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Abstract

Mathematical morphology was originally conceived as
a set theoretic approach for the processing of binary im-
ages. Approaches that extend classical binary morphology
to gray-scale images are either based on umbras, thresh-
olds, level sets, or fuzzy sets. Complete lattices form a
general framework for all of these approaches. This paper
discusses and compares several approaches to gray-scale
mathematical morphology including the threshold, umbra,
and level set approaches as well as fuzzy approaches.

1 Introduction

In the early 1960’s, Matheron and Serra invented math-
ematical morphology as a part of binary image processing
that is concerned with image filtering and geometric anal-
ysis by means of structuring elements [11, 15]. Relying
heavily on the early work of Minkowski and Hadwiger on
geometric measure theory and integral geometry [12, 8],
Matheron and Serra succeeded in developing a collection
of tools, called morphological operators, that proved to be
extremely useful for the analysis of shape and structure in
binary images.

The most general mathematical framework in which
mathematical morphology can be conducted is given by
complete lattices [16, 9, 5]. Ronse formulates necessary
and sufficient conditions for gray-scale dilation and erosion
[14]. These conditions reveal that every dilation, erosion
respectively, is associated with a structuring element. Un-
like Ronse, Banon focusses on translation-invariant oper-
ators, which play a central role in mathematical morphol-
ogy, and provides several characterizations of translation-
invariant dilations and erosions [3, 4].

Traditionally, binary images are represented as subsets
of Rn while gray-scale images are represented as functions

Rn → G, where G ⊆ R̄ = R ∪∞ ∪ −∞ represents a cer-
tain set of gray values. Serra was the first to extend binary
mathematical morphology to gray-scale images using the
threshold approach [15]. An application of a morphological
operator to a gray-scale image a results in another gray-
scale image b such that b(x) is determined by the function
values of a in a neighborhood of x.

The most widely known method for the generalization of
binary mathematical morphology to gray-scale image pro-
cessing employs the notion of umbra and is due to Sternberg
[18]. The umbra of a gray-scale image a : Rn → G is given
by a subset U of Rn+1 which can be transformed using the
tools of binary morphology.

Another approach to gray-scale morphology consists of
thresholding an image at all levels and applying binary mor-
phological operators at each of these levels [9]. The result-
ing sets are combined to synthesize the transformed image.

The two basic morphological operators are erosion and
dilation. Erosion marks structuring element origin locations
at which a structuring element fits within an image. This
concept can be expressed in terms of set inclusion or subset-
hood. Approaches to gray-scale mathematical morphology
can be derived from fuzzy set theory by fuzzyfing the no-
tion of set inclusion. Depending on the particular choice of
fuzzy set inclusion [20, 10, 2], we obtain different notions
of fuzzy erosion provided that the operation of fuzzy set in-
clusion commutes in the second argument with the infimum
operator. Examples include the approaches of De Baets [1],
Bloch and Maı̂tre [6] as well as Sinha and Dougherty [17].

Fuzzy dilation is usually defined as the dual of fuzzy ero-
sion. The notion of duality that is used varies among the
researchers of fuzzy mathematical morphology. Many re-
searchers - including Bloch and Maı̂tre, Kitainik, and Sinha
and Dougherty - introduce a duality relation based on some
concept of negation [6, 10, 17]. Other researchers such as
Deng and Heijmans advocate a duality relation based on the
notion of adjunction [7].



The paper is organized as follows. First, we review the
basic concepts of mathematical morphology whose mathe-
matical foundations lie in lattice theory and whose origins
can be found in the processing of binary images. Section
3 discusses traditional approaches to gray-scale mathemati-
cal morphology and establishes connections between these
approaches. After providing some background information
on fuzzy set theory, we show that most approaches to fuzzy
mathematical morphology are based on fuzzy inclusion and
intersection measures of a certain form that we call fuzzy
Inf-I inclusion and Sup-C Intersection measures. Finally,
we relate these fuzzy mathematical morphologies to the tra-
ditional approaches towards gray-scale mathematical mor-
phology that we discussed in Section 3.

