric smoothing is a local 
averaging procedure to estimate m in (1). More formally 
this procedure can be defined as 

                                                (3) ( ) ( )1

1

n

ni i
i

m̂ x n W x Y−

=

= ∑
n

where 
1i=
 denotes a sequence of weights which 

depend on the whole vector { } .  
( ){ }niW x

1

n
i iX

=

Most smoothing methods are, at least asymptotically, 
of the form (3).  

A conceptually simple approach for a representation 
of the weight function { 1i=

 is to describe its shape 
by a density function with a scale parameter that adjusts the 
size and the form of the weights near x. It is quite common 
to refer to this shape function as a kernel K. The kernel is a 
continuous, bounded and symmetric real function K that 
integrates to one, 

( )}n
niW x

( ) 1K u du =∫ . 
The weight sequence for kernel smoothers (for one-

dimensional x) is defined by 

( ) ( )
( )

hn i
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K x X
W x

f̂ x
−

=                                                    (4) 

where 

( ) ( )1
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( ) 1
hn

uK u hn K
hn

− = 
 


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is the kernel with scale factor hn. Suppressing the 
dependence of h=hn on the sample size n, the kernel 
sequence (4) is conveniently abbreviate as { } . ( )

1

n
hi i

W x
=

The function  is the Rosenblatt-Parzen kernel 
density estimator of the (marginal) density of X. The form 
(4) of kernel weights {  has been proposed by 
Nadaraya and Watson [4] and 
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                                     (7) 

is often called the Nadaraya-Watson estimator. K 
determines the shape of the kernel weights, whereas the 
size of the weights is parameterized by h, which is called 
the bandwidth. 

The kernel estimate was defined as a weighted 
average of the response variables in a fixed neighborhood 
around x. However, in some applications is more 
appropriate to work with a varying neighbor.  



  

The k-nearest neighbors (k-NN) estimate is a 
weighted average in a varying neighborhood. This 
neighborhood is defined through those X-variables, which 
are among the k-nearest neighbors of x in Euclidian 
distance. The simplest k-NN smoother is defined as 

                                                (8) ( ) ( )1

1

n

k k
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Instead of using uniform weights we used triangular 
k-NN weights [4] and the neighbors more distant from x 
were weighted more weakly. Generally speaking, the 
weights can be thought of as being generated by a kernel 
function K, 

( ) ( )
( )

R
Ri

R

K x Xi
W x

f̂ x
−

=                                                     (9) 

where 

( ) ( )1
R Rf̂ x n K x X−= ∑ i−                                          (10) 

 
is a kernel density estimate of f(x) with kernel sequence 

( ) ( )1
RK u R K u / R−=                                                   (11) 

and R=Rn is the distance between x and its k-th nearest 
neighbor.  K is 

( ) ( ) (1K u u I u= − ≤ )1                                              (12) 

where I(.) is the indicator function, or Dirac delta, 

1      0
0      

u
I( u )

otherwise
=

= 


. 

We applied the triangular k-NN smoother for each 
band and generated tables, based on training sets, in order 
to correct radiometrically the other image. 

Then, the proposed method consists of three major 
steps: 

1) Selection of training set based on the 
correlation map of all bands; 

2) For each band generate a table x versus m(x), 
where m(x) is obtained by applying 
triangular k-NN smoother, only on training 
set pixels; and 

3) For each band of the image to be corrected 
apply the respective table.  

Figure 4 shows the curve obtained by non-parametric 
regression on two multispectral images acquired, in 

different dates by the Thematic Mapper sensor of the 
Landsat 7 satellite taken from a region in Brazil. 

Figura 4. Non-parametric regression on band 5 of two 
multispectral images acquired, in different dates by the 
Thematic Mapper sensor of the Landsat 7 satellite.  

4. Experiments and Results  
In order to assess the effectiveness of the proposed 

technique, and to investigate how the proposed 
normalization improves the performance classification, we 
carried out classification experiments on three 
multitemporal data sets, and compared their results. These 
sets had the same reference image, acquired in 1996 by the 
Thematic Mapper sensor of the Landsat 7 satellite from 
Middle West of Brazil, with the original radiometric 
characteristics. In particular, a section (700x700 pixels) of 
a scene was selected. 

The second image was radiometrically corrected by 
three different methods, one for each dataset: simple linear 
regression, robust regression and non-parametric 
regression. 

