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Abstract. Currently available graphics hardware has become programmable. However, this programmability is
still offered at a very low abstraction level, usually based on a specialized assembly language, and is difficult to
use. To overcome this problem, we present a simple programmable pipeline abstraction. Our proposal is built
over the Lua programming language. The application programmer writes a Lua code that, when executed,
generates the equivalent assembly code to be loaded by the hardware. We compare our proposal to other

recently published ones or still under consideration.
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1. Introduction

Graphics hardware has been evolving quickly in the last
few years, both in processing power and in functionality.
Part of the rendering pipeline, such as vertex
transformation and illumination and rasterization, formerly
performed by the CPU, is today performed by the graphics
processor, or GPU. The range of graphics effects obtained
has also increased. For instance, it is possible today to
obtain shadow effects in complex scenes in real time.

Graphics libraries are used by an application program
to access hardware resources. Today’s mainstream
graphics libraries are OpenGL [1] and DirectX [2], both
vastly supported by hardware manufacturers.

For a library to be aligned with hardware evolution, it
must be extensible or regularly issue a new version or
update. DirectX has opted for the second model, and is
today in version 8.1, with plans for version 9. OpenGL,
currently in version 1.3, has an extension mechanism,
managed by the OpenGL Architecture Review Board
(ARB), an independent consortium with industry
participation. Typically, a hardware manufacturer
proposes an extension and implements it for its hardware.
Other manufacturers can also implement it. After
evaluations and studies by the ARB, this extension can
become “official”, or even part of the kernel of a new
version of OpenGL.

An OpenGL application can make use of the
extension, but it must always verify, at run time, whether it
is supported by the hardware. Alternatives must be
implemented in case the extension is not available. This
makes the application’s work more difficult and

specialized, but still flexible. The OpenGL mechanism is
interesting; however, nowadays there is an excess of
extensions — almost 270 [3] —, thus degrading code
portability.

To increase the range of possible effects without the
need for issuing an extension (or a new version) for each
new effect, graphics hardware has become programmable.
This is an important step in the evolution of real-time
rendering, being even considered as the beginning of a
new hardware generation.

The first versions of programmable hardware expose
their internal structures for the programmer by means of a
very low-level mechanism. The programmer is required to
write the code in a specialized assembly language and to
manage sets of registers. Programming in this level is
difficult and prone to errors. Different proposals have
been presented to abstract the hardware and to gain
productivity, portability and ease of use [4, 5, 6, 7, 8, 9].
These abstrations are usually referred to as shading
language.

This paper proposes another higher-level abstraction
for the programmer to access the features offered by the
hardware. Our proposal is less ambitious than others; on
the other hand, we believe it is easier to use. Its design is
closer to today’s hardware and it makes use of an existing
extension language to support its implementation.

2. Related Work

Shading languages have evolved from Cook’s work [10],
which showed how illumination trees offer a flexible and
powerful mechanism for illumination computations, and



from Perlin’s work [11], which describes a language for
pixel processing.

Research into shading languages has materialized
commercially in products such as RenderMan [12], used
mainly in motion picture productions. RenderMan is a
scene-description and rendering interface developed with
the intention of becoming a standard. The specification
defines an illumination language, the RenderMan Shading
Language, which is extremely generic and powerful.

Recently, several papers have shown that the new
hardware generation is capable of producing in real time
effects that were formerly obtained after hours or days of
rendering. Olano and Lastra [4] developed pfiman, a
language similar to RenderMan, for the PixelFlow [13]
system — an architecture proposal that was not successful
in the hardware industry but which provided great
contribution to research.

The game Quake III Arena [14], produced by Id
Software, has defined a script language for configuring the
several layers of texture and color applied to objects. It
also has a mechanism for animating and manipulating
texture coordinates. The graphics engine interprets the
program and translates it in multiple rendering steps in
OpenGL, possibly employing multi-texture to reduce the
number of steps.

Peercy et al. [S] presented a new approach for the
implementation of a language using multiple-step
rendering. The central idea is to consider the rendering
pipeline as a SIMD (Single Instruction, Multiple Data)
machine. A rendering step is considered as an instruction
applied to data, vertices and fragments. Peercy has shown
that the RenderMan language can be compiled using
multiple-step rendering with OpenGL.

