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Abstract

Patch-based texture synthesis builds a texture by
joining together blocks of pixels – patches – of the origi-
nal sample. Usually the best patches are selected among
all possible using a L2 norm on the RGB or grayscale
pixel values of boundary zones. The L2 metric provides
the raw pixel-to-pixel difference, disregarding relevant
image structures – such as edges – that are relevant in
the human visual system and therefore on synthesis of
new textures. We present a wavelet-based approach for
selecting patches for patch-based texture synthesis. For
each possible patch we compute the wavelet coefficients
for the boundary region and pick the patch with the
smallest error computed from the wavelet coefficients.
We show that the use of wavelets as metric for selec-
tion of the best patches improves texture synthesis for
samples which previous work fails, mainly textures with
prominent aligned features.

1. Introduction

Texture mapping [4] is a powerful concept in Com-
puter Graphics, where visual details are added to ob-
jects without the need to explicitly model them. The
visual information is captured on an image called the
texture map and transferred to the 3D object’s surface.
For many tasks real textures, as opposed to procedu-
rally generated ones [8], are the best option for achiev-
ing high realism. One of the main problems with real
images is their usually small resolution. Texture syn-
thesis from samples is an excellent solution for build-
ing textures which are not only visually similar to the
given sample but also can be built at user-defined res-
olutions. The advances in this area grew from pixel-
based techniques [10, 28], to more recent patch-based
techniques [17, 9], where the final texture is formed by
joining together pieces or blocks of the original sample,
with a RGB metric for selecting the best matches.

We propose here the selection of the best patches
using a wavelet-based metric. Due to the wavelet prop-

erties we show that we can satisfactorily synthesize ar-
bitrarily large textures where previous solutions fail,
mainly maintaining spatial prominent features, as il-
lustrated in Figure 1. In the image quilting result [11]
(bottom right on the figure) there are discontinuities
not present in our result.

2. Previous Work

The importance of texture synthesis has always been
acknowledged in both Image Processing and Computer
Graphics fields, with research going back as far as the
late seventies [19]. There was a lot of research in late
seventies and early eighties which have tried to gener-
ate textures either to validate texture models – mostly
in Image Processing tasks – or simply to use the result
in an application. Many approaches have used the idea
of a sample as input information to create the result
(see for instance [19, 22, 6, 13]). Until recently, despite
progress, such techniques were either too slow to be
of practical use or the results were not general enough
to be useful [15, 7, 25]. The most recent techniques
on this subject synthesize a new, arbitrarily-sized tex-
ture, by copying either pixels or blocks of pixels into
the final texture. We divided this review section into
three parts: one pixel at a time synthesis, patch-based
synthesis and wavelets.

2.1 One pixel at a time synthesis

The work of Efros and Leung presented in 1999 [10]
introduced a new simple way of looking at the texture
synthesis problem by “growing” a texture one pixel at
a time from an initial seed. The color of a given pixel
is determined by scanning over square patches of the
sample texture that are similar to the patch on the
texture being generated. A random patch in the sam-
ple is selected among the few satisfying the similar-
ity criterion. The similarity is measured with a L2
norm (sum of squared differences) on the RGB colors
weighted by a Gaussian kernel. The original Efros and
Leung’s algorithm is slow and later extensions have im-



Figure 1. Example of Results – Sample (185x124), Ours (wavelet-based), result from [11] (both
384x256)

proved its performance, particularly the work of Wei
and Levoy [29]. They have used a raster scan ordering
to transform noise pixels into the result texture and
have also improved the performance of the algorithm
by using a multi-scale framework and tree-structured
vector quantization. Their approach also minimizes
the L2 norm in RGB space but without any weighting.
Both approaches do not allow any kind of control of
results. In 2001 Ashikhmin [2] improves on the Wey
and Levoy technique by introducing two main contri-
butions over prior work: first, his solution improves
results on natural textures which mostly fail with the
WL algorithm. Second, he introduces a second image,
called the target image in the synthesis process. The
final synthesis combines pixels from both the sample
and the target, allowing nice effects such as writing
words with the texture elements. A second approach
towards local control for texture synthesis from sam-
ples was introduced by Tonietto and Walter [27] where
the final texture is built from a collection of the same
sample at different resolutions. This allowed synthesis
of textures with local control over the size of texture
elements.

