
Computing Box Dimensions from Single Perspective Images in Real Time

Leandro A. F. Fernandes 1 Manuel M. Oliveira 1 Roberto da Silva 1 Gustavo J. Crespo 2

1 UFRGS – Instituto de Informática 2 Stony Brook University
{laffernandes, oliveira, rdasilva}@inf.ufrgs.br

Abstract

We present a new method for computing the dimen-
sions of boxes from single perspective projection images
in real time. Given a picture of a box, acquired with a
camera whose intrinsic parameters are known, the dimen-
sions of the box are computed from the extracted box sil-
houette and the projection of two parallel laser beams on
one of its visible faces. We also present a statistical model
for background removal that works with a moving camera,
and an efficient voting scheme for identifying approximately
collinear segments in the context of a Hough Transform.
We demonstrate the proposed approach and algorithms by
building a prototype of a scanner for computing box dimen-
sions and using it to automatically compute the dimensions
of real boxes. The paper also presents some statistics over
measurements obtained with our scanner prototype.

1 Introduction

The ability to measure the dimensions of three-
dimensional objects directly from images has many prac-
tical applications including quality control, surveillance,
analysis of forensic records, storage management and cost
estimation. Unfortunately, unless some information relating
distances measured in image space to distances measured in
3D is available, the problem of making measurements di-
rectly on images is not well defined. This is a result of the
inherent ambiguity of perspective projection caused by the
loss of depth information.

This paper presents a method for computing boxes di-
mensions from single perspective projection images in a
completely automatic way. This can be an invaluable tool
for companies that manipulate boxes on their day-by-day
operations, such as couriers, airlines and warehouses. The
approach uses information extracted from the silhouette of
the target boxes and can be applied when at least two of
their faces are visible, even when the target box is partially
occluded by other objects in the scene (Figure 1). We elimi-
nate the inherent ambiguity associated with perspective im-

ages by projecting two parallel laser beams, apart from each
other by a known distance and perpendicular to the camera’s
image plane, onto one of the visible faces of the box. We
demonstrate this technique by building a scanner prototype
for computing box dimensions and using it to compute the
dimensions of boxes in real time (Figure 1).

Figure 1. Scanner prototype: (left) Its oper-
ation. (right) Camera’s view with recovered
edges and vertices.

The main contributions of this paper include:

• An algorithm for computing the dimensions of boxes
in a completely automatic way in real-time (Section 3);

• An algorithm for extracting box silhouettes in the pres-
ence of partial occlusion of the box edges (Section 3);

• A statistical model for detecting background pixels un-
der different lighting conditions, for use with a moving
camera (Section 4);

• An efficient voting scheme for identifying approxi-
mately collinear line segments using a Hough Trans-
form (Section 5).

2 Related Work

Many optical devices have been created for making mea-
surements in the real world. Those based on active tech-
niques project some kind of energy onto the surfaces of the
target objects and analyze the reflected energy. Examples of



active techniques include optical triangulation [1] and laser
range finding [18] to capture the shapes of objects at proper
scale [13], and ultrasound to measure distances [6]. In con-
trast, passive techniques rely only on the use of cameras for
extracting the three-dimensional structure of a scene and
are primarily based on the use of stereo [14]. In order
to achieve metric reconstruction [9], both optical triangu-
lation and stereo-based systems require careful calibration.
For optical triangulation, several images of the target object
with a superimposed moving pattern are usually required
for more accurate reconstruction.

Labeling schemes for trihedral junctions [3, 11] have
been used to estimate the spatial orientation of polyhedral
objects from images. These techniques tend to be com-
putationally expensive when too many junctions are identi-
fied. Additional information from the shading of the objects
can be used to improve the labeling process [21]. Silhou-
ettes have been used in both computer vision and computer
graphics for object shape extraction [12, 17]. These tech-
niques require precise camera calibration and use silhou-
ettes obtained from multiple images to define a set of cones
whose intersections approximate the shapes of the objects.