Proudfoot et al. [6] described a procedural rendering
system by formalizing a programmable pipeline
abstraction and defining four computation frequencies:
constant, per primitive, per vertex and per fragment. The
user code, written in a language similar to RenderMan, is
analyzed and compiled, generating programs for this
abstraction. The system runs on OpenGL and profits from
recent programmable hardware.

The proposal for version 2.0 of OpenGL is under
development. The first specification documents have been
produced by initiative of 3Dlabs [7] and are being
discussed in meetings of the ARB. The main purposes of
this new version are to support programmability, via a
shading language; to improve memory management; and
to provide the application more control over the rendering
pipeline. The OpenGL 2.0 shading language includes
features not supported by today’s hardware, such as
control-flow structures.

More recently, NVIDIA has proposed the Cg
programming language [8], a high-level, C-like language
to access their hardware features, and McCool et al. [9]
have proposed, using standard C++, a high-level shading
language directly in the graphics library API.

Our work is similar to the proposal presented by
Proudfoot et al. [6]. We have borrowed from them the
concept of different computation frequencies, but we have
opted to map different functions to different frequencies.
We believe this choice to be better, because it simplifies
the language and its use. Our work is also close to the
OpenGL 2.0 proposal, but we have deliberately designed
our language to fit in today’s hardware, while keeping the
language as abstract and simple as possible.

3. Pipeline Abstraction

The processing performed by graphics boards is
traditionally modeled by a pipeline composed of stages
with specific functions. Graphics primitives described by
vertices are sent to the pipeline. The vertices are usually
transformed, illuminated, projected, and mapped to
window coordinates. The primitives are then rasterized,
producing fragments that may be promoted to pixels on
the screen.

The new pipeline model allows vertices and
fragments to be processed by means of a procedural code
developed by the application. Two manufacturers of
graphics processors have products that support the
programmable pipeline: NVIDIA and ATI.

The extensions for vertex processing are similar in
both NVIDIA and ATI proposals. A code in a specialized
assembly language, called vertex shader, is responsible for
transforming and lighting the vertex, apart from generating
its texture coordinates. This code operates over a limited
set of operators and registers.

Fragment processing consists basically of accessing
texture units and combining several colors to generate a
unique color to be stored in the screen buffer. The
extension proposed by NVIDIA separates the tasks of
accessing the texture and combining the colors into two
distinct sub-stages, called fexture shader and register
combiner. ATD’s extension provides a single programming
unit, in which processing is made by a program called
fragment shader.

A shading language is based on an abstract
programmable pipeline. Different proposals adopt
different abstractions. We shall now describe our
abstraction by pointing out its similarities and differences
with others.



3.1 Hardware Virtualization

In different degrees, both Proudfoot et al. [6] and
OpenGL 2.0 [7] proposals virtualize the existing hardware
to remove resource constraints (OpenGL's proposal is less
ambitious). Should the shader exceed resource limits, a
multi-pass rendering strategy is used. Similar to McCool et
al. [9], we have opted to be pragmatic: resources are to be
limited and dependent on the existing hardware. We
abstract the access to resources but not their limits. The
programmer is warned if the resources are insufficient.
Our intention is to simplify the abstraction’s
implementation and to ensure real-time rendering.

3.2 Stage Interfacing

Proudfoot et al. [6] have identified four computation
frequencies (constant, per primitive, per vertex, per
fragment) and supported all of them into a single shader.
The frequency of each computation can be either explicitly
provided or inferred by the compiler. The OpenGL 2.0
proposal identifies two separate units: vertex shader and
fragment shader. Constants can only be mapped via a
conventional host language API.

The problem with using different units is in how to
interface them. OpenGL 2.0 borrows the varying modifier
from RenderMan, so that, in the vertex shader, the
programmer explicitly indicates which variables must be
interpolated to be available to the fragment shader. The
binding is done by matching types and names of variables
in both shaders.

Similarly to the NVIDIA extension, our proposal also
distinguishes four computation frequencies, but we have
chosen to adopt different processing units. We believe this
is easier to the programmer, promotes cleaner codes, and
facilitates shader reuse. Constants are mapped to global
variables and primitive-frequency functions manipulate
them. Such variables are mapped to hardware constant
registers.

The input for a vertex shader comes from an input
table'. Vertex position, for instance, is accessed by
input.pos. The vertex shader output must be stored in an
output table that becomes the imput for the fragment
shader. Except for a few fields (such as pos in vertex and
color in fragment), the programmer is free to choose
appropriate names to denote their semantics.