More recently, Zhang and colleagues introduced an
image-based texture synthesis method for rendering of
Progressively Variant Textures (PVTs) [30] still on a
pixel-at-a-time basis. Although not formally defined

in the paper, the concept of PVT is an important one
for texture synthesis, since it captures the class of tex-
tures where the texture elements vary in a progressive
fashion, typical examples being mammalian fur pat-
terns such as leopard skin. From an homogeneous tex-
ture sample they were able to synthesize a PVT. One
main idea in their work was the notion of texton masks.
A texton mask is a binary image marking prominent
features or texture elements in the texture. In their
synthesis algorithm, the texton masks prevent the dis-
integration of texture elements during synthesis.

2.2 Patch-based synthesis

Efros and Freeman introduced yet another way of
synthesizing image-based textures by stitching together
random blocks of the sample and modifying them in
a consistent way [9]. They call the technique “image
quilting”. The idea improves dramatically on the one-
pixel-at-a-time approach since it builds the texture at
a much coarser scale while being able to keep high fre-
quencies of the sample. The same idea of using patches
from the sample to synthesize the result was explored
by Liang et al [17]. In this work they were able to
achieve real-time generation of large textures using spe-
cial data structures and optimization techniques. Our
work is an extension of Patch-Based Texture Synthesis.



Instead of using a RGB metric to pick the best patches,
we propose a wavelet-based approach. A more detailed
explanation of the Patch-Based Texture Synthesis is
given in the next section.

2.3 Wavelets

Since wavelets were first introduced in the graphics
community [14], they have come a long way and are an
important tool in many graphics and image process-
ing applications. The wavelets properties make them
the tool of choice for dealing with either 1D or 2D sig-
nals with high discontinuities. The first work to use
wavelets in a similar context to ours was a tool for
querying image databases. The wavelets coefficients
were used as a “signature” to find matches among a
given sketch image and the ones stored in the data-
base [16]. Another interesting use of wavelets for com-
paring images is the assessments of rendered images.
Instead of judging results visually, the work of Gad-
dipatti, Machiraju, and Yagel [12] proposes a wavelet
based metric to compare synthesized images.

There are several method based on wavelets for tex-
ture synthesis, analysis and classification [5, 23, 3, 24,
1].

Portilla and Simoncelli [23] proposed a statistical
model for texture representation using an overcom-
plete complex wavelet transform. In their approach,
a set of statistics computed on pairs of coefficients cor-
responding to basis functions at adjacent spatial lo-
cations, orientations and scales is used to represent a
texture. They are also able to synthesize textures by
randomly reproducing such statistics. This technique
tends to fail for structured textures.

Bar-Joseph and colleagues [3] also worked with tex-
ture synthesis in the wavelet domain. In their ap-
proach, input textures are treated as sample signals
generated by a stochastic process. A tree that repre-
sents the multiscale wavelet transform of the signal is
computed, and new random trees generated by learning
and sampling the conditional probabilities of the paths
in the original tree are used for texture synthesis.

Wavelet representations have been also used in the
context of texture classification. For example, Ari-
vazhagan and Ganesan [1] described metrics to com-
pare an input texture with several samples stored in a
database, using wavelet statistical features and wavelet
co-occurrence features.

Experimental results produced by these existing
techniques indicate that wavelet analysis presents a
large potential for texture synthesis and representa-
tion. However, approaches based on statistical simu-
lation of wavelet coefficients typically have limitations

for synthesizing more structured textures. Next, we
describe the proposed algorithm, which explores the
wavelet transform to synthesize both “random” and
structured textures based on samples.

3. Our model

Our work is an extension of the basic algorithm pre-
sented for Patch-Based Texture Synthesis (PBTS) [17]
and therefore we start this section by presenting an
overview of this work.