Criminisi et al. [4] presented a technique for making 3D
affine measurements from a single perspective image. They
show how to compute distances between planes parallel to
a reference one. In case of some distance from a scene ele-
ment to the reference plane is known, it is possible to com-
pute the distances between scene points and the reference
plane. The technique requires user interaction and cannot be
used for computing dimensions automatically. Photogram-
metrists have also made measurements based on single im-
ages. However, these techniques can only be applied to pla-
nar objects and require user intervention.

In a work closely related to ours, Lu [16] described a
method for finding the dimensions of boxes from single
gray-scale images. In order to simplify the task, Lu assumes
that the images are acquired using parallel orthographic pro-
jection and that three faces of the box are visible simultane-
ously. The computed dimensions are approximately correct
up to a scaling factor. Also, special care is required to dis-
tinguish the actual box edges from lines in the box texture,
causing the method not to perform in real time.

Our approach computes the dimensions of boxes from
single perspective projection images, producing metric re-
constructions in real time and in a completely automatic
way. The method can be applied to boxes with arbitrary
textures, can be used when only two faces of the box are
visible, even when the edges of the target box are partially
occluded by other objects in the scene.

3 Computing Box Dimensions

We model boxes as parallelepipeds although real boxes
can present many imperfections (e.g., bent edges and cor-
ners, asymmetries, etc.). The dimensions of a paral-
lelepiped can be computed from the 3D coordinates of four
of its non-coplanar vertices. Conceptually, the 3D coordi-
nates of the vertices of a box can be obtained by intersect-
ing rays, defined by the camera’s center and the projections
of the box vertices on the camera’s image plane, with the
planes containing the actual faces of the box in 3D. Thus,
before we can compute the dimensions of a given box (Sec-
tion 3.3), we need to find the projections of the vertices on
the image (Section 3.1), and then find the equations of the
planes containing the box faces in 3D (Section 3.2).

In the following derivations, we assume that the origin of
the image coordinate system is at the center of the image,
with the X-axis growing to the right and the Y-axis growing
down, and assume that the imaged boxes have three visible
faces. The case involving only two visible faces is similar.
Also, assume that the images used for computing the dimen-
sions were obtained through linear projection (i.e., using a
pinhole camera). Although images obtained with real cam-
eras contain some amount of radial distortion, such distor-
tions can be compensated for with the use of simple warping
procedures [9].

3.1 Finding the Projections of the Vertices

The projection of the vertices can be obtained as the cor-
ners of the box silhouette. Although edge detection tech-
niques [2] could be used to find the box silhouette, these
algorithms tend to be sensitive to the presence of other high-
frequency contents in the image. In order to minimize the
occurrence of spurious edges and support the use of boxes
with arbitrary textures, we perform silhouette detection us-
ing a model for the background pixels. Since the images
are acquired using a handheld camera, proper modeling of
the background pixels is required and will be discussed in
detail in Section 4.

However, as shown in Figure 2 (a, b and c), a naive ap-
proach that just models the background and applies simple
image processing operations, like background removal and
high-pass filtering, does not properly identify the silhouette
pixels of the target box (selected by the user by pointing the
laser beams onto one of its faces). This is because the scene
may contain other objects, whose silhouettes possibly over-
lap with the one of the target box. Also, the occurrence of
some misclassified pixels (see Figure 2, c) may lead to the
detection of spurious edges. Thus, a suitable method was
developed to deal with these problems. The steps of our
algorithm are shown in Figures 2 (a, d, e, f and g).

The target box silhouette is obtained starting from one



Figure 2. Identifying the target box silhouette. Naive approach: (b) Background segmentation,
followed by (c) High-pass filter (note the spurious "edge" pixels). Proposed approach: (d) Contouring
of the foreground region, (e) Contour segmentation, (f) Grouping candidate segments for the target
box silhouette, and (g) recovery of supporting lines for silhouette edges and vertices.