2 A Brief Review of the Basic Concepts of
Mathematical Morphology

2.1 The Complete Lattice Framework for Mathe-
matical Morphology

The mathematical foundations of morphology can be
found in lattice theory which is concerned with algebraic
structure that arise by imposing some type of ordering on a
set [5, 9, 14].

For example, a binary relation ≤ on a set X �= ∅ is called
a partial ordering if and only if ≤ satisfies the following
properties for all x, y, z ∈ X : 1 - Reflexivity: x ≤ x, 2 -
Anti-Symmetry: x ≤ y, y ≤ x ⇒ x = y, and 3 - Transitiv-
ity: x ≤ y, y ≤ z ⇒ x ≤ z;

A set X that is equipped with a partial ordering is called
partially ordered set or simply poset. Let X be partially or-
dered and let Y ⊆ X . An element l ∈ X is called lower
bound of Y if l ≤ y for all y ∈ Y . Note that l does not
necessarily belong to X . The notion of upper bound is de-
fined in a similar fashion. We say that l0 ∈ X is the greatest
lower bound or infimum of Y if and only if l0 represents a
lower bound of Y and l ≤ l0 for all other lower bounds l
of Y . Similarly, we define the notion of least upper bound
or supremum. The infimum of Y is denoted by the sym-
bol

∧
Y . Alternatively, we write

∧
j∈J yj instead of

∧
Y if

Y = {yj : j ∈ J} for some index set J . Similar notations
are used to denote the supremum of Y .

A poset X is called a lattice if and only if there exists
an infimum and a supremum for every finite subset of X .
Suppose that X and Y are lattices.

We speak of a complete lattice X if every (finite or in-
finite) subset has an infimum and a supremum in X . From
now on, we will denote a complete lattice by L. Note that
the power set of an arbitrary set together with the partial or-
dering given by ”⊆” forms a complete lattice. We will con-
duct binary mathematical morphology on the complete lat-

tice P(X) where the symbol X denotes the euclidian space
R

d or the digital space Zd throughout the paper.
In gray-scale morphology, we apply the concepts of lat-

tice theory to images, in other words functions from some
point set to a set of gray-levels that forms a complete lattice.
In this paper, we restrict our attention to images X → G

where the symbol G stands either for the set of extended
real numbers R̄ = R ∪ {+∞,−∞} or for the set of ex-
tended integers Z̄ = Z ∪ {+∞,−∞} or for the interval
[0, 1]. We denote the set of images X → G using the sym-
bol GX. This set inherits the complete lattice structure from
G if we define a ≤ b for a,b ∈ GX as follows:

a ≤ b ⇔ a(x) ≤ b(x) ∀x ∈ X . (1)

The basic operations of mathematical morphology are
erosion and dilation. In the general complete lattice set-
ting, an erosion is an operator ε : L → L that commutes
with the infimum operation. In other words, the operator ε
represents an erosion if and only if the following equality
holds for every subset Y ⊆ L:

ε(
∧

Y ) =
∧

y∈Y

ε(y) . (2)

Similarly, an operator δ : L → L that commutes with the
supremum operation is called a dilation. In other words, the
operator δ represents a dilation if and only if the following
equality holds for every subset Y ⊆ L:

δ(
∨

Y ) =
∨

y∈Y

δ(y) . (3)

The operators of erosion and dilation are often linked
in terms of a relationship of duality. Some authors such
as Deng and Heijmans [7] advocate the relationship of ad-
junction since - among other advantages - the compositions
of dilations and erosions yield openings and closings if the
pairing between erosion and dilation forms an adjunction.

Consider two arbitrary operators ε, δ : L → L. We say
that (ε, δ) is an adjunction on (L,≤) if we have

δ(a) ≤ b ⇔ a ≤ ε(b) ∀a, b ∈ L . (4)

The following proposition shows that adjunction consti-
tutes a duality between erosions and dilations since they
form a bijection which reverses the order relation in the
complete lattice [9].

Proposition 1. Let L be a complete lattice and consider
two operations δ, ε : L × L → L.

