
A Collision Detection and Response Scheme
for Simplified Physically Based Animation

Yalmar Ponce Atencio1, Claudio Esperança1, Paulo Roma Cavalcanti1, Antonio Oliveira1
1PESC - Programa de Engenharia de Sistemas e Computação

COPPE / Universidade Federal do Rio de Janeiro
{yalmar, esperanc}@lcg.ufrj.br

Abstract

In this paper we describe a system for physical anima-
tion of rigid and deformable objects. These are represented
as groups of particles linked by linear constraints, while a
Verlet integrator is used for motion computation. Unlike
traditional approaches, we accomplish physical simulation
without explicitly computing orientation matrices, torques
or inertia tensors. The main contribution of our work is re-
lated to the way collisions are handled by the system, which
employs different approaches for deformable and rigid bod-
ies. In particular, we show how collision detection using the
GJK algorithm [9] and bounding sphere hierarchies can be
combined with the projection based collision response tech-
nique described by Jakobsen [14].

1 Introduction

Physically based simulations usually require a great deal
of computational resources in order to perform geometri-
cally accurate collision detection. Physical attributes such
as velocity, acceleration, forces, torques and momenta must
be computed at each frame of the animation. Moreover, the
response to the collision usually requires the computation
of several expensive mathematical parameters, notably Ja-
cobian matrices.

In 1999, Thomas Jakobsen [14] proposed a simplified
scheme that addresses many of these difficulties. In a nut-
shell, his approach combines the following techniques: (1)
physical objects (rigid bodies, ropes, cloth, etc.) are repre-
sented by means of particle systems with linear constraints;
(2) particles dynamics are simulated through Verlet integra-
tion; (3) approximate rather than exact square roots are used
in distance computations; (4) constraints are resolved using
relaxation; (5) collision response is achieved by projecting
penetrating vertices onto penetrated surfaces.

This approach is recommended for games, since it dis-

misses some expensive features which are necessary for a
correct physical simulation. The resulting animation is very
convincing, although not physically correct in a strict sense.
Several important details, however, were left out of Jakob-
sen’s work. In particular, the connection between the colli-
sion detection engine output and the collision response al-
gorithms is only hinted at. More importantly, no strategy
is suggested for dealing with even a modest increase in the
number of linear constraints, which may compromise the
overall system performance.

In this paper we try to address these issues by describ-
ing a prototype system in which several tentative solutions
are introduced. More specifically, we describe (1) a scheme
for separating colliding objects by moving vertices towards
what we call aprojection point, which is computed as a
by-product of the collision detection engine, and (2) a lin-
ear constraint ordering scheme which enables the relaxation
loop to converge more rapidly.

2 Previous work

Physically based modeling and animation have been ex-
tensively researched in the last years. Different approaches
have been proposed (e.g. [3, 20, 12]) and great effort has
been put in the construction of accurate and reliable algo-
rithms.

Regardless of which physical formulation is employed,
a key component of any simulation is the collision detec-
tion engine. This component is responsible for quickly an-
swering geometric queries involving all objects in the sim-
ulation. These include not onlywhethertwo given objects
intersect, but alsowhenandwherethe collision occurred.
The interested reader will find a comprehensive coverage of
the subject in two recent surveys: [18, 16].

A key concept used in many implementations of colli-
sion detection engines is that of a bounding volume hierar-
chy. Axis-aligned bounding boxes (AABBs) are quite pop-
ular [6, 22], as are oriented bounding boxes (OBBs) [10].

Other polyhedra have also been proposed as bounding prim-
itives – discrete orientation polytopes (DOPs) [17], for in-
stance. Sphere hierarchies are also adopted by many re-
searchers [23, 15] since spheres enjoy the nice property of
being rotation invariant.

Once a pair of bounding volumes for potentially inter-
secting objects are found, one must perform an exact col-
lision test between the objects themselves. If the objects
are convex, one may resort to the the notion ofseparating
planes. Given a pair of convex polytopesA andB, an in-
tersection test will basically consist of finding a plane for
which A andB lie in opposite sides. If none can be found,
then A and B intersect. If the objects being tested have
a large number of features, this search may be accelerated
by employing an incremental algorithm, i.e., an algorithm
that exploits frame coherence such as the Gilbert-Johnson-
Keerthi (GJK) [9] method. Our implementation is based on
a variant of the GJK algorithm, as described by Van den
Bergen [25]

Once the collision detector reports a collision, the bodies
involved must have their positions, orientations and other
parameters altered in order to re-establish a non-colliding
state. This procedure, known ascollision response, is usu-
ally based on physical laws suitably adapted for a discrete
computational environment. Hecker [12], Baraff [3, 4]
and others have authored a wide range of contributions in
this matter. Moore and Wilhelms [21] presented one of
the earliest treatments of problems in dynamics simulation.
Hahn [11] also pioneered dynamics simulation, modeling
sliding and rolling contacts using impact equations. Baraff
[3, 4] studied multiple rigid bodies in contact, and showed
that computing contact forces in the presence of friction is
NP-hard.