3.1 Patch-Based Texture Synthesis

In Patch-Based Texture Synthesis, patches of the
original sample are combined to form the final tex-
ture. The algorithm starts by randomly picking a
patch B0 to start the process. This patch is positioned
at the bottom left corner of the output texture (Fig-
ure 2 (left)). The size of the patches wB is user-defined
and intuitively it should be the size of the main texture
elements – or texels – present in the sample. For most
textures using a patch of size between half and a quar-
ter of the size of the original sample works well. For
simplicity they are also restricted to square patches.
The synthesis process follows by adding patches side-
by-side and once a full row is completed the process
continues for the row above and so on – Figure 2 (mid-
dle and right). There are three possible configurations
for boundary zone matching, as illustrated in the same
figure.

Figure 2. Illustration of patch-based texture
synthesis adapted from [18]. Starting point
(first configuration), second configuration for
patch matching, and third configuration (L-
shaped matching). Darker gray area repre-
sents texture already synthesized.

For each patch there is a boundary zone also with a
user-defined width wE . The optimal size of wE depends
on the texture being generated. It it is too small, it
will not capture enough details. If it is too large it will
negatively impact the algorithm’s performance. As a
balance they typically set wE as 1

6 of wB .



The critical part of the algorithm is the selection
of the next patch Bk to be pasted to the texture be-
ing constructed. As with many texture from sample
techniques [10, 29], they use a RGB metric to compare
patches and build a list of candidate patches which sat-
isfy an error criterion at the border area. From this list
a random patch is selected. To build this list, the input
sample is searched for all possible patches. If there is
no patch satisfying the condition, the algorithm picks
the patch with the smallest distance.

More formally, given two texture patches I1 and I2

of the same size and shape, they match if

d(I1, I2) < δ

where d() represents the distance between the two
patches and δ is a defined constant. This distance is
computed only for the boundary zone E of patches as
follows:

d(Ei, Ei+1) =


 1

A

A∑
j=1

(
pj

Ei
− pj

Ei+1

)2




1/2

(1)

where A is the number of pixels in the boundary zone,
and pj

Ei
represent the values of the jth pixel in the

Ei boundary zone. The pixel values can be either
grayscale or RGB triplets, although in the paper there
is no explicit reference to the metric used for their re-
sults. Once the patches are selected, there is a blend-
ing step to provide smooth transition among adjacent
patches. This smoothing is performed with feathering
as proposed by Szeliski and Shum [26].

The standard algorithm was optimized for real-time
texture synthesis with an optimized kd-tree and a pyra-
mid scheme, providing excellent timings.

3.2 Wavelet criterion

The wavelet transform (WT) is a mathematical tool
that can be used to describe 1D or 2D signals (images)
in multiple resolutions. A WT is obtained through a
sequence of low-pass and high-pass filters, alternated
with downsamplings [20]. The result of the WT is a
downsampled smoothed signal, and several detail coef-
ficients obtained at each downsampling, such that the
resulting signal has the same size as the original one.
In particular, detail coefficients are generated by signal
transitions, and can be used to obtain a multiresolution
representation of signal edges [21]. In other words, the
WT produces a signal that encodes both information
on the original signal values and its multiscale edges.

Another interesting property of the WT is its space-
frequency locality, that is, it has nice localization prop-
erties in both the spatial and the frequency domains.

We believe that using the L2 norm directly to com-
pare pixels values, as proposed by some state-of-the-art
techniques [17, 9], is not the best approach for patch-
based texture synthesis. In fact, if we just compute raw
pixel-to-pixel differences, we may disregard important
image structures (such as edges) that are relevant in the
human visual system. On the other hand, wavelet coef-
ficients encode both information on the original pixels
(a smoothed and downsampled version) and multiscale
edge information (detail coefficients). Furthermore, the
pyramidal algorithm proposed by Mallat [20] allows a
very fast computation of the WT.

