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Abstract

Relaxation is widely recognized as a useful tool

for providing convergence in block-iterative algorithms

[1], [2], [6]. In the present article we give new re-

sults on the convergence of RAMLA (Row Action Maxi-

mum Likelihood Algorithm) [2], filling some important

theoretical gaps. Furthermore, because RAMLA and

OS-EM (Ordered Subsets - Expectation Maximization)

[4] are the algorithms for statistical reconstruction cur-

rently being used in commercial emission tomography

scanners, we present a comparison between them from

the viewpoint of a specific imaging task. Our experi-

ments show the importance of relaxation to improve im-

age quality.

1. Introduction

1.1. Statistical reconstruction in positron emis-
sion tomography

Emission tomography refers to the reconstruction

of cross-sectional images of radioactive intensity from

radiation detected outside the object being studied. In

medical applications the emission is produced by the

use of biochemical metabolites labelled by a radioac-

tive element. This allows the study of metabolic ac-

tivity, which may help to achieve diagnostic goals that

cannot be reached with the aid of other tomographic

techniques. The emission is proportional to the con-

centration of the labeled metabolite and there are obvi-

ous limitations on this concentration inside the patient’s

body. This implies that the emission rates may be quite

low even in the regions with comparatively large con-

centration of the metabolite. Because radioactivity has

a statistical nature, low emission causes the measured

data to be highly distorted by noise in a way that one

cannot neglect its probabilistic characteristics when re-

constructing the desired image. Even though the results

below can be easily adapted to SPECT (Single Photon

Emission Computed Tomography), we will be focusing

on PET (Positron Emission Tomography).

1.2. Positron emission tomography

In PET, the radioactive compound used decays

emitting a positron, which is annihilated after collid-

ing with a nearby electron. This results in two photons

with 511keV energy traveling in almost opposite direc-

tions. See Figure 1 for a schematic representation of

a PET scan. In there, × represents the place where a

positron was emitted; the dotted line shows the trajec-

tory of the resulting photons and the ring around the

image is the detector grid. Several other features related

to photon behavior (distance until annihilation, scatter,

attenuation, directions of the photons not exactly oppo-

sites, etc) will not be considered. For more information

about this, see [7]. It is worth mention that most of these

effects can be included in a natural way in the statistical

model to be presented below.

The data resulting from the scan is the number of

almost simultaneous detections for each pair of detec-

tors. These photons detected nearly at the same time

must be result of a positron-electron collision which, in

turn, is a consequence of a positron emission. From this

we know, for every coincidence, a region in space (with

an associated probability density), where the positron

that generated it could have been emitted. Some scan-

ners record the time between near detections, increasing

our information about the location of the emission. This

can also be incorporated into the statistical model [7].



Figure 1. Schematic representation of a

short PET scan.

1.3. Block-iterative algorithms

The first algorithm proposed to solve the opti-

mization problem arising from the statistical approach

in emission tomography was the EM (Expectation-

Maximization) algorithm [7] which is quite slow, often

taking hundreds of iterations to reach convergence. The

most successful efforts in speeding up the convergence,

although with very simple implementation, were those

based on an incremental update of the solution. In all

of these block-iterative methods, one iteration is com-

posed of several subiterations, each of which considers

only one subset of the tomograph data at a time, re-

ducing the computational cost required proportionally

to the size of the considered subset. At the end of an

iteration all data must have been considered and if, fur-

thermore, the subsets do not overlap, the total compu-

tational effort is equal to a gradient evaluation plus the

updates between consecutive subiterations, whose cost

is negligible. One then hopes to improve the solution at

each subiteration as much as an EM iteration with much

less computational overhead.

Because of inconsistency introduced by noise, al-

gorithms considering subsets of the data usually do

not converge unless either the level of incrementality

is gradually reduced or a diminishing stepsize rule is

adopted. The former seems to be a reasonable proce-

dure, however one will invariably end up with a non-

incremental method so that we may consider the block-

iterative method just as an initialization procedure for

a usual algorithm. Diminishing stepsize rules (also

known as diminishing relaxation parameters because of

historical reasons) seem to be intrinsically more pleas-

ant, since the incrementality of the method is main-

tained while convergence can still be assured.