1. If (ε, δ) is an adjunction, then δ is a dilation and ε is
an erosion.

2. For every dilation δ, there is a unique erosion ε such
that (ε, δ) is an adjunction. and for every erosion ε,
there is a unique dilation δ such that (ε, δ) is an ad-
junction.



2.2 Binary Mathematical Morphology

Mathematical morphology was initially developed for
the analysis of binary images. We identify a binary im-
age with a subset of an Euclidian space or digital space X
[11, 15].

Consider subsets A, S of X. The binary erosion
DB(A,S) and the binary dilation EB(A,S) are defined in
terms of translations of sets. For example, the translation
Sx of S by x ∈ X is given by Sx = {s + x : s ∈ S}. We
have

EB(A,S) = {x ∈ X : Sx ⊆ A} =
⋂
s∈Š

As , (5)

DB(A,S) = {x ∈ X : Šx∩A �= ∅} =
⋃
s∈S

As =
⋃
a∈A

Sa .

(6)
Here, the symbol Š denotes the reflection of S around the

origin. Formally, we have Š = {−s : s ∈ S}. Similarly, Šx

denotes the reflection of Sx around the origin. The set S is
called structuring element in the morphological literature.

Note that the definition of erosion in Equation 5 corre-
sponds to Minkowski subtraction and that the definition of
dilation in Equation 6 corresponds to Minkowski addition
[12, 8]. Serra [15] slightly diverges from these definitions
which are due to Sternberg [19] by defining the dilation of
A by the structuring element S as {x ∈ X : Sx ∩ A �=
∅} = DB(A, Š).

Theorem 1. Binary dilation is the dual of binary erosion
with respect to the relationship

DB(A,S) = EB(Ac, Š)c . (7)

Here, Ac denotes the complement of A. The binary dila-
tion DB(.,S) by an arbitrary, fixed structuring element S
and the binary erosion E(.,S) by S also represent adjoint
operators in the sense of Equation 4:

DB(A,S) ⊆ B ⇔ A ⊆ EB(B,S) . (8)

3 Traditional Approaches towards Gray-
Scale Mathematical Morphology

The tools of binary mathematical morphology are lim-
ited and cannot be applied to gray-scale images. Serra and
Sternberg have developed successful approaches to extend
binary mathematical morphology to gray-scale mathemati-
cal morphology in the 1980’s [15, 18]. We will refer to these
approaches as the threshold and the umbra approach. This
paper also includes another approach called the level-sets
approach that can be viewed as an extension of the thresh-
old approach [9]. In this section, we are dealing with gray-
level images X → G where X denotes Rd or Zd and where
G denotes R̄ or Z̄.
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Figure 1. The dashed line refers to a. The continuous

line corresponds to DT (a,S) where S = [0, 1].

3.1 The Threshold Approach or Flat Approach

The threshold approach dates back to Serra’s work [15].
Given a gray-scale image a and a structuring element S ⊆
X, we define the T -dilation DT (a,S) and the T -erosion
ET (a,S) [13], also called flat dilation and flat erosion [9],
as follows:

DT (a,S)(x) =
∨

y∈Šx

a(y) , (9)

ET (a,S)(x) =
∧

y∈Sx

a(y) . (10)

Example 1. Figure 1 displays the graph of a gray-scale im-
age a : R → R̄ as a dashed line. Note that a(x) = −∞
for all x �∈ [−4, 4]. The threshold dilation DT (a,S), where
S = {x ∈ R : 0 ≤ x ≤ 1}, is shown as a continuous line.

3.2 The Level Set Approach

An image a ∈ GX can be decomposed into its threshold
or level sets St(a) given by [9]:

St(a) = {x ∈ X : a(x) ≥ t} . (11)

The image a can be recovered from its level sets as follows:

a(x) =
∨

{t ∈ G : x ∈ St(a)} . (12)

The Equations 11 and 12 yield tools to building operators
on the lattice GX from operators on P(X). For a family
of set operators {ψt : t ∈ G}, we define the operator Ψ :
GX → P(X)G as follows:

Ψ(a)(x) =
∨

{t ∈ G : x ∈ ψt (St(a))} . (13)

The operator Ψ is called a semi-flat operator generated by
the family {ψt : t ∈ G} [9].