We used the difference image, in the Change Vector 
Analysis context [8], [12], [5], in order to perform change-
detection. Thus, the classification was binary and had two 
classes: changed and not changed pixels.  

The subtraction operation is carried out on the pair of 
co-registered images. Image differencing is performed on a 
pixel-by-pixel basis and a difference image tends to have a 
histogram that is normal in shape. The pixels near the peak 
in zero represents pixels that have not changed very much 
while the pixels in the histogram tails have changed 
substantially.  

The classification method was the same for the three 
datasets, a simple thresholding classifier. The same band 
thresholds were used for all cases.  Then we used one logic 
rule 

if ((not changed in band i) and …(pixel not changed in 
band n)) then pixel not changed. 



  

In order to interpret classification accuracies we used 
two descriptive measures: the overall accuracy, and the 
Kappa coefficient. The overall accuracy is computed by 
dividing the total number of correctly classified pixels by 
the total number of reference pixels. Kappa coefficient of 
agreement is a measure for overall thematic classification 
accuracy and ranges from 0 to 1. It is a measure of the 
difference between the actual agreement between reference 
data and an automated classifier and the chance agreement 
between the reference data and a random classifier. A true 
agreement (observed) approaches 1, and chance agreement 
approaches 0. A Kappa coefficient of 0 suggests that a 
given classification is no better than a random assignment 
of pixels [6].  

Results in Tables 1, 2, 3, and 4, refer to subsets in the 
images, where we synthetically made the changes to 
decrease the dependence on appropriate ground truth. 

Tables 1, 2 and 3 show the confusion matrix for the 
datasets with image radiometrically corrected by linear 
regression, robust regression, and non-parametric 
regression, respectively. 

Table 4 resumes the results and presents the overall 
accuracy and the Kappa coefficient for the three datasets. 
The worst performance was obtained by the dataset with an 
image radiometrically corrected by simple linear 
regression, Kappa coefficient 0.867, and the best 
performance was obtained through the use of the non-
linear modeling of the non-parametric regression, with a 
Kappa coefficient equal to 0.922.  

The user’s accuracies are computing by dividing the 
number of correctly classified pixels in each category by 
the total number of pixels that were classified in that 
category (the row total). This figure is a measure of 
commission error and indicates the probability that a pixel 
classified into a given category actually represents that 
category on the ground.  

What are often termed producer’s accuracies result 
from dividing the number of a correctly classified pixels in 
each category (on the major diagonal), by the number of 
training set pixels used for that category (the column total). 
This figure indicates how well training set pixels of the 
given cover type are classified.  

The user’s accuracy for the category changing in 
Tables 1,2 and 3 were 88%, 90% and 93%, and the 
producer’s accuracies for the category non-changing were 
86%, 88% and 92%, respectively. 

Performances of linear regression and robust 
regression did not differ substantially.   

 
            

Reference Classification Classification Data 
Non-changing Changing 

Non-changing 11106 6 
Changing 1768 14030 

 

Table 1. Confusion Matrix for dataset with image 
radiometrically corrected by linear regression.  

 
 

Reference Classification Classification Data 
Non-changing Changing 

Non-changing 11103 9 
Changing 1597 14201 

 

Table 2. Confusion Matrix for dataset with image 
radiometrically corrected by robust regression.  

 
Reference Classification Classification Data 

Non-changing Changing 
Non-changing 11106 6 

Changing 1029 14769 
 

Table 3. Confusion Matrix for dataset with image 
radiometrically corrected by non-parametric regression. 

 
 

 Kappa-coefficient Overall accuracy 

Linear Regression 0.8672 93.4% 
Robust Regression 

Non-parametric Regression 
0.8798 
0.9217 

94.0% 
96.2% 

Table 4. Results for the three dataset. 

5. Conclusions 
In this paper, a technique for relative radiometric 

correction has been proposed. Such technique improved 
the performance of the simplest change detection method 
based on difference image by exploiting non-parametric 
regression characteristics. The technique also allows 
automatic selection of the training set.  

This improvement in radiometric correction allows 
use of more simple classification methods.   

Further research should be conducted to test the 
potential improvements associated with such approach. A 
strategy appropriate for neighborhood choice in k-NN 
smoother could be used, and others adaptation algorithms 
could be experimented. Criterions for specify the 
appropriate threshold for the correlation map could be 
tested. In spite of the simplicity adopted, experimental 



  

results confirm the effectiveness of the presented 
technique. 
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