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Abstract

We present a lossless compressor for multispectral im-
ages that exploits interband correlations. Each band is di-
vided into blocks, to which a wavelet transform is applied.
The wavelet coefficients are predicted by means of a linear
combination of coefficients belonging to the same orienta-
tion and spatial location. The prediction errors are then en-
coded with an entropy - based coder. Our original contribu-
tions are i) the inclusion, among the candidates for predic-
tion, of coefficients of the same location from other spectral
bands, ii) the calculation of weights tuned to the landscape
being processed, iii) a fast block classification and a dif-
ferent band-ordering for each landscape. Our compressor
reduces the size of an image to about a fourth of its original
size. Our method is equivalent to LOCO-I, on 3 of the im-
ages tested it was superior. It is superior to other lossless
compressors: WinZip, JPEG2000 and PNG.

1. Introduction

The high cost of transmitting and storing large amounts
of data is a major concern. It imposes a permanent chal-
lenge as to the design of efficient techniques for data com-
pression. Satellite images present a problem, due to their
size: e.g., an 8-band Landsat7 image, plus a panchromatic
band, typically requires 600 MB to be stored. The storage
of original satellite images imposes in addition one nontriv-
ial condition: compression must be lossless.

Despite the existence of different excellent lossless im-
age compressors, such as JPEG-LS or LOCO-I [9], SPIHT
[12], CALIC [17], CREW [2], JPEG2000[14], and com-
mercial products such as MrSID, we think that there is room
for improvement. Landsat 7 images are eight-band multi-
spectral images obtained from spectrally filtering radiation
at visible (bands 1,2,3), near-infrared (band 4), short-wave
infrared (bands 5,7), and thermal (bands 6.1,6.2) frequency
bands from the sun-lit earth. In figure 1 we have a Landsat

Figure 1. Eight bands of a LANDSAT 7 image.

Band Wavelength
1 0.45 − 0.52 µm
2 0.52 − 0.60 µm
3 0.63 − 0.69 µm
4 0.76 − 0.90 µm
5 1.55 − 1.75 µm

6.1,6.2 10.4 − 12.5 µm
7 2.08 − 2.35 µm

Table 1. Wavelength of each band.

7 image, and in table 1 are listed the wavelengths of each
spectral band.

The bands of multispectral images are highly correlated.
This fact should be taken into consideration when design-
ing a compressor for such images. To our knowledge, none
of the mentioned image coders – and no available satellite
image coder– exploits the interband correlations of multi-
spectral images in order to improve compression.

LOCO-I [9] is context-based predictive code. However,
its otherwise excellent performance decreases in the case
of noisy satellite SAR images, which have multiplicative
speckle noise. It becomes necessary to find algorithms



based on the deepest structure of the image. For that rea-
son, we will apply the multiresolution analysis that wavelets
provide.

Traditional wavelet transforms [7] yield real coefficients,
which is not advisable for lossless compression. Integer-to-
integer wavelets [1] have been developed, which are used in
the SPIHT compressor [12] , and in the JPEG 2000 norm
[14]. Yet they do not take advantage of the correlations be-
tween spectral bands of a satellite image.

In section 2 we introduce the integer-to-integer wavelet
transform that we apply on blocks of the image. In section 3
we explain our different models for linear prediction of the
wavelet coefficients, which is followed by entropy-based
encoding of the prediction errors. For the sake of reducing
the entropy of these errors, we take advantage of the corre-
lations between bands in the multispectral images, making
predictions with the coefficients belonging to other spec-
tral bands that have already been encoded. Another origi-
nal contribution consists of tuning the weights for the lin-
ear prediction according to the landscape being processed,
which requires a fast block classification.

In section 4 we explain our fast block classification, in
section 5 we have our numerical results and in section 6 our
concluding remarks.

2 Wavelet Transforms

The wavelet transform has been successfully applied to
solve different signal processing problems [15, 8]. It is in-
vertible and efficient. When applied to an image, the image
is split into its details at different scales, orientations and
positions. The transformed image is decorrelated.