Theorem 2. The following definitions derived from Equa-
tion 13 yield a dilation (Equation 14) and an erosion (Equa-
tion 15) for fixed s ∈ GX:

DL(a, s)(x) =
∨

{t ∈ G : x ∈ DB (St(a),St(s))} , (14)

EL(a, s)(x) =
∨

{t ∈ G : x ∈ EB (St(a),St(s))} . (15)

The proof of this theorem makes use of the fact that the
operator DL(., s), EL(., s) respectively, represents a semi-
flat operator that is generated by a family of dilations, a
family of erosions respectively [9]. We will speak of the
L-dilation DL(a, s) and of the L-erosion EL(a, s). The
following theorems can be proved by means of straightfor-
ward verification. Due to space constraints, detailed proofs
cannot be provided in this paper.

Theorem 3. For an arbitrary binary structuring element
S ⊆ X and for arbitrary a ∈ GX, we have DT (a,S) =
DL(a, s) and ET (a,S) = EL(a, s) where s ∈ G

X is de-
fined as follows:

s(x) =
{ ∞ ∀x ∈ S ,

−∞ ∀x �∈ S .
(16)

Example 2. Let a : R → R̄ be the gray-scale image de-
picted in Figure 1 and let s : R → R̄ such that s(x) = +∞
if x ∈ [0, 1] and s(x) = −∞ if x �∈ [0, 1]. Figure 1 shows
the L-dilation of a by s since DL(a, s) = DT (a,S), where
S = [0, 1].

Theorem 4. For an arbitrary, but fixed structuring element
s ∈ GX, the L-dilation and the L-erosion form an adjunc-
tion. Furthermore, for every a,b ∈ GX and every s ∈ GX,
the L-dilation and the L-erosion are given by

DL(a, s)(x) =
∨
y∈X

s(x− y) ∧ a(y) , (17)

EL(a, s)(x) =
∧
y∈X

f (s(y − x),a(y)) , (18)

where f : G × G → G is such that

f(x, y) =
{

+∞, x ≤ y ,
y, x > y .

(19)

Example 3. Let a : R → R̄ be the gray-scale image and let
s : R → R̄ be the structuring element whose graphs are de-
picted in Figure 2. We would like to clarify that s(x) = −∞
for all x �∈ [−1, 1]. The continuous line in Figure 2 repre-
sents the L-dilation DL(a, s) and the dashed line represents
the image a.

3.3 The Umbra Approach

In this section, we discuss the umbra approach that rep-
resents one of the earliest approaches for extending binary

−6 −4 −2 0 2 4 6
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2. The thin dashed line corresponds to the orig-

inal image a. The continuous line represents the level

set dilation DL(a, s) where s is the structuring element

displayed in the bottom left corner.

mathematical morphology to the processing and the analy-
sis of gray-level images [18].

The U -dilation DU(a, s) and the U -erosion U -erosion
EU (a, s) are defined as follows for every a, s ∈ GX [14]:

DU (a, s)(x) =
∨
y∈X

(a(y) + s(x − y)) , (20)

EU (a, s)(x) =
∧
y∈X

(a(y) +′ (−s(y − x))) . (21)

The operations ”+” and ”+′” differ with respect to the sum
of ∞ and −∞ as described in Equations 22 and 23 below.
Otherwise, these operations behave as one would expect.

∞ + (−∞) = (−∞) + ∞ = −∞ , (22)

∞ +′ (−∞) = (−∞) +′ ∞ = ∞ . (23)

For a given binary structuring element S ⊆ X, let us
construct a gray-scale structuring element s ∈ GX as fol-
lows:

s(x) =
{

0, x ∈ S ,
−∞, x �∈ S (24)

For every image a ∈ GX, we can compute the U-
Dilation DU (a, s)(x) of a by this structuring element s as
follows

DU(a, s)(x) =
∨
y∈X

(a(x − y) + s(y)) (25)

=


 ∨

y∈S

(a(x − y))


 =


 ∨

y∈Šx

(a(y))


 . (26)
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Figure 3. Consider S = [0, 1]. Let s be as in Equation 24.