of the laser dots, finding a silhouette pixel and using a
contour-following procedure [8]. The seed silhouette pixel
for the contour-following procedure is found stepping from
the laser dot within the target foreground region and check-
ing whether the current pixel is matches the background
model. In order to be a valid silhouette, both laser dots need
to fall inside of the contouring region. Notice this procedure
produces a much cleaner set of border pixels (Figure 2, d)
compared to results shown in Figure 2 (c). But the resulting
silhouette may include overlapping objects, and we need to
identify which border pixels belong to the target box. To fa-
cilitate the handling of the border pixels, the contour is sub-
divided into its most perceptually significant straight line
segments [15] (Figure 2, e). Then, the segments resulting
from the clipping of a foreground object against the limits
of the frame (e.g., segments h and i in Figure 2, e) are dis-
carded. Since a box silhouette defines a convex polygon, the
remaining segments whose two endpoints are not visible by
both laser dots can also be discarded. This test is performed
using a 2D BSP-tree [7]. In the example of Figure 2, only
segments c, d, e, o, p and q pass this test.

Still, there is no guarantee that all the remaining seg-
ments belong to the target box silhouette. In order to re-
strict the amount of possible combinations, the remaining
chains of segments defining convex fragments are grouped
(e.g., groups A and B in Figure 2, f). We then try to find the
largest combination of groups into valid portions of the sil-

houette. In order to be considered a valid combination, the
groups must satisfy the following validation rules: (i) they
must characterize a convex polygon; (ii) the silhouette must
have six edges (the silhouette of a parallelepiped with at
least two visible faces); (iii) the laser dots must be at the
same box face; and (iv) the computed lengths for pairs of
parallel edges in 3D must be approximately the same. In
the case of more than one combination of groups pass the
validation tests, the system discards this ambiguous data
and starts processing a new frame (our system is capable
of processing frames at the rate of about 34 fps).

Once the box silhouette is known, the projections of the
six vertices are obtained intersecting pairs of adjacent sup-
porting lines for the silhouette edges (Figure 2, g). Section 5
discusses how to obtain those supporting lines.

3.2 Computing the Plane Equations

The set of all parallel lines in 3D sharing the same di-
rection intersect at a point at infinite whose image under
perspective projection is called a vanishing point ω. The
line defined by all vanishing points from all sets of paral-
lel lines on a plane Π is called the vanishing line λ of Π.
The normal vector to Π in a given camera’s coordinate sys-
tem can be obtained multiplying the transpose of the cam-
era’s intrinsic-parameter matrix by the coefficients of λ [9].
Since the resulting vector is not necessarily a unit vector, it
needs to be normalized. Equations (1) and (2) show the re-



lationship among the vanishing points ωi, vanishing lines λi

and the supporting lines ej for the edges that coincide with
the imaged silhouette of a parallelepiped with three visible
faces. The supporting lines are ordered clockwise.

ωi = ei × ei+3 (1)
λi = ωi × ω(i+1)mod3 (2)

where 0 ≤ i ≤ 2, 0 ≤ j ≤ 5, λi = (aλi , bλi , cλi)T and ×
is the cross product operator. The normal NΠi to plane Πi

is then given by

NΠi =
RKT λi

‖RKT λi‖ (3)

where NΠi = (AΠi , BΠi , CΠi), 0 ≤ i ≤ 2. K is the matrix
that models the intrinsic camera parameters [9] and R is a
reflection matrix (Equation 4) used to make the Y-axis of
the image coordinate system grows in the up direction.

K =




f
sx

γ ox

0 f
sy

oy

0 0 1


 R =


 1 0 0

0 −1 0
0 0 1


 (4)

In Equation (4), f is the focal length, and sx and sy are
the dimensions of the pixel in centimeters. γ, ox and oy rep-
resent the skew and the coordinates of the principal point,
respectively.

Once we have NΠi , finding DΠi , the fourth coefficient
of the plane equation, is equivalent to solving the projec-
tive ambiguity and will require the introduction of one more
constraint. Thus, consider the situation depicted in 2D in
Figure 3 (right), where two laser beams, parallel to each
other and to the camera’s XZ plane, are projected onto one
of the faces of the box. Let the 3D coordinates of the laser
dots defined with respect to the camera coordinate system
be P0 = (XP0 , YP0 , ZP0)T and P1 = (XP1 , YP1 , ZP1)T ,
respectively (Figure 3, left). Since P0 and P1 are on the
same plane Π, one can write