1.4. Organization of the paper

The paper is organized in the following manner: in

section 2 the optimization problem posed by the max-

imum likelihood approach is presented and the EM al-

gorithm is described; in section 3 we present the algo-

rithms that will be used to asses the importance of relax-

ation in the image reconstruction, namely RAMLA and

OS-EM; section 4 is devoted to explain how the free pa-

rameters of both algorithms should be properly chosen

and, simultaneously, a comparison is shown of both al-

gorithms behavior; we present in section 5 the demon-

stration of convergence for RAMLA under conditions

similar to those in [1], but with weaker hypotheses; fi-

nally, in section 6 we give our concluding remarks.

2. The optimization problem

In statistical image reconstruction, one seeks for

the maximum likelihood estimator of the image. What

is meant by this is that the image is chosen among all

possible ones in order to maximize the probability of

obtaining the given data. Discretizing the image in a

regular grid of non overlapping pixels (picture elements,

or voxels in the tridimensional case) where the emission

intensity is considered to be constant, let us consider the

corresponding Poisson likelihood, that is, the probabil-

ity of obtaining the given data as:

P (b|x) =

m
∏

i=1

e−(Ax)i
(Ax)i

bi

bi!
, (1)

where b = (bi) ∈ R
m
+ is a vector containing the num-

ber of photons counted in the ith bin, x = (xj) ∈ R
n
+

is the discretized image and A = (aij) ∈ R
m×n
+ is a

system matrix that could incorporate the various effects

that act in an emission scan such as attenuation, scatter-

ing, detector efficiency, etc. We simplify the problem

by taking logarithms and discarding constant terms, re-

sulting in the nonlinear optimization program:

max L(x) :=

m
∑

i=1

{bi log(Ax)i − (Ax)i}

s.t. :

xj ≥ 0 j = 1, . . . , n.

(2)

The function L(x) defined above is easily shown to

be concave. Conscious manipulation of the K.K.T. con-

ditions for this problem lead to the following necessary



condition for x∗ to be an optimal point:

x∗
j =

x∗
j

∑m
i=1 aij

m
∑

i=1

aijbi

(Ax∗)i

j = 1, . . . , n. (3)

This motivates the well known EM algorithm:

x
(k+1)
j =

x
(k)
j

∑m
i=1 aij

m
∑

i=1

aijbi

(Ax(k))i

j = 1, . . . , n.

(4)

3. The algorithms

3.1. OS-EM

As proposed by Hudson and Larkin [4], OS-EM

(Ordered Subsets - Expectation Maximization) is an al-

gorithm where EM iterations are taken successively for

subsets of the tomograph data. When far from the op-

timal solution each subiteration imposes to the present

estimate a direction very similar to that given by a com-

plete EM iteration. The final result of a whole cycle

through the subsets is roughly the same as N EM itera-

tions, where N is the number of subsets, being the com-

putational cost essentially the same of a single EM iter-

ation. However, the presence of noise makes the system

Ax = b inconsistent and the algorithm reaches a limit

cycle within the subiterations and does not converge to

the optimal solution. The definition of the algorithm is

the following:

x(k,0) = x(k)

x
(k,l)
j =

x
(k,l−1)
j

∑

i∈Nl
aij

∑

i∈Nl

biaij

(Ax(k,l−1))i

x(k+1) = x(k,N),

(5)

where Nl, l = 1, . . . , N are the sets of indices of the

data for each subset. From now on these subsets are al-

ways supposed to be such that the following conditions

hold:

N
⋃

l=1

Nl = {1, . . . , m};

Ni ∩ Nj = ∅, i 6= j.

(6)

The conditions above assure that all data is considered

in a complete cycle and that the subsets are non over-

lapping so that the computational burden is essentially

the same as an EM iteration.

It is straightforward to show that OS-EM itera-

tions retain positivity and assure boundedness of the

sequence x(k) from well known results on the EM al-

gorithm. It can be shown [4] that, in the consistent case

(i.e., the system Ax = b has a solution), the algorithm

converges to a maximum likelihood solution.

Notice that we can write (5) as:

x(k,0) = x(k)

x(k,l) = x(k,l−1) + Dl

(

x(k,l−1)
)

∇Ll

(

x(k,l−1)
)

x(k+1) = x(k,N).

(7)

Or, equivalently:

x(k+1) = x(k) +

N
∑

l=1

Dl

(

x(k,l−1)
)

∇Ll

(

x(k,l−1)
)

, (8)

where Dl

(

x
)

is a diagonal definite positive matrix de-

fined as Dl(x) := diag
{

xj∑
i∈Nl

aij

}

and the functions

Ll(x) are Ll(x) :=
∑

i∈Nl
{bi log(Ax)i − (Ax)i}.