The original image a is drawn as a thin dashed line. The

thick line and the thin continuos line represent DL(a, s)
and DT (a,S).

In a similar vein, we recognize that

EU (a, s)(x) =
∧

y∈Sx

a(y) . (27)

In view of the definitions of T -dilation and T -erosion that
we presented in Equations 9 and 10, these observations
yield the following theorem.

Theorem 5. For all a ∈ GX and for all S ⊆ X, we have
the following identities.

DT (a,S) = DU(a, s) , E(a,S) = EU (a, s) , (28)

where s is constructed from S by means of Equation 24.

Example 4. Let S be the unit interval [0, 1]. Consider a
gray-scale structuring element s that satisfies Equation 24.
Recall that the U-dilation DU (a, s) of a by s coincides with
the T-dilation DT (a,S) that is shown in Figure 1.

Figure 3 compares the L-Dilation DL(a, s) and the T-
Dilation DT (a,S). The thin dashed line represents the im-
age a. The thick continuous line represents the L-Dilation
and the thin dashed line represents the T-Dilation of a by
the structuring element s. Note the difference between
DL(a, s) and DT (a,S).

Example 5. Consider the structuring element s : R → R̄

shown at the bottom of Figure 2. Recall that s(x) = −∞
for all x �∈ [−1, 1]. Figure 4 reveals the difference between
the U-Dilation DU (a, s) - drawn as a thick line - and the
L-Dilation DL(a, s) - drawn as a thin continuous line.

4 Fuzzy Mathematical Morphology

4.1 Basic Concepts of Fuzzy Set Theory

Fuzzy set theory extends conventional (crisp) set theory.
Lotfi Zadeh introduced this mathematical theory as a tool
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Figure 4. The thick line and the thin continuos line refer

to DU(a, s) and to DL(a, s). The structuring element s
can be found at the bottom of Figure 2.

to model the vagueness and ambiguity in complex systems
[20]. A fuzzy set is formally defined as a function a from
a set X to [0, 1]. The function a is also called membership
function and the value a(x) is the degree of membership of
x in the fuzzy set a. In particular, we have that a(x) = 0
represents complete exclusion and that a(x) = 1 represents
complete membership. The class of fuzzy sets in X will be
denoted by F(X) = [0, 1]X. Note that fuzzy set theory can
be used for the design of image operators since an image
a : X → [0, 1] can be interpreted as a fuzzy set of X. From
now on, an image a ∈ F(X) will be called fuzzy image.
We identify every crisp set A ∈ P(X) with a fuzzy set
a ∈ F(X) via the relationship

a(x) =
{

1 , if x ∈ A ,
0 , else .

(29)

We define a fuzzy conjunction as an increasing mapping
CF : [0, 1] × [0, 1] −→ [0, 1] that satisfies CF (0, 0) =
CF (0, 1) = CF (1, 0) = 0 and CF (1, 1) = 1. The min-
imum operator obviously yields a simple example. Some
other particular choices of fuzzy conjunction are due to
Lukasiewicz and to Kleene and Dienes:

CM (x, y) = x ∧ y , (30)

CL(x, y) = 0 ∨ (x + y − 1) , (31)

CKD(x, y) =
{

0, y ≤ 1 − x
y, y > 1 − x

. (32)

An operator IF : [0, 1] × [0, 1] −→ [0, 1] that is de-
creasing in the first argument and that is increasing in the
second argument is called a fuzzy implication if IF ex-
tends the usual crisp implication on {0, 1} × {0, 1}, i.e.
IF (0, 0) = IF (0, 1) = IF (1, 1) = 1 and IF (1, 0) = 0.
Some particular fuzzy implications, that were introduced
by Gödel, Lukasiewicz, and by Kleene and Dienes, can be



found below.