AΠXP0 +BΠYP0 +CΠZP0 = AΠXP1 +BΠYP1 +CΠZP1

(5)
Using the linear projection model and given

pi = (xpi , ypi , 1)T , the homogeneous coordinates
of the pixel associated with the projection of point Pi, one
can reproject pi on the plane Z = 1 (in 3D) using

p′i = RK−1pi (6)

and express the 3D coordinates of the laser dots on the face
of the box as

XPi = xp′
i
ZPi , YPi = yp′

i
ZPi and ZPi (7)

Substituting the expression for XP0 , YP0 , XP1 and YP1

(Equation 7) in Equation (5) and solving for ZP0 , we obtain

ZP0 = kZP1 (8)

Figure 3. Top view of a scene. Two laser
beams apart in 3D by dlb project onto one box
face at points P0 and P1, whose distance in 3D
is dld. α is the angle between −L and NXZ .

where

k =
AΠxp′

1
+ BΠyp′

1
+ CΠ

AΠxp′
0
+ BΠyp′

0
+ CΠ

(9)

Now, let dlb and dld be the distances, in 3D, between
the two parallel laser beams and between the two laser dots
projected onto one of the faces of the box, respectively (Fig-
ure 3). Section 6 discusses how to find the laser dots on the
image. dld can be directly computed from NΠ, the nor-
mal vector of the face onto which the dots project, and the
known distance dlb:

dld =
dlb

cos(α)
=

dlb

−(NXZ · L)
(10)

where α is the angle between NXZ , the normalized projec-
tion of NΠ onto the plane defined by the two laser beams.
By construction, such a plane is parallel to the camera’s
XZ plane. Therefore, NXZ is obtained by dropping the
Y coordinate of NΠ and normalizing the resulting vector.
L = (0, 0, 1)T is the vector representing the laser beam di-
rection. dld can also be expressed as the Euclidean distance
between the two laser dots in 3D:

d2
ld = (XP1 −XP0)

2 +(YP1 −YP0)
2 +(ZP1 −ZP0)

2 (11)

Substituting Equations (7), (8) and (10) into (11) and solv-
ing for ZP1 , one gets

ZP1 =

√
d2

ld

ak2 − 2bk + c
(12)

where a = (xp′
0
)2 + (yp′

0
)2 + 1, b = xp′

0
xp′

1
+ yp′

0
yp′

1
+ 1

and c = (xp′
1
)2+(yp′

1
)2+1. Given ZP1 , the 3D coordinates

of P1 can be computed as

P1 = (XP1 , YP1 , ZP1) = (xp′
1
ZP1 , yp′

1
ZP1 , ZP1) (13)



The projective ambiguity can be finally removed by com-
puting the DΠ coefficient for the plane equation of the face
containing the two dots:

DΠ = −(AΠXP1 + BΠYP1 + CΠZP1) (14)

3.3 Computing the Box Dimensions

Having computed the plane equation, one can recover
the 3D coordinates of vertices of that face. For each such
vertex v on the image, we compute v′ using Equation (6).
We then compute its corresponding ZV coordinate by sub-
stituting Equation (7) into the plane equation for the face.
Given ZV , both XV and YV coordinates are computed us-
ing Equation (7). Since all visible faces of the box share
some vertices with each other, the D coefficients for the
other faces of the box can also be obtained, allowing the
recovery of the 3D coordinates of all vertices on the box
silhouette, from which the dimensions are computed.

Although not required for computing the dimensions of
the box, the 3D coordinates of the inner vertex (see Fig-
ure 1, right) can also be computed. Its 2D coordinates can
be obtained as the intersection between three lines (Fig-
ure 1, right). Each such a line is defined by a vanishing
point and the silhouette vertex falling in between the two
box edges used to compute that vanishing point. Since it is
unlikely that these three lines will intersect exactly at one
point, we approximate it using least-squares. Given the in-
ner vertex 2D coordinates, its corresponding 3D coordinates
can be computed using the same algorithm used to compute
the 3D coordinates of the other vertices.