Because
∑N

l=1 Ll(x) = L(x), (8) can be regarded

as an approximate diagonally scaled gradient iteration1.

However, if we are close enough to the solution, the er-

ror in the approximation of the gradient becomes larger

than the error in the present image estimate and this

causes the limit cycle to appear.

3.2 RAMLA

RAMLA (Row Action Maximum Likelihood Al-

gorithm), from Browne e De Pierro [2], although pro-

posed in an independent framework, is closely related

to OS-EM. The algorithm was first formulated with sub-

sets consisting of a single component of the vector b but

is readily generalized, as well as the convergence re-

sults, to subsets that satisfy the conditions (6). We also

present the algorithm with the use of a scaling function

suggested by Ahn and Fessler [1] which makes stepsize

selection more natural and also preserves convergence

properties:

x(k,0) = x(k)

x
(k,l)
j = x

(k,l−1)
j +

λkNx
(k,l−1)
j

∑m
i=1 aij

∑

i∈Nl

aij

(

bi

(Ax(k,l−1))i

− 1

)

x(k+1) = x(k,N).

(9)

We recast the algorithm in a way similar to what we

have done to OS-EM in order to make the relation be-

1In fact, because the scaling matrices Dl(x) are different on each

subiteration, this does not approximate a diagonally scaled gradient

iteration to the function L(x) but to a weighted log-likelihood instead.



tween the algorithms clearer:

x(k,0) = x(k)

x(k,l) = x(k,l−1) + λkD
(

x(k,l−1)
)

∇Ll

(

x(k,l−1)
)

x(k+1) = x(k,N).

(10)

Which is the same as:

x(k+1) = x(k) + λk

N
∑

l=1

D
(

x(k,l−1)
)

∇Ll

(

x(k,l−1)
)

,

(11)

where:

D(x) := diag

{

Nxj
∑m

i=1 aij

}

. (12)

Now, the difficulties presented in (8) are circum-

vented by the fact that the scaling functions are the same

in each iteration and that imposing λk → 0 makes the

error in the approximation to the gradient gradually di-

minish to zero.

It is very simple to show that one can find λ > 0
such that 0 < λk ≤ λ, k ≥ 0 ensures positivity and

boundedness of the iterates. Also important to notice is

that, if one wishes convergence to a global maximizer,

the condition
∑∞

k=0 λk = ∞ is necessary, otherwise, if

x(0) is far from the solution, we may not reach it.

4. Numerical comparison

Both algorithms presented in the previous section

leave the number, choice and order of processing of the

subsets open to the user and in the case of RAMLA

the sequence of the relaxation parameters needs also to

be chosen. In this section we discuss how to properly

choose these parameters and compare the performance

of RAMLA versus OS-EM.

4.1. The imaging task

In order to have a precise way to evaluate the al-

gorithms, we introduce the pointwise accuracy, defined

as:

−

√

√

√

√

∑n
j=1 (pj − xj)

2

∑n
j=1 (pj − p)

2 , (13)

where p := (pj) is the digital phantom used in the

simulations, x is the reconstructed image and p :=
1
n

∑n
j=1 pj is the average pixel intensity of the phan-

tom. Higher values of this quantity indicate better re-

constructed images.

The image being reconstructed is a discrete ver-

sion of the well known Shepp-Logan Head Phantom [5]

which can be seen in Figure 2 below. An ideal PET scan

was performed and then, Poisson noise was simulated.

When we needed to vary the number of coincidences, it

was enough to scale properly the test image prior to the

scan simulation.

Figure 2. Digital Shepp-Logan head phan-

tom, 128×128 pixels.

4.2. Subsets

How many subsets to use is a rather difficult ques-

tion to answer. Using only a few would mean slow con-

vergence. However, using lots of subsets may not be

desirable. In the case of OS-EM this would pose the

problem of reaching a limit cycle fast and far from the

optimal solution. We shall not try to answer the ques-

tion of how many subsets one should use, but, instead,

to explain how to choose the parameters once the num-

ber of subsets is decided. Another point to be consid-

ered is the composition and ordering of these subsets.

Helou [3] shows that, for a given task, subsets com-

posed by equally spaced views (each view is the col-

lection of all parallel bins) are less sensitive to ordering.