! Table is a basic type of the programming language
Lua [16] and represents an associative array.

4. Shading Language

A major difference between our proposal and others is that
we have not created a new specific language to support
programming, while still using a small, high-level
language. Our shading language was implemented over the
Lua programming language [15]. Lua is a simple,
lightweight extension language with extensible semantics.
New types of data can be defined and operations can be
intercepted by means of an event mechanism. Lua has
been widely used in different graphics applications,
especially in computer games [16].

In our proposal, each shader is implemented by a
function. All types of constructions are allowed in a shader
code, except for general conditionals and loops involving
graphics objects as control variables. However, the
programmer can, for instance, use loop constructions to
integrate each light-source contribution, and use
conditionals to parameterize the code. Auxiliary functions
can be defined to perform a traditional illumination
computation, or libraries of texture-coordinate generators
can be built, thus allowing code reuse. Conceptually,
function calls are inlined and loops are linearized before
the code is compiled to the hardware.

There are only three types of graphics objects: scalar,
vector and matrix. Scalars are real numbers, vectors are 4-
dimension arrays, and matrices are 4x4 two-dimensional
arrays. Our first evaluation has indicated that these types
are enough to code shaders. Similarly to the OpenGL 2.0
proposal, the vector components may be accessed by
means of a single letter or a numeric value (v.x, v.r, v.s,
and v/1] all refer to the first component of v). Swizzling,
replication and masking are also supported, reflecting
hardware facilities. Matrices represent an array of row
vectors, so individual components can be accessed
similarly (e.g., m[1].x).

The operators available to be used on these graphics
types are limited to the set of operators provided by
currently programmable hardware.

The shaders are written in Lua. Each functional stage,
such as vertex processing, is represented by a Lua
function. The global environment can define objects to be
used by the functions, such as constants or tracked
transformation matrices. An API in C was defined to
create and manage shaders, as well as to access the values
of the defined constants.

The execution of the Lua code, as a whole or in each
stage’s function, triggers a code generator that translates
the Lua code into an equivalent assembly code to be
loaded to the hardware, or into a set of function calls used
to properly configure the graphics library. The application



is responsible for selecting the correct shaders to render
the scene and for loading the appropriate textures.

Because Lua provides both procedural constructions
and descriptive facilities, the programmers are able to
combine shading language code into scene description, in
a way similar to RenderMan.

4.1 Code Generator

Our code generator architecture is illustrated in Figure 1.
We currently generate code to run over the OpenGL
library, but it should be simple to implement a DirectX
interface.
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Figure 1 Code generator architecture.

The hardware programming extensions are exported
to Lua, so that Lua codes can invoke functions to set the
hardware up. The pipeline is an object composed by three
short Lua functions (for primitive, vertex, and fragment
shaders) referred here as binding functions. These
functions are automatically generated and, when executed,
load the corresponding assembly program and set the
appropriate hardware configuration. For instance, for the
vertex shader, using NVIDIA extension, the binding
function consists uniquely in a call to bind the generated
vertex program to the hardware by means of the graphics
library.

The application programmer writes the shaders in
Lua. Each shader must be implemented as a different
function. From the execution of a Lua shader function, the
code generator creates two distinct codes: the equivalent
assembly shader code and the corresponding Lua binding
function. The programmer then chooses the shaders to
compose the pipeline object and binds it to the hardware.

The code generator is implemented in a high
abstraction level once it is also written in Lua. Therefore,
to keep the code up-to-date to evolving hardware should
not be a problem. The code generator extends Lua

semantics to deal with graphics object. Any operation on
these objects is intercepted, allowing the conversion from
Lua code to assembly code. An intermediate
representation of the shader code is created, to be analyzed
and optimized before the assembly code is generated. The
intermediate representation of the code is used to perform
efficient resource allocation and code optimization, and to
cope with the non-orthogonal aspect of the hardware.
Simple optimizations include the elimination of copy
instructions and computation standards, which can be
replaced by specialized instructions.

4.2  Constant Frequency

The constant computation frequency is used to set global
variables to be used by the shader functions. It is also
possible to request the tracking of matrix values — a handy
feature available in current extensions. We have identified
that these tracking mechanisms should be extended, for
instance to lights and materials, and plan to do so in the
future. Figure 2 illustrates a code in the global
environment.