4 A Model for Background Pixels

One of the most popular techniques for object segmenta-
tion is chroma keying [20]. Unfortunately, standard chroma
keying techniques do not produce satisfactory results for our
application. Shading variations in the background and shad-
ows cast by the boxes usually lend to misclassification of
background pixels. Horprasert et al. [10] describe a statis-
tical method that computes a per-pixel model of the back-
ground from a set of static background images. While this
technique is fast and produces very good segmentation re-
sults for scenes acquired from a static camera, it is not ap-
propriate for use with moving cameras.

In order to support a moving camera, we developed an
approach that works under different lighting conditions us-
ing a background with a known color. The approach com-
putes a statistical model of the background considering mul-
tiple possible shades of the background color and proved to
be robust, lending to very satisfactory results.

The algorithm takes as input a set of n images Ii of the
background acquired under different lighting conditions. In

the first step, we compute E, the average color of all pixels
in images Ii, and the eigenvalues and eigenvectors associ-
ated with the colors of those pixels. E and the eigenvector
associated with the highest eigenvalue define an axis in the
RGB color space, called the chromaticity axis. The chro-
maticity distortion d of a given color C can be computed as
the distance from C to the chromaticity axis.

After discarding the pixels whose projections on the
chromaticity axis have at least one saturated channel (they
lend to misclassification of bright foreground pixels), we di-
vide the chromaticity axis into m slices (Figure 4). For each
slice, we compute d̄j and σd̄j

, the mean and the standard de-
viation, respectively, for the chromaticity distortion of the
pixels in the slice. Then, we compute a threshold dTj for
the maximum acceptable slice chromaticity distortion con-
sidering a confidence level of 99% as dTj = d̄j + 2.33σd̄j

.
Finally, the coefficients of the polynomial background

model are computed by fitting a curve through the dT val-
ues at the centers of the slices. Once the coefficients have
been computed, the dT values are discarded and the tests
are performed against the polynomial. Figure 4 illustrates
the case of a color Ck being tested against the background
color model. C′

k is the projection of Ck on the chromaticity
axis. In this example, as the distance between Ck and the
chromaticity axis is bigger than the threshold defined by the
polynomial, Ck will be classified as foreground.

Figure 4. Chromaticity axis. The curve is the
polynomial fit to the chromaticity distortions.

Changing the background color only requires obtaining
samples of the new background and computing the new val-
ues for the chromaticity axis and the coefficients of the poly-
nomial. According to our experiments, 100 slices and a
polynomial of degree 3 produce very satisfactory results.

5 Identifying Almost Collinear Segments

To compute the image coordinates of the box vertices,
first we need to obtain the supporting lines for the silhouette
edges. We do this using a Hough Transform procedure [5].
However, the conventional voting process and the detection
of the most significant lines had shown to be a bottleneck to



our system. To reduce the amount of computation, an alter-
native to the conventional voting process was developed.

Although the silhouette pixels are organized into its most
perceptually significant straight line segments, we don’t
known whether two or more of these segments are pieces
of the same box edge. The new voting scheme consists in
casting votes directly for the segments, instead of for indi-
vidual pixels. Thus, for each perceptually significant seg-
ment, the parameters of the line are computed using the av-
erage position of the set of pixels that are represented by
the segment and by the eigenvector of the highest eigen-
value of the pixel distribution. The use of the eigenvector
allows handling lines with arbitrary orientations in a con-
sistent way.

We distribute the votes in the parameter space by means
of a Gaussian kernel, with votes weighted by the segment
length. The use of a Guassian kernel distributes the votes
around a neighborhood, allowing the identification of ap-
proximately collinear segments. This is a very important
feature, allowing the system to better handle discretization
errors and boxes with slightly bent edges. The size of
the used Gaussian kernel was experimentally defined as a
11 × 11 pixels. Special care must be taken when the θ pa-
rameter is close to 0◦ or 180◦. In this situation, the voting
process continues in the diagonally opposing quadrant, at
the −ρ position (see peaks labeled as d and p in Figure 5).

Figure 5. Hough Transform parameter space:
conventional (top) and obtained with the new
voting scheme (bottom). Labeled dots repre-
sent the peaks.