IG(x, y) =
{

1, x ≤ y
y, x > y

, (33)

IL(x, y) = 1 ∧ (y − x + 1) , (34)

IKD(x, y) = (1 − x) ∨ y . (35)

A fuzzy negation is defined as a decreasing operator NF :
[0, 1] −→ [0, 1] that satisfies NF(0) = 1 and NF (1) = 0.
A fuzzy negation is called involutive if NF (NF(x)) = x
for all x ∈ [0, 1]. The following unary operators represent
examples of involutive fuzzy negations.

NS(x) = 1 − x , (36)

ND(x) =
1 − x

1 + px
, p > −1 , (37)

NR(x) = p
√

1 − xp , p ∈ (0,∞) . (38)

We can obtain a fuzzy implication from a fuzzy conjunc-
tion and an involutive fuzzy negation as follows:

IF (x, y) = NF (CF (x, NF (y))) , ∀x, y ∈ [0, 1] . (39)

Similarly, a fuzzy conjunction can be derived from a fuzzy
implication and an involutive fuzzy negation using the fol-
lowing equation:

CF (x, y) = NF (IF (x, NF (y))) , ∀x, y ∈ [0, 1] . (40)

A fuzzy conjunction CF is said to be dual to a fuzzy impli-
cation IF with respect to an involutive fuzzy negation N if
Equations 39 and 40 holds for all x, y ∈ [0, 1]. Let us for
example focus on the standard negation NS. The operators
CM and IKD as well as the operators CL and IL are dual
with respect to NS .

The concept of adjunction yields another concept of du-
ality which does not require an involutive fuzzy negation.
We say that a fuzzy conjunction CF and a fuzzy impli-
cation IF form an adjunction if for every a ∈ [0, 1], the
pair (IF (a, ·), CF (a, ·)) forms an adjunction on [0, 1] in
the sense of Equation 4. For example, the pairs (CM , IG),
(CL, IL), and (CKD, IKD) represent adjunctions. There-
fore, Proposition 1 implies that IF (a, ·) is an erosion and
CF (a, ·) is a dilation on [0, 1]. In other words, Equations 41
and 42 hold true for every every a, xj ∈ [0, 1] and for every
set of indices J .

IF


a,

∧
j∈J

xj


 =

∧
j∈J

IF (a, xj) , (41)

CF


a,

∨
j∈J

xj


 =

∨
j∈J

CF (a, xj) . (42)

Equations 41 and 42 will turn out to be useful for the
construction of fuzzy erosions and dilations.

4.2 Fuzzy Mathematical Morphology Based on
Fuzzy Inclusion and Intersection Measures

Recall that in Equation 5 we defined the binary erosion
of a set A by a structuring element S as the set of all points
x such that the translated structuring element Sx is con-
tained in A. Formally, we obtain the following equivalent
definition of EB(A,S).

EB(A,S) = {x ∈ X : Inc(Sx,A) = 1} , (43)

where Inc : P(X) × P(X) → {0, 1} represents the set
inclusion for crisp set. We also defined the binary dilation
of A by S as the set of all x such that the reflection of Sx

hits A. This notion can be expressed as follows in terms of
the intersection Sec : P(X)×P(X) → {0, 1} of crisp sets.

DB(A,S) = {x ∈ X : Sec(Šx,A) = 1} . (44)

A consistent fuzzy morphology should be based on def-
initions of fuzzy erosion and fuzzy dilation that extend the
definitions of binary erosion and dilation to the fuzzy do-
main. This goal can be achieved as follows.

Let a fuzzified set inclusion IncF be defined as a F(X)×
F(X) → [0, 1] mapping whose restriction to P(X)×P(X)
coincides with the set inclusion for crisp sets. Formally, we
have the following implications for all A,B ∈ P(X) and
their corresponding fuzzy sets a,b ∈ F(X).

A ⊆ B ⇒ IncF(a,b) = Inc(A,B) = 1 , (45)

A �⊆ B ⇒ IncF (a,b) = Inc(A,B) = 0 . (46)

The value IncF (a,b) is interpreted as the degree of subset-
hood or inclusion of the fuzzy set a in the fuzzy set b.