Our experiments use this kind of subset and sequential

ordering, even though similar relative behavior for the

algorithms was found whatever combination of subsets

and ordering was being used.

In PET, the views’ angles are equally spaced, so

we can say that the ith view is composed by those bins

which make an angle of (i− 1) 180o

m
, i = 1, . . . , m with

some properly chosen reference axis. With this con-

vention, we define the lth subset as composed by the

views
{

l, l + N, l + 2N, . . . , l + N(m
N

− 1)
}

. These



were the subsets used in the experiments to come. The

ordering was the natural one, the 1st subset, then the 2nd,

etc.

4.3. Relaxation parameters

As there are no such parameters in OS-EM, the

choice of the relaxation parameters in RAMLA cannot

be time consuming, which excludes the possibility of

using training sets. Doing so would bias the compari-

son towards RAMLA and the importance of relaxation

may become overestimated. Relying on the proper scal-

ing of the algorithm, we choose the initial parameter to

be λ0 = 1 and adopt a simple rule for the rest of the

sequence. For RAMLA’s convergence, we will show in

section 5, it is sufficient that (with 0 < λk ≤ λ in order

to maintain positivity and boundedness) the stepsizes

satisfies2:

∞
∑

k=0

λk = ∞,

∞
∑

k=0

λ2
k < ∞. (14)

There are many ways of setting up rules of dimin-

ishing relaxation parameters that accomplish to these

simple conditions. The most obvious one is λk = λ0

k+1 .

However, intuition says that the relaxation parameters

should decrease less for a smaller number of subsets.

We illustrate this by means of a simple example: Tests

were made with 48, 24, 12 and 6 subsets always with

the same diminishing rule. Results are shown in figure

3, where we can see that the effects of relaxation are less

beneficial when there are few subsets because it slows

down excessively the algorithm. This suggests dimin-

ishing stepsize rules of the form λk = λ0

α(N)k+1 where

α(N) is a function that will dictate how much the step-

size diminishes between successive iterations for each

value of N .

Once in the case N = 1 we do not need to diminish

the stepsize because λk ≡ 1 is the EM algorithm and for

N = 48 the choice α(N) = 1 has done well, we take

α(N) as the linear function such that α(1) = 0 and

α(48) = 1:

λk =
λ0

N−1
47 k + 1

. (15)

As wished, if N = 1 we have constant parameters and

for N = 48, we retain the rule used in the above tests.

The results in figure 4 show that even this simple for-

mula is able to provide a better balance between the di-

minishing rule and the degree of incrementality. We see

also that the quality of the image degrades faster in the

2Also, the condition (16) must hold, as will for the diminishing

rules to be presented.

tests that made use of more subsets. Maybe one could

use the rule λk = λ0
N−1
23 k+1

instead of (15) if we are

interested in using a higher level of incrementality or

convergence speed is not crucial.

4.4. Further testing

One may wish to asses the robustness of the method

when varying the noise level and the number of views

in data acquisition. We have varied the image being re-

constructed, the noise level and the scanner geometry,

always finding the same relative behavior between the

algorithms. It is worth noting that the image size was,

however, kept constant. As an example, we show a test

where only 120 angles between 0o and 180o were used

in the data acquisition. Results are shown in figure 5,

where one can see that they are quite the same as the

ones previously obtained. A discussion about these re-

sults can be found in section 6.

5. Theoretical results

In this section we prove the convergence of

RAMLA under the assumptions of (i) strict concavity3

and (ii) the conditions on the stepsize (14). We further

assume that (iii) x(0) is a strictly positive image, (iv)

the subsets satisfy (6), (v) 0 < λk ≤ λ where λ is to be

chosen according to proposition 1 and that (vi):

λk

λk+1
< M (16)

for some M > 0.

From now on x(k) denotes a sequence generated by

RAMLA with some positive x(0).

Proposition 1 There is λ > 0 such that 0 < λk ≤ λ

implies x
(k,l)
j > 0, ∀j, k, l.

PROOF:

x
(k,l)
j = x

(k,l−1)
j

(

1 +

λk

N
∑m

i=1 aij

∑

i∈Nl

aij

(

bi

(Ax(k,l−1))i

− 1

)

)

≥ x
(k,l−1)
j

(

1 − λk

N
∑m

i=1 aij

∑

i∈Nl

aij

)

.