The smaller the entropy of the data, the better it can be
compressed with entropy- based coders [3]. For a given
variance, the differential entropy is maximized when the
distribution of the data is Gaussian. The non-Gaussian dis-
tribution of wavelet coefficients indicates that the wavelet
transform is an adequate tool for compression.

We work with multispectral images typically having 8
spectral bands; the wavelet transform is applied to each
band separately.

The large size of each band (around 7000 rows and
columns) makes it unpractical to transform it as a whole;
instead, we calculate the wavelet transform on blocks of
256 × 256. This partition will not have any side effect be-
cause compression is lossless.

Each step of the wavelet transform is carried out by filter-
ing the data – with a lowpass filter and a highpass filter – fol-
lowed by downsampling. In the case of traditional wavelets
[7], the filters are made of real numbers. The values of the
original image are integers in the range [0 − 255], and after
filtering we obtain real coefficients: the transformed image
takes more place than the original one, which is not advis-

able for compression. Different integer-to-integer wavelets
[1, 13] have been developed, which are used in the SPIHT
compressor [12], and in the JPEG 2000 [14]. These trans-
forms are reversible when the values of the original image
are integers, as is the case.

The most simple integer to integer transform is a variant
of the Haar wavelet, known as the S transform [11]. Given
the original signal sn, n = 1...N − 1, we define one step of
the S transform as the sequences cn (approximation or low-
pass coefficients) and dn (detail or high-pass coefficients):

cn =
⌊

s2n + s2n+1

2

⌋
, (1)

dn = s2n − s2n+1. (2)

To obtain more steps of the transform, the formula is
to be applied succesively to the approximation coefficients.
The S+P transform was introduced by Said and Pearlman
[11]. This consists in applying the S transform and then
operating a differential prediction on the detail coefficients,
rounding the result and subtracting it from dn to give d ′

n.
Let {cn, dn} be the S transform of the signal sn. Calcu-

late

d̂n =
1
4
�cn +

3
8
�cn+1 − 1

4
dn+1, (3)

where

�cn = cn−1 − cn, (4)

and obtain the new detail coefficients

d ′
n = dn −

⌊
d̂n +

1
2

⌋
. (5)

Then {cn, d ′
n} is the S+P transform of sn (one step). To

obtain the transform of an image, the above formulae are
to be applied to the rows of the image and to the resulting
columns.

In order to evaluate the performance of S+P compared to
different integer-to-integer wavelet transforms: (2,2), (6,2)
and (2+2,2) [1], the entropy of the transformed file was
computed on a Landsat 7 image – see figure 2. Clearly the
performance of the S+P transform was superior to the oth-
ers. The same behaviour was observed when the transforms
were tested on other images. So the S+P was the transform
chosen for our compressor.

The S+P is not an orthogonal transform; errors in the
transformed coefficients – such as quantization errors– are
magnified in the reconstructed image. This, however, is not
an issue: we aim at lossless compression and the wavelets
coefficients are not be quantized.
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Figure 2. Entropies of different integer to in-
teger wavelet transforms.

Figure 3. A block of an image.

3 Prediction of Wavelet Coefficients

Wavelet transforms decorrelate images, eliminating spa-
tial redundancy, i.e. the entropy of the transformed coeffi-
cients is much lower than that of the original image. Even
so, similarities can be observed between the absolute values
of the coefficients corresponding to the same spatial loca-
tion at different scales – see the block of an original image
in figure 3, and its wavelet transform in figure 4, where we
have the 9 detail subbands and 1 approximation subband
of 3 steps of the S+P transform. Inside white circles and
squares are observable similarities.

Figure 5 shows the order in which the wavelet coef-
ficients are encoded or sent. We take advantage of the
mentioned similarities, confirmed by numerous tests [5],
in order to improve compression. Instead of encoding the

Figure 4. S+P transformed block. In white,
coefficients above a threshold. Circled and
squared: similarities between subbands.

wavelet coefficients directly, each wavelet coefficient is pre-
dicted with a linear combination of coefficients that have
already been encoded: we encode the difference between
the predicted coefficient and its real value. If prediction is
accurate, prediction errors are small and this favoures com-
pression. Afterwards, these prediction errors are encoded
by means of an entropy-based coder.