Various researchers have set out to define fuzzy inclusion
measures. Among these definitions are the inclusion mea-
sures of Zadeh, Sinha and Dougherty, Kitainik, and Bandler
and Kohout. Straightforward verification shows that all of
these concepts fuzzify the notion of crisp set inclusion, i.e.
they satisfy Equations 45 and 46.

A fuzzy operation EF : F(X) ×F(X) → F(X) based
on a certain fuzzy inclusion measure IncF arises via the
following definition [13]:

EF (a, s)(x) = IncF(sx, a) , (47)

where sx(y) denotes the translation of s by x, i.e., sx(y) =
s(y − x), for every x,y ∈ X. Note that EF extends the
binary erosion EB : P(X) × P(X) → P(X) to the fuzzy
domain.

We would like to clarify a fact that has not been men-
tioned in Nachtegael’s and Kerre’s influential article [13].
We may only refer to EF as a fuzzy erosion if the opera-
tors IncF(s, .) commute with the infimum operation for all



s ∈ F(X). Otherwise, the operator EF (., s) does not repre-
sent an erosion by the structuring element s since Equation
2 is not satisfied.

In analogy to the measure IncF , we define a fuzzified
set intersection SecF defined as a F(X) × F(X) → [0, 1]
mapping whose restriction to P(X)×P(X) coincides with
the set intersection for crisp sets. We interpret the value
SecF(a,b) as the degree of intersection of the fuzzy sets a
and b or the degree of the fuzzy set a hitting the fuzzy set b.
Given a fuzzified set intersection SecF such that SecF(s, .)
commutes with the supremum operation, we obtain a func-
tion DF : F(X) ×F(X) → F(X) by setting

DF(a, s)(x) = Sec(šx,a) , (48)

where š denotes the reflection around the origin, i.e., š(x) =
s(−x), for every x ∈ X. Note that DF coincides with
DB on P(X) × P(X). We refer to DF using the termi-
nology fuzzy dilation if the operator DF(·, s) represents a
dilation for every s ∈ F(X) in the sense of Equation 3, i.e.
if D(·, s) commutes with the supremum operation for every
s ∈ F(X).

4.3 Fuzzy Inf-I Inclusion and the Sup-C Intersec-
tion Measures

This section explains how a fuzzy inclusion measure can
be derived from the crisp inclusion measure.

Let I : {0, 1} × {0, 1} → {0, 1} denote the crisp impli-
cation. Consider arbitrary crisp sets A,B ⊆ X. Obviously,
we have A ⊆ B if and only if x ∈ A implies that x ∈ B for
all x ∈ X. This statement can be reformulated as follows:

Inc(A,B) =
∧
x∈X

I(A(x),B(x)) . (49)

Now consider arbitrary fuzzy sets a,b ∈ F(X). A
straightforward fuzzification of Equation 49 leads to the fol-
lowing fuzzy inclusion measure IncF [2]:

IncF(a,b) =
∧
x∈X

IF (a(x),b(x)) . (50)

A fuzzy operation IncF of this form will be called fuzzy
Inf-I inclusion measure. Clearly, the restriction of IncF to
P(X) × P(X) is given by the crisp set inclusion Inc since
I represents the restriction of IF to P(X).

Following a similar line of reasoning, we derive a fuzzy
intersection measure SecF by means of the following equa-
tion.

SecF(a,b) =
∨
x∈X

CF (a(x),b(x)) . (51)

We will call a fuzzy operation SecF of this form fuzzy
Sup-C intersection measure. This operation SecF fuzzifies
the crisp set intersection measure.