-- light position in eye space
light_pos = Vector{0.0,0.0,1.0,0.0}
material color = Vector{0.3,0.5,1.0,1.0}

-- tracking of matrices

mvp = Matrix ("MODELVIEW_PROJECTION")
mvi Matrix ("MODELVIEW", "INVERSE")
mv Matrix ("MODELVIEW")

Figure 2 Global environment example.

The pieces of code presented here may all be part of
the same Lua module. How to sever the codes into
modules is a programmer decision. Each shader can be
loaded separately by executing the corresponding Lua
function.

4.3  Primitive Frequency

The primitive frequency is used to compute values shared
by one or more primitives. It is directly mapped to the
vertex state program provided by the NVIDIA extension.
Due to its low frequency, it is not a problem to simulate
this stage for hardware that does not externalize one. It
may even be feasible to implement the simulation in Lua.
As an example, the code in Figure 3 transforms the light
and view vector to object space e computes the half vector
in object space.

The allocation of constant registers is made by
analyzing the usage, in vertex and fragment shaders, of
variables declared in the global section of the code and the
ones assigned in the primitive functions. Each register is
composed by four real numbers. Matrices are allocated to



blocks of four registers in a sequence, vectors are
allocated to a register, and scalars are allocated to a
component of a register. We use the following allocation
policy: first the matrices are allocated, then the vectors,
and finally the scalars, using a greedy algorithm. Register
allocation is done assuming that the whole set of registers
is available. It might be interesting to prevent the use of
pre-defined sets, so that we could have different shaders
using different sets.

1 = Vector {} —-- object space light vector
v = Vector {} -- object space view vector
h = Vector {} -- object space half-vector

function prim shader ()
-- transform light to object space
1 = -(mvi * light_pos)

-- Fetch camera space view vector
-- Transform into object space
v = —-(mvi * eye)

-- Compute H vector in object space
h = normalize(l + v)
end

Figure 3 Primitive function example.

4.4 Vertex Shader

A vertex shader, called vertex program by NVIDIA, is a
function to replace the stages of transformation,
illumination, projection, and texture-coordinate generation
of the conventional pipeline.

In the hardware, a vertex shader is a sequence of low-
level instructions that operate on registers. It is executed
for each vertex sent to the pipeline. Vertices cannot be
created or destroyed, and there is no adjacency
information. Figure 4 illustrates the schematic model of
vertex shader.
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Figure 4 NVIDIA’s GeForce 3 vertex program.

There are four sets of registers that can be used and
must be managed by the code generator: vertex attributes,
output attributes, temporary registers and constant
registers. Vertex attributes are read-only registers that
contain information on the vertex such as position, normal,
texture coordinates, color, or other attributes with a
semantics defined by the application. Output registers are
write-only and contain the values computed by the
program. The vertex shader must at least compute the
transformed vertex position, but it may also compute
values to be interpolated during rasterization. Temporary
registers can be used to store values during computation,
and can be freely written and read. Constants are read-only
variables for the vertex shader (the global environment
and primitive functions set them). Any data needed by the
program to carry out the computation, such as
transformation matrices, information on light sources and
materials, must be loaded into these registers.

All instanced objects reference a given register in the
vertex shader machine — either input, output, temporary or
constant registers. The input and output registers are
mapped to input and output tables in the Lua vertex shader
code. Temporary register allocation is performed when the
Lua shader function is executed, that is, during the
generation of the assembly code. New, local objects are
created dynamically, being either scalars, vectors or
matrices. This creation can be explicit or implicit,
resulting from an operation. The allocation policy is
similar to that of constant registers. We take advantage of
Lua’s garbage collection mechanism to reuse registers.
Should we run out of resources, we can trigger garbage
collection, which automatically identifies temporary
registers no longer in use.

Figure 5 illustrates a vertex shader code and Figure 6
shows the generated NVIDIA assembly code. The gain in
readability and ease of programming is clear.