Using the new approach, the voting process and the peak
detection are improved because the amount of cells that re-
ceive votes is greatly reduced. Figure 5 shows the parameter
space after the traditional (top) and the new (bottom) voting
processes have been applied to the segments shown in Fig-
ure 2 (f). The parameter space was discretized using 360
angular values in the range θ = [0, 180] as well as 1600 ρ
values in the range [−400, 400].

6 Finding the Laser Dots

The ability to find the proper positions of the laser dots
in the image can be affected by several factors such as the
camera’s shutter speed, the box materials and textures, and
ambient illumination. Although we are using a red laser
(650nm class II), we cannot rely simply on the red channel
of the image to identify the positions of the dots. Such a
procedure would not distinguish between the laser dot and
red texture elements on the box. Since the pixels corre-
sponding to the laser dots present very high luminance, we
identify them by thresholding the luminance image. How-
ever, just simple thresholding may not work for white boxes
or boxes containing white regions, which tend to have large
areas with saturated pixels. We solved this problem by set-
ting the camera’s shutter speed so that the laser dots are the
only elements in the image with high luminance.

Since the image of a laser spot is composed by several
pixels, we approximate the actual position of the dot by the
centroid of its pixels. According to our experiments, a vari-
ation of one pixel in the coordinates of the estimated center
of the laser spot produces a variation of a few millimeters
in the computed dimensions. These numbers were obtained
assuming a camera standing about two meters from the box.

Before the position of the laser dots can be used for
computing dimensions, one needs to identify the face onto
which the dots fall. This is done after computing the posi-
tion of the inner vertex (Section 3.3) and checking whether
both dots fall inside one of the three quadrilaterals defined
by the edges of the box (Figure 1, right).

The system may fail to properly detect the laser dots if
they project onto some black region or if the surface con-
tains specularities that can lead to peaks in the luminance
image. This, however, can be avoided by aiming the beams
on other portions of the box. Due to the construction of
the scanner prototype and some epipolar constraints [9], we
only need to search for the laser dots inside a small window
in the image.

7 Results

We have built a prototype of a scanner for comput-
ing box dimensions and implemented the techniques de-
scribed in the paper using C++. The system was tested
on several real boxes. For a typical scene, such as the
one shown in Figure 2, it can process the video and com-
pute box dimensions at about 34 fps. As we replace the
line-based voting scheme with the traditional pixel-based
Hough Transform voting scheme (Figure 5, top), the rate
drops to only 9 fps. This illustrates the effectiveness of
the proposed voting solution. These measurements were
made on a 1.91 GHz PC with 768 MB of memory. A



video illustrating the use of our scanner can be found at
http://www.inf.ufrgs.br/˜laffernandes/boxdimensions.

Figure 1 (left) shows the scanner prototype whose hard-
ware is comprised of a firewire color camera (Point Grey
Research DragonFly with 640x480 pixels, with sx = sy =
7.4µm [19]), a 16mm lens (Computar M1614, with man-
ual focus, no iris and 30.9 degrees horizontal field of view)
and two laser pointers. The camera is mounted on the plas-
tic box and the laser pointers were aligned and glued to the
sides of this box. In such an assembly, the laser beams are
15.8 cm apart. For our experiments, we set the camera’s
shutter to 0.01375 seconds and acquired pictures of boxes
from distances varying from 1.7 to 3.0 meters to the camera.
The background was created using a piece of green cloth
and its statistical model was computed from a set of 23 im-
ages. Figure 6 shows some examples of boxes used to test
our system. The boxes in the bottom row are particularly
challenging: the one on the left is very bright and has a re-
flective plastic finishing; the one on the right is mostly cov-
ered with red texture. The dimensions of these boxes vary
from 13.9 to 48.3 cm. In our experiments, we assumed that
the acquired images have no skew (i.e., γ = 0) and the prin-
cipal point is at the center of the image (i.e., ox = oy = 0).
Due to the small field of view, we also assumed the images
contain no significant radial distortion.

Figure 6. Examples of boxes used for testing.