In figure 6 we have, in black, the actual wavelet coeffi-
cient to be encoded, in light grey, the coefficients that have
been encoded at this stage – these coefficients are available
both to the encoder and to the decoder–, and in dark grey,
the coefficients to be encoded.

We follow Buccigrossi and Simoncelli [5] in the predic-
tion of wavelet coefficients: their work was applied to the
lossy compression of photographic images. The prediction
of each wavelet coefficient is performed with a linear com-
bination of i) its neighbours at the same scale, and ii) coeffi-
cients corresponding to coarser scales in the same spatial lo-
cation. This implies a model for the statistical dependencies
between wavelet coefficients at different scales: this model
states that the dependencies are fixed inside each subband,
and do not depend on the coefficients’ actual value. Candi-
dates for prediction are shown in figure 7; they must have
been encoded before the actual coefficient, in order to be
able to make the same prediction at the decoder.

To include all candidates would be a heavy computa-
tional overload. For the training phase, offline we ran a
greedy algorithm to determine a few of the best candidates
for each subband. This algorithm added candidates, one by
one. The weights for the linear combination were calculated
by least squares, over many transformed blocks of images,
and averaged. We chose the candidates that minimized the

3



Figure 5. Ordering of the wavelet subbands.

entropy of the prediction errors. After adding 3 candidates,
there was no significant improvement if we added more.
The weights and the position of the best predictors (can-
didates) for each subband were then incorporated into the
compressor.

In order to reduce interband correlations for Landsat im-
ages, the model proposed in [5] was slightly modified. We
develop here what was sketched in our earlier work [4]. Co-
efficients are now predicted by taking into account: iii) the
coded coefficients in the same position belonging to other
spectral bands, as well as i) and ii). As a consequence, al-
though each block is processed independently, the informa-
tion of the 8 blocks having the same position in different
bands has to be available in memory. In figure 8 are shown
all the candidates for prediction of one wavelet coefficient.
The actual coefficient is colored in black, the candidates in
the same spectral band in white, and the candidates from
other bands in light grey. As a result of the high interband
correlation, the candidates from other spectral bands were
frequently chosen when our compressor was running. Since
the candidates have to be available to the decoder, in order
to recover the image from the compressed code, they have
to belong to already processed bands. This induces an or-
der for processing the spectral bands of each block, where
highly correlated bands are consecutive [16].

At this stage our results were not too good. In the
training phase we noticed great variations both in the po-
sitions of the best candidates for linear prediction and in the
weights; these variations were noticeable when the land-
scape changed.

Figure 6. Actual coefficient (black) and en-
coded coefficients (light grey).

4 Block classification

We subsequently modified the model proposed in section
3 for the statistical dependencies of wavelet coefficients. In
this new model, the dependencies are different according to
the landscape of the block. That is, we consider that inside
a block belonging to a certain landscape, each wavelet co-
efficient is statistically dependent of i) its neighbours at the
same scale in the same subband, ii) the coefficients corre-
sponding to coarser scales in the same spatial location from
other subbands, and iii) the coefficients in the same position
belonging to other spectral bands.

A quick block classification was needed, in order to: a)
run an algorithm offline that calculated the positions of the
best predictors and their weights for each landscape, these
were included into the compressor; b) when the compres-
sor was running, to determine to which class the block be-
longed, so as to operate with the predictors and weights of
that class.

If the reflectance of the earth is plotted in terms of the
wavelength, different typical curves are obtained according
to each landscape. These reflectance curves are called the
spectral signature of the landscape [6, 10]. The reflectance
curves for water, snow, vegetation and bare soil are shown
in figure 9. For our block classification, first each pixel is
classified according to its spectral signature. We developed
short ad hoc classification algorithms based on the shape of
these reflectance curves.