Our main contribution in this paper is to change
the metric used to compute the distance between the
patches by a wavelet-based one. We replace equation 1
by the following:

d(Ei, Ei+1) =
∑

Ψ=R,G,B




A∑
j=1

(
cj
Ei

− cj
Ei+1

)2

Ψ


 (2)

where A is the number of pixels in the boundary zone,
and cj

Ei
represent the values of the jth wavelet coeffi-

cient in the Ei boundary zone.
We search among all possible patches for the one

that minimizes the distance computed according to
the equation above. For smoothing out the transi-
tion between adjacent patches we use a weighted in-
terpolation among the two adjacent patches. For each
pixel c = 0 . . . wE − 1 on a given row of two adja-
cent patches Ei and Ei+1, the final color p is given by
p = (1 − α) × pi + α × pi+1 with α = c

wE−1 .
For the wavelet computation we implemented both

1D and 2D transforms for the Haar basis. For the 1D
transform we compute the WT until the low pass com-
ponent of the texture in the boundary zone is down-
sampled to a 1× 4 signal and for the 2D transform we
downsample to a 4 × 4 image.

We perform a raster scan ordering for pixel traver-
sal for patches in the first and second configurations
of composition. For the L-shaped configuration we im-
plemented a special traversal illustrated in Figure 4.
The motivation for this traversal is to maintain a bal-
ance between the vertical and horizontal details of the
boundary zone when using 2D WT. For the 1D trans-
form we perform a raster scan ordering on this final
rectangular arrangement. We have not investigated yet
the effect on the results of other schemes for traversal,
but we expect that for anisotropic textures traversal
ordering may play a role on the final results.



Figure 3. Example of Results. Sample, wavelet-based, result from [10],result from [29]

Figure 4. Traversal of pixels for L-shaped
configuration. On the top the original L-
shaped configuration. On the bottom the new
arrangement of pixels suitable for traversal.

4. Results

In this section we present a few results of textures
generated with our approach. First we present in Fig-
ure 3 our result for one standard texture that has been
used as a test case for many texture from sample syn-
thesis. We can see that the algorithm works well for
non-structured textures such as this. All parameters
used are given in Table 1.

In Figure 6 we can see that our solution correctly
generates the cracker holes evenly spaced, whereas in
the result by Liang et al [17] these are not preserved.

We also show in this figure the effect of changing the
size of the boundary zone wE . We can see that the
wavelet transform needs a boundary zone large enough
to be able to capture the features of the texture. We
have not investigated an automatic way of determining
the proper size for wE .

Figure 5. 1D versus 2D wavelets

The synthesis time for our results was very high for
some cases (from a few seconds to even one hour for
some results on a Pentium IV machine with 512MB of
RAM). One reason is that the wavelet computation is
more expensive than the L2 norm, but the main reason
is that we have not yet implemented any optimizations
as presented in the original patch-based work. This
was left for future work. One interesting conclusion of
our work is that 1D wavelet computations were good
enough to generate our results. We illustrate in Fig-
ure 5 that there is no noticeable difference between the
two results when using 1D and 2D wavelet computa-
tion.

5. Conclusions

We have presented a wavelet based approach for se-
lecting the best patches in patch-based texture synthe-
sis. The final output texture is constructed from blocks



Figure 6. Changing the size of the boundary zone wE . Sample, wavelet-based increasing wE from
left to right. Last is a result from [17]. We can see that in the last wavelet-based result the holes are
correctly aligned.

Figure 7. Gray versus RGB. Sample, result
computed with gray values and result com-
puted with the RGB values.

Figure wB wE

1 48 16
3 24 8
5 24 4
6(a) 32 8
6(b) 32 12
6(c) 32 16
7 32 6

Table 1. Values for parameters of results pre-
sented.

or patches of the original sample which have the smaller
difference in the wavelet coefficients computed for the
boundary zone. Our results show that this criteria im-
proves on previous results for textures which have regu-
lar noticeable features. There are many avenues left for
further research on this topic. Although we have imple-
mented the Haar wavelet basis, we believe that further
investigations could explore other wavelet basis. Also,
for the wavelet computation we could explore alterna-
tive ways of visiting the pixels in the boundary zones.
Finally, there are some textures for which the distance
metric could be computed using the grayscale values
of the sample. One such example is given in Figure 7
In this case the RGB information will not improve the
results. We believe that this possibility might be true
also for other textures which are not monochromatic
such as this example.
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