The geometry of the box is somewhat different from that
of a parallelepiped because of imperfections introduced dur-
ing the construction process and handling. For instance,
bent edges, different sizes for two parallel edges of the same
face, lack of parallelism between faces expected to be par-
allel, and warped corners are not unlikely to be found in
practice. Such inconsistencies lend to errors in the orien-
tation of the silhouette edges, which are cascaded into the
computation of the box dimensions.

In order to estimate the inherent inaccuracies of the
proposed algorithm, we implemented a simulator that per-
forms the exact same computations, but on images gener-

ated with a pinhole camera model using computer graphics
techniques. In this case, the boxes are exact parallelepipeds.
The positions of the laser dots on a box face are determined
by intersecting two parallel rays with one box face. As in
the case of the physical device, the camera can move freely
in the 3D scene. Using images generated by the simulator,
our system can recover the dimensions of the box with an
average relative error of 1.07%. Next, we analyze some of
the results obtained on real boxes.

7.1 Statistical Analysis on Real Boxes

In order to evaluate the proposed approach, we carried
out a few statistical experiments. Due to space limitations,
we will describe only one of these experiments in detail
and will present some data about other results. We selected
a well-constructed box (shown in Figure 6, top right) and
manually measured the dimensions of all its edges with a
ruler. Each edge was measured twice, once per shared face
of the edge. The eight measurements of each box dimen-
sions were averaged to produce a single value per dimen-
sion. All measurements were made in centimeters. The
average values for this box are 29.45 cm, 22.56 cm and
15.61 cm, respectively. We then used our system to col-
lect a total of 30 measurements of each dimension of the
same box. For each collected sample, we projected the laser
beams on different parts of the box. We used this data to
compute the mean, standard deviation and confidence inter-
vals for each of the computed dimensions. The confidence
intervals were computed as CI =

[
x̄ − tγ

σ√
n
, x̄ + tγ

σ√
n

]
,

where x̄ is the mean, σ is the standard deviation, n is the
size of sample and tγ is a t−Student variable with n − 1
degrees of freedom, such that the probability of a measure
x belongs to CI is γ. The tightest the CI , the more precise
are the computed values.

Table 1 shows the computed confidence intervals for val-
ues of γ = 80%, 90%, 95% and 99%. Note that the values
of the actual dimensions fall inside these confidence inter-
vals, indicating accurate measurements.

Table 1. Confidence intervals for the measure-
ments for the box in Figure 6 (top right)

CI(γ) dim 1 dim 2 dim 3
CI(80%) [27.99, 29.60] [21.83, 22.60] [15.12, 15.82]
CI(90%) [27.76, 29.83] [21.72, 22.72] [15.02, 15.92]
CI(95%) [27.55, 30.03] [21.62, 22.81] [14.93, 16.01]
CI(99%) [27.39, 30.20] [21.54, 22.89] [14.86, 16.08]

Another estimate of the error can be expressed as the
relative error ε = σ/x̄. Table 2 shows data about the di-
mensions of five other boxes and the relative errors in the



measurements obtained with our scanner prototype. The er-
rors were computed with respect to the average of the com-
puted dimensions over a set of 20 measurements. In these
experiments, the operator tried to keep the device still while
the samples were collected. The relative errors varied from
0.20% up to 11.20%, which is in accordance with the ac-
curacy predicted by the experiment summarized in Table 1.

Table 2. Relative errors for five real boxes.
Real Size (cm) Relative Error (%)

dim 1 dim 2 dim 3 n dim 1 dim 2 dim 3
35.5 32.0 26.9 68 1.44 2.68 1.40
28.6 24.1 16.8 61 6.81 0.80 11.20
36.0 25.2 13.8 50 5.19 10.15 9.43
29.9 29.1 22.9 69 0.20 5.47 10.22
48.2 45.5 28.3 20 3.98 4.55 0.91

8 Conclusions and Future Work

We have presented a completely automatic approach for
computing the dimensions of boxes from single perspective
projection images in real time. The approach uses infor-
mation extracted from the silhouette of the target box and
removes the projective ambiguity with the use of two par-
allel laser beams. We demonstrated the effectiveness of the
proposed techniques by building a prototype of a scanner
and using it to compute the dimensions of several real boxes
even when the edges of the target box are partially occluded
by other objects and under different lighting conditions. We
also presented a statistical discussion of the measurements
made with our scanner prototype.