For example, in the case of vegetation: notice (figure
9) that the reflectance curve for vegetation has a sharp in-
crease at around wavelength 0.7 µm. Now a Landsat im-
age consists of 8 samples at the wavelengths given in table
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Figure 7. Candidates (white) for the prediction
of an actual coefficient (black).

Figure 8. Candidates from other bands (in
grey).

1 for each position (pixel). As a consequence of this in-
crease we have Band3 < Band4. Our algorithm classi-
fies a pixel as vegetation if the well-known vegetation index
Band4 − Band3 is positive. Similarly, a pixel is classi-
fied as water if Band4 − Band3 < 0 and the values for
band 4 and band 7 are small. If there are many classes in-
side a block, the class having the most pixels determines
the classification of the whole block. For the block of fig-
ure 10, the pixels classified as water are shown in figure
11, the ones classified as vegetation are shown in figure 12,
and the ones classified as city are shown in figure 13. If
a block contains pixels of different classes, the calculated
predictors and weights are not optimal for that block. Since
we were pursuing lossless compression – and not an exact
class segmentation– the only effect is that the prediction is
less accurate and our compression rate is slightly less for
blocks which have a mixture of classes, but there is no loss

Figure 9. Reflectance curves for different
types of landscapes.

Figure 10. A block to be classified.

of information. The same holds if a pixel is missclassified :
there will be less compression but no loss of information.

5 Results

Our compressor was tested on 4 Landsat 7 images from
Argentina: Buenos Aires, Santa Cruz, San Luis and Men-
doza. In subsequent graphs we show how much we gained
by the algorithms applied by our compressor for the image
of San Luis. In figure 14 we have the entropy of each band
of the original image (dotted) and the entropy of the wavelet
S+P coefficients (solid); the gap between both curves indi-
cates how much we have gained by applying the wavelet
transform.

In figure 15 we have the bpp (bits per pixel) for each
band of the S+P wavelet coefficients (dotted), versus our
method based on the prediction of wavelet coefficients. The
gap indicates how much we have gained by prediction.

In figure 16 we have the performance of our method, in
bpp, compared to the results of other lossless compressors :
Winzip, LOCO-I, JPEG200 and PNG, applied to the image
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Figure 11. Pixels classified as water (in white).

Figure 12. Pixels classified as vegetation
(white).

of San Luis. The different shades of the bars indicate the
volume occupied by each band in the compressed image.
We have the final results of the 5 mentioned lossless com-
pressors applied to the mentioned 4 images of Argentina, in
table 2. Landsat 8-band images have 8 bpp. For the image
of San Luis, each band has 7044 rows and 7476 columns.
For San Luis, our method gives 2.07 bpp, that is, a saving
of 5.93 bpp, and a compression rate of 3.86:1. In table 3
are the execution times taken for a whole image –on a Pen-
tium IV running at 2.4 GHz– by different compressors and
ours. Although our compressor is slower than several other
methods, our aim was to construct a lossless compressor
that would have high compression rates for storing images
at the base. In the balance between compression and speed,
we chose to favour compression.

Figure 13. Pixels classified as city (in white).

Figure 14. Entropy of the S+P transform (solid
line) vs original image (dotted line).

6 Conclusions

We have developed an image compressor that exploits
the high correlation between bands of the Landsat7 images.
The model for dependencies of wavelet coefficients pro-
posed by Simoncelli and Buccigrossi was modified so as
to include information from other spectral bands for an effi-
cient prediction of the wavelet coefficients. This model was
further modified so as to tune the weights and the positions
of the predicting coefficients to the landscape of the block
being processed. This required a fast block classification,
and a different band ordering according to the landscape.

Our results are highly satisfactory, and on all the images
tested the compression rates of our compressor are superior
to those of PNG, JPEG2000 and WinZip. The performance
of our method is comparable to that of LOCO-I; in several
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Figure 15. S+P transform(dotted) vs our
method (solid) in bpp.

Figure 16. Results in accumulated bpp.

cases our method outperforms LOCO-I.
For future work we plan to perform a nonlinear predic-

tion of wavelet coefficients, and integrate this prediction
into our compressor.
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