(17)

3One can easily show that L(x) is strictly concave for A ∈
R

m×n with m > n, if and only if rank(W (x)A) = n, where

W (x) := diag{
√

bi/(Ax)i} [7].



Figure 3. OS-EM×RAMLA.
∑m

i=1 bi =
764, 713; 384 views.

In order to obtain x
(k,l)
j > 0 it suffices:

λk

N
∑m

i=1 aij

∑

i∈Nl

aij < 1, ∀j, k, l. (18)

Thus, if λk ≤ λ, the inequality above is satisfied when-

ever:

λ < min
j,l

∑m
i=1 aij

N
∑

i∈Nl
aij

. (19)

Assuming that
∑m

i=1 aij > 0 4for all j, we can always

find a positive λ satisfying the inequality above.¤

Now we start demonstrations about of the regu-

larity of the derivatives ∇L(x(k,l)) that can be used

as tools for proving the convergence of the sequence

L(x(k,l)), result needed to show the convergence of

x(k,l) to the desired maximizer.

Proposition 2 If, for given C and I , η > 0 is a lower

bound to the sequence (Ax(k,C))I , generated with 0 <

λk ≤ λ chosen as in proposition 1 then (Ax(k,l))I , l =
1, . . . , N , k ≥ 0 also has a positive lower bound.

PROOF: According to the hypothesis, if we make:

γ
(l)
j := 1 − λ

N
∑m

i=1 aij

∑

i∈Nl

aij ; γ := min
j,l

γ
(l)
j .

Then, because of the way λ was chosen we have that

1 > γ > 0. Furthermore, applying (17) we have

4If that’s not the case, there is little sense in trying to estimate the

jth pixel.

Figure 4. OS-EM×RAMLA. αN = N−1
47 ;

∑m
i=1 bi = 764, 713; 384 views.

x(k,l+1) ≥ γx(k,l). This leads to the set of inequali-

ties:

x(k,L+i) ≥ γix(k,L), i = 1, . . . , N − 1 (20)

Let µ = γN−1, then:

x(k,L+i) ≥ µx(k,L), i = 1, . . . , N − 1, (21)

which implies:

(Ax(k,L+i))I ≥ µ(Ax(k,L))I ≥ µη > 0,

i = 1, . . . , N − 1.
(22)

This ends the demonstration.¤

Proposition 3 With λ as in proposition 1, 0 < λk ≤ λ

and (16) being respected, then the sequence generated

by RAMLA is such that (Ax(k,l))I has a positive lower

bound whenever bI > 0 and x(0) > 0.

PROOF: Suppose that bI > 0 and let NC be the subset

which contains I . We can describe RAMLA’s iteration

as:

x
(k,C)
j = x

(k−1,C)
j +

λkN
∑n

i=1 aij

{

λk−1

λk

N
∑

l=C+1

x
(k−1,l−1)
j

∑

i∈Nl

aij

(

bi

(Ax(k−1,l−1))i

− 1

)

+

C
∑

l=1

x
(k,l−1)
j

∑

i∈Nl

i 6=I

aij

(

bi

(Ax(k,l−1))i

− 1

)

+ x
(k,C−1)
j aIj

(

bI

(Ax(k,C−1))I

− 1

)}

. (23)



Figure 5. OS-EM×RAMLA. αN = N−1
47 ;

∑m
i=1 bi = 715, 863; 120 views.

This implies:

x
(k,C)
j ≥ x

(k−1,C)
j +

λkN
∑n

i=1 aij

{

−
λk−1

λk

N
∑

l=C+1

x
(k−1,l−1)
j

∑

i∈Nl

aij −
C

∑

l=1

x
(k,l−1)
j

∑

i∈Nl

i 6=I

aij

+ x
(k,C−1)
j aIj

(

bI

(Ax(k,C−1))I

− 1

)}

. (24)

Now, notice that x(k,l) ≥ γx(k,l−1) ⇒ x(k,l−1) ≤
x

(k,l)

γ
. This with (16) implies that there is K > 0 such

that:

x
(k,C)
j ≥ x

(k−1,C)
j +

λkN
∑n

i=1 aij

{

−Kx
(k,C−1)
j

+ x
(k,C−1)
j aIj

(

bI

(Ax(k,C−1))I

− 1

)}

. (25)