We have also introduced an algorithm for extracting
box silhouettes in the presence of partially occluded edges,
an efficient voting scheme for grouping approximately
collinear segments using a Hough Transform, and a statis-
tical model for background that works with a moving cam-
era. Our algorithm for computing box dimensions can still
be used with applications requiring heterogeneous back-
grounds. In these situations, background detection can be
performed using a technique like the one described in [10].
In this case, the camera should remain static while the boxes
are moved on some conveyor belt.

We believe that these ideas may lend to optimizations
on several procedures that are currently based on manual
measurements of box dimensions. We are currently explor-
ing ways of using arbitrary backgrounds, the use of a single
laser beam, and analyzing the error propagation through the
various stages of the algorithm.

References

[1] P. Besl. Active Optical Range Imaging Sensors. Advances
in Machine Vision, in Jorge Sanz (editor), pages 1–63.
Springer-Verlag, 1988.

[2] J. Canny. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
8(6):679–698, November 1986.

[3] M. B. Clowes. On seeing things. Artificial Intelligence,
2:79–116, 1971.

[4] A. Criminisi, I. Reid, and A. Zisserman. Single view metrol-
ogy. In Proceedings of the 7th IEEE International Confer-
ence on Computer Vision (ICCV-99), volume I, pages 434–
441, Kerkyra, Greece, September 20-27 1999. IEEE.

[5] R. O. Duda and P. E. Hart. Use of the Hough transformation
to detect lines and curves in pictures. Communications of the
ACM, 15(1), 1972.

[6] F. Figueroa and A. Mahajan. A robust method to determine
the coordinates of a wave source for 3-D position sensing.
ASME Journal of Dynamic Systems, Measurements and Con-
trol, 116:505–511, September 1994.

[7] H. Fuchs et al. On visible surface generation by a priori tree
structures. In Proc. of SIGGRAPH 1980, pages 124–133.

[8] J. Gauch. KUIM, image processing system.
http://www.ittc.ku.edu/ jgauch/research, 2003.

[9] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[10] T. Horprasert, D. Harwood, and L. S. Davis. A statis-
tical approach for real-time robust background subtraction
and shadow detection. In Proc. of the 7th IEEE ICCV-99,
FRAME-RATE Workshop, 1999.

[11] D. A. Huffman. Impossible objects as nonsense sentences. In
Machine Intelligence 6, pages 295–324. Edinburg University
Press, 1971.

[12] A. Laurentini. The visual hull concept for silhouette-based
image understanding. IEEE Trans. on PAMI, 16(2):150–162,
February 1994.

[13] M. Levoy et al. The digital Michelangelo project: 3D scan-
ning of large statues. In Proc. of SIGGRAPH 2000, pages
131–144, 2000.

[14] H. C. Longuet-Higgins. A computer algorithm for recon-
structing a scene from two projections. Nature, 293:133–
135, September 1981.

[15] D. G. Lowe. Three-dimensional object recognition from sin-
gle two-dimensional images. Artificial Intelligence, 31:355–
395, March 1987.

[16] K. Lu. Box dimension finding from a single gray-scale im-
age. Master’s thesis, SUNY Stony Brook, New York, 2000.

[17] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and
L. McMillan. Image-based visual hulls. In Proc. of SIG-
GRAPH 2000, pages 369–374, 2000.

[18] L. Nyland et al. The impact of dense range data on com-
puter graphics. In Proc. of Multi-View Modeling and Analy-
sis Workshop (MVIEW99) (Part of IEEE CVPR99), 1999.

[19] Point Grey Research Inc. Dragonfly IEEE-1394 Digital
Camera System, 2.0.1.10 edition, 2002.

[20] P. Vlahos. Composite color photography. U.S. Patent
3.158.477, 1964.

[21] D. L. Waltz. Generating semantic descriptions from draw-
ings of scenes with shadows. Technical Report MAC-TR-
271, Cambridge, MA, USA, 1972.