Now let us reconsider the operation EF : F(X) ×
F(X) → F(X) described in Equation 47. Let us assume
that IncF is given by a Inf-I inclusion measure. Recall that
the operators EF (·, s) : F(X) → F(X) represent erosions
for all s ∈ F(X) if and only if IncF(s, ·) commute with the
infimum operation for all s ∈ F(X). The latter statement
is certainly true if we have for all s ∈ [0, 1] that the oper-
ators IF (s, ·) commute with the infimum, in other words if
IF (s, ·) are erosions in [0, 1]. In this case, we have for all
index sets J and for all s, aj ∈ F(X):

IncF (s,
∧
j∈J

aj) =
∧
x∈X

IF


s(x),

∧
j∈J

aj(x)


 (52)

=
∧
x∈X


∧

j∈J

IF (s(x), aj(x))


 =

∧
j∈J

IncF(s, aj) , (53)

For example, the implications IG, IL, and IKD commute
with the infimum operation in the second argument and thus
Equation 47 yields an erosion by the structuring element s
if IncF is given in terms of one of the corresponding Inf-I
inclusion measures. However, the Inf-I inclusion measure
does not yield a fuzzy erosion in terms of Equation 47 for
the following fuzzy implication ICE .

ICE(x, y) =
{

0, if x = 1 and y = 0 ,
1, otherwise .

(54)

Similar observations can be made for the situation where
the fuzzified set intersection of Equation 48 is given by a
Sup-C intersection measure. If CF (s, ·) is a dilation in [0, 1]
for every s ∈ [0, 1] then the operator DF(·, s) is a dilation
for every s ∈ F(X). In this case, we speak of the fuzzy
dilation of the image a by the structuring element s.

To our knowledge, almost all approaches towards fuzzy
mathematical morphology are based on fuzzy erosions as
defined in Equation 47 and fuzzy dilations as defined in
Equation 48 Moreover, the inclusion measure appearing in
Equation 47 is determined by an infimum of implications
and the intersection measure appearing in Equation 47 is
determined by a supremum of conjunctions. In this case,
we can rewrite Equations 47 and 48 as follows.

EF (a, s)(x) =
∧
y∈X

IF (sx(y), a(y)) , (55)

DF(a, s)(x) =
∨
y∈X

CF (šx(y), a(y)) . (56)

Equivalently, we have

EF (a, s)(x) =
∧
y∈X

IF (s(y − x), a(y)) , (57)

DF(a, s)(x) =
∨
y∈X

CF (s(x − y), a(y)) . (58)



De Baets allows for an arbitrary implication in Equa-
tion 57 and for an arbitrary conjunction in Equation 58.
Other researchers impose the following restrictions. Some
approaches are restricted to specific choices of IF and
CF . Some researchers require that the conjunction CF in
Equation 58 is the dual of the implication IF in Equation
57with respect to a (particular) involutive negation. Other
researchers require that CF and IF are adjoint.

From now on, subscripts of the symbol EF and DF will
indicate the type of implications that is used in Equations
57 and 58. For example, the symbol EG stands for the
fuzzy erosion that is given by the equation EG(a, s)(x) =∧

y∈X IG(s(y−x),a(y)). The following theorems exhibit
the connections between the fuzzy erosion defined in Equa-
tion 57, the fuzzy dilation defined in Equation 58 respec-
tively, and the L-erosion and U-erosion, the L-dilation and
the U-dilation respectively. The proofs are straightforward.

Theorem 6. The following equations hold for all a, s ∈
F(X) and for all x ∈ X.

EG(a, s)(x) = EL(a, s)(x) ∧ 1 , (59)

DM (a, s)(x) = DL(a, s)(x) , (60)

EL(a, s)(x) = [EU (a, s)(x) + 1] ∧ 1 , (61)

DL(a, s)(x) = [DU (a, s)(x) − 1] ∨ 0 . (62)

Example 6. Let a ∈ F(X) be the fuzzy image and let
s ∈ F(X) be the structuring element given by

s(x) = ((1 + x) ∨ 0) ∧ ((1 − x) ∨ 0) . (63)

Figure 5 displays the results of applications of the fuzzy
erosions EG, EL, and EKD. The dashed line represents the
original image a. The pointed line represents the outputs of
fuzzy erosion EL. The point-dashed line and the continuous
line represent the fuzzy erosion EG(a, s) and EKD(a, s),
respectively.
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