At this point, it suffices to draw our attention to the

set of indices JI := {j|aIj > 0} because they are the

only that have influence in (Ax)I . Let ǫI > 0 be such

that aIj

(

bI

ǫI
− 1

)

> K, ∀j ∈ JI . Now we proceed by

splitting the possibilities in two cases:

1. If (Ax(k,C−1))I ≥ ǫI then (Ax(k,C))I ≥ γǫI ;

2. The remaining possibility is (Ax(k,C−1))I < ǫI .

However, this implies x
(k,C)
j > x

(k−1,C)
j , ∀j ∈

JI due to (25) and the construction of ǫI . This

clearly means (Ax(k,C))I > (Ax(k−1,C))I . This

lower limit can be used to a recursive application

of this analysis. If no lower bound is met going

to case 1 we have (Ax(k,C))I > (Ax(0,C))I ≥
γC(Ax(0))I .

The above arguments imply that for all µ <

min{γǫI , γ
C(Ax(0))I} then (Ax(k,C))I > µ, ∀k, l.

Once ǫI > 0 and (Ax(0))I > 0 then µ can be set

higher than zero and thus by proposition 2 the result

is proved.¤

The importance of this proposition can be ex-

pressed in the following corollary:

Corollary 1 Let C = conv
{

x(k)
}

, where x(k) is the

sequence generated by RAMLA with assumptions (ii)-

(vi) satisfied. Then L(x), Ll(x), ∇L(x) and ∇Ll(x)
are bounded and Lipschitz continuous in an open set

containing C.

PROOF: Demonstration follows easily from the expres-

sion to the functions and gradients and proposition 3.¤

Proposition 4 The sequence x(k), generated under the

assumptions of proposition 3 is bounded.

PROOF: It is sufficient to prove boundedness for each

of the sequences x
(k,l)
J . First we note that as a conse-

quence of the first equality in (17) and the proposition

3 above, ∃Γ > 0 such that x
(k,l)
J ≤ Γx

(k,l−1)
J ∀k, l.

Let now M > 0 be such that bi

aiJM
< 1 ∀i|aiJ > 0.

Observing again the first equality in (17) we see that if

x
(k,l−1)
J ≥ M then x

(k,l)
J < x

(k,l−1)
J . Joining both ra-

tionales we can conclude that an upper bound for the

sequence x
(k,l)
J is max

{

ΓM, x
(0)
J

}

.¤

Now we state the final result:

Theorem 1 If conditions (i)-(vi) are satisfied then the

sequence x(k) generated by RAMLA converges to the

maximizer of L(x) subject to the nonnegativity con-

straints.

PROOF: The demonstration makes use of proposition

1 above to ensure nonnegativity, proposition 4 to ensure

boundedness of the sequence x(k) and corollary 1 above

so that that lemma 3 in [1], which uses
∑∞

k=0 λk
2 < ∞

and regularity conditions on ∇Ll(x
(k,l)) can be ap-

plied to our case demonstrating that L(x(k,l)) converges

and that there is an accumulation point x∗ such that

D(x∗)∇L(x∗) = 0. These results, when put in propo-

sition 3 in [2] show that x∗ is the maximizer of L, which

in turn implies, by continuity of L in C, convergence of

L(x(k,l)) and boundedness of x(k,l), in convergence of

the whole sequence.¤



6 Conclusion

Since its appearance in [2], a detailed convergence

proof was missing for RAMLA. In [2], convergence

results follow from a strong hypothesis on the conver-

gence of L(x(k,l)). In a more recent paper [1] the con-

dition
∑∞

k=0 λk
2 < ∞ was used to show convergence

of L(x(k,l)) whenever ∇Ll(x) is Lipschitz continu-

ous. This is not guaranteed to be the case in RAMLA

and that is the reason why we introduced the condition
λk+1

λk
< M , which is likely to be respected in most

practical situations. One contribution of the present pa-

per was to show that, in most realistic situations, the

needed regularity on the gradients is naturally achieved,

allowing us to give a satisfactory proof of convergence

without any a priori assumption.

We have also assessed the task of choosing a proper

sequence of the relaxation parameter. The results we ex-

hibit show that it is easy to find a sequence that meets

the convergence conditions and favours the quality of

the reconstruction. Our results show that even if we are

not looking for full convergence of the algorithm, the

use of RAMLA would be preferable over OS-EM be-

cause the quality of the former’s reconstruction is often

superior to that obtained by the latter for the same num-

ber of iterations.
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