Naturally, the programmer is able to write and reuse
auxiliary functions such as sin, cos, exp, sqrt, etc [17]. The
shader function can also receive conventional input
parameters, being possible to write parameterized codes.

function vertex shader ()
output.pos = mvp * input.pos
output.tex0 = input.tex0
local p = mv * input.pos
local 1 = normalize(light pos - p)
local n = mvit * input.normal
local NdotlL = max(dot(n, 1), zero)
output.color = mat_color * NdotL
end

Figure 5 Vertex shader example.
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DP4 o[HPOS].x, c¢[0], v[OPOS]:
DP4  o[HPOS].y, c[1l], v[OPOS];
DP4 o[HPOS].z, c[2], v[OPOSI;
DP4  o[HPOS].w, c[3], Vv[OPOS];
MOV o[TEX0], vI[TEXO]:;

DP4 RO.x, c[4], v[OPOS];

DP4 RO.y, c[5], v[OPOS];

DP4 RO.z, c[6], v[OPOS];

DP4 RO.w, c[7], v[OPOS];

ADD R1, c[12], -RO;:

DP3 Rl.w, R1, R1;

RSQ Rl.w, Rl.w;

MUL Rl.xyz, R1, Rl.w;

DP4 R2.x, c[8], VvI[NRML];

DP4 R2.y, c[9], vI[NRML];

DP4 R2.z, c[10], v[NRML];

DP4 R2.w, c[11], v[NRML]:

DP4 R3, R1, R2;

MAX R4, R3, c[l4].x;

MUL  o[COLO], c[13], R4;

END

Figure 6 NVIDIA’s vertex program example.

4.5  Fragment Shader

Fragment processing is approached differently by the
NVIDIA and ATI extensions. NVIDIA proposes a
separation of the processing in two parts: texture access
and combination. ATI proposes a model similar, though
less versatile, to that of vertex shader: a set of input,
output, constant and temporary registers and a set of
instructions for mathematical computations and texture
access.

ATD’s fragment-processing model is more orthogonal
and flexible, making it easier to develop a higher-level
abstraction. NVIDIA’s proposal, though having similar
expression power, makes it more difficult to implement an
optimization of resource allocation. The architecture of
ATI’s model for fragment processing is illustrated in
Figure 7.
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Figure 7 ATI’s fragment shader architecture.

The fragment shader is a register-based machine. There
are four sets of registers: constant, temporary, texture and
color. Constant registers hold four fixed-point values
loaded before shader execution. Temporary registers are
used to store intermediate results. The first temporary
register is special because it holds the resulting output
color. Texture registers contain read-only texture-
coordinate data, and color registers contain per-fragment
color values.

There are two kinds of instructions available: texture
instructions and arithmetic instructions. Prior to
performing arithmetic instructions in the fragment shader,
maps may be sampled and texture coordinates may be
routed into registers using texture instructions.

Arithmetic instructions include common
mathematical operations such as add, subtract, multiply,
and dot product. The extension provides multiple shading
passes separated by texture sampling, thus it is possible to
make use of dependent texturing.

DirectX 9.0 will adopt ATI’s model, and the
OpenGL 2.0 proposal is also similar to it. Therefore, we
have decided to implement our fragment shader in a way
similar to what we have done for the vertex shader. Our
code generator for the fragment shader is still under
development. We have provided the programmers a
limited set of operators and data types (only scalars and
vectors). The resource allocation policy has also been
implemented similarly.

5. Conclusion

It is clear that we need a higher abstraction level to access
programmable hardware. Recent research has presented
different abstraction proposals. Our proposal is less
ambitious than others; however, we believe it is capable of
expressing the shaders to be commonly used in real-time
rendering.

A major difference in our proposal is the fact that we
have built the abstraction over the Lua language instead of
creating yet another specific language. The code generator
was written entirely in Lua at a high abstraction level, thus
being easy to explore new hardware features.

The facilities provided by Lua allow the codification
of shaders within scene graph description, just like
RenderMan. Proudfoot et al. [6] pointed out the need of a
shading language intended for artists. We believe the use
of Lua may be a first step toward this goal, once Lua has
been widely used as a script language in the game
industry.

Our pipeline abstraction conceptually separates the
four computation frequencies. This makes the reuse of
shaders easier and simplifies assembly code generation.



The vertex-processing architecture is far more
consolidated than the fragment-processing architecture, in
which what will be adopted as a standard is still uncertain.

A high-level abstraction for processing vertices was
created without great difficulties, and the purposes of code
transparency and reuse were reached. Portability was also
obtained, since the same program in this abstraction can
produce code for distinct hardware.

A future 2.0 version of ATI’s fragment shader
promises a more powerful and flexible architecture than
the current one for processing fragments, allowing an
easier creation of abstractions.

We intend to use our proposal as an educational tool
for teaching sophisticated real-time rendering algorithms.
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