Jakobsen [14] presented a simplified approach to physi-
cally based animation by combining several techniques. As
mentioned earlier, the two most important aspects of this
approach are the use of a Verlet [26] integrator for the par-
ticle dynamics, and a projection-based scheme for collision
response resolution. Unfortunately, the achieved rigid body
simulation is limited, as it does not include rotational in-
formation and depends only on the linear constraints that
compose the objects. It should also be mentioned that with
this approach, a large number of constraints is necessary to
simulate a simple rigid body.

3 Background

3.1 Verlet integrator

Particle dynamics is typically simulated using the so-
called Euler integration scheme. Each particle is repre-
sented by three attributes: position, velocity, and acceler-
ation/force. For each time step∆t, movement equations

x′ = x + v · ∆t and v′ = v + a · ∆t are used to compute
the particle’s new position and velocity, whereas the accel-
erationa is computed using Newton’s second law.

Jakobsen proposes the use of a different integration
scheme created by Verlet [26] for molecular dynamics. This
method is based on Taylor’s theorem which is applied on
the movement equations, yielding two expansions – forward
and backward in time. By adding them up we obtain

x(t+∆t) = 2x(t)−x(t−∆t)+x′′(t)∆t2+O(∆t4), (1)

where O(∆t4) represents truncated higher order terms.
This is called the Verlet Integrator. In this scheme three
attributes per particle are stored: current position, previous
position and the force/acceleration. In particular, the par-
ticle’s velocity needs not be represented. Another impor-
tant feature of Verlet’s approach is the reversibility in time
which permits to approximately compute velocity when
necessary.

3.2 Linear constraints

Typically, the simulation of soft objects such as cloth em-
ploys a model consisting of several interconnected springs
between particles. This yields a system of differential equa-
tions which is solved by numerical methods. This method
is generally unsuitable for real-time simulations. Jakobsen
proposes a nice alternative by employing springs with in-
finite stiffness and ideal damping, that is, springs that in-
stantly attain their rest length. The system then becomes
solvable in a stable way and can be solved much faster.

The same idea can be employed in the simulation of rigid
bodies. These are also modeled by particles linked by stiff
springs which must exist in sufficient number so as to guar-
antee the body’s rigidity.

An ideally stiff spring is computationally modeled by
means of a linear constraint. In other words, if a linear con-
straint exists between two particles, their positionsp1 and
p2 are required to be maintainedd units apart. Expressed
mathematically, the constraint is given by|p1 − p2| = d.

4 Object representation

The system handles rigid bodies, some deformable ob-
jects as pieces of cloth and ropes. We distinguish two repre-
sentations for each object: (1) a representation of its geom-
etry and (2) a representation of its physical properties. The
first is used for displaying the object and performing col-
lision detection against other objects, whereas the second
is responsible for estimating how the object should react to
physical stimuli such as collision or the attraction of gravity.

All objects other than ropes are geometrically repre-
sented by means of triangulated surfaces. Thus, for in-
stance, a cube is represented by 8 vertices, 12 triangles and

18 edges, ropes are represented by a polygonal line and
pieces of cloth are represented by regularly triangulated sur-
faces.

As for the representations of their physical properties,
all objects are modeled as particle systems. In particular,all
particles are coincident with the vertices of their geometric
representations and have identical mass. Additionally, each
object type is modeled with a set of linear and/or angular
constraints. For instance, a cube contains one linear con-
straint coinciding with each edge plus four linear constraints
corresponding to the cube’s main diagonals. A cloth object
contains only linear constraints coinciding with its edges. It
should be noted that, in general, for a body represented as
a polygonal model, its rigidity may be enforced by creating
a restricted 3D triangulation and taking all the edges of the
resulting tetrahedra as linear constraints.

In our implementation, the geometry of each object is
represented in two separate data structures. The first is
a Half-Edge data structure [19] which supports operations
such as visiting the object’s faces, edges and vertices or de-
termining incidence relationships between these elements.
The second is a Sphere Tree [1] which is used for collision
detection.

The physical properties of the object are mostly repre-
sented by constraint lists, which are described in Section
6.2. For convenience, however, the mass of each particle
is stored as an attribute of the corresponding vertex inside
the half-edge data structure rather than in a separate data
structure.

5 Collision Detection

In a nutshell, the problem of collision detection consists
of establishing for all objects in a scene all pairs of objects
of the form(A,B), A 6= B such thatA ∩ B 6= ∅. In our
system this is accomplished by enumerating all pairs of ob-
jects and testing them for intersection. Strictly speaking,
this is not very efficient since it entails testingO(n2) pairs,
wheren is the number of objects in the scene. Nevertheless,
we are mostly interested in simulating the physical interac-
tion among a small number of relatively complex objects.
Thus, the performance penalty is not too high in practice,
provided that the intersection test between two objects can
be performed efficiently.

Our system employs two schemes for detecting the col-
lision between two given objects. The first is an adaptation
of the GJK algorithm [9, 25] and is employed when solv-
ing the collision between two rigid – i.e., non-deformable –
objects. The second scheme is an adapted algorithm based
on Sphere Trees [18, 15, 1, 13] and is used for solving col-
lisions whenever at least one of the objects is deformable.
It should also be mentioned that some deformable objects
may collide with themselves and such collisions are also

handled using the Sphere Tree approach.

5.1 The GJK algorithm

The Gilbert-Johnson-Keerthi algorithm [9] provides a
very efficient method for detecting collision between con-
vex objects. It relies on a few key concepts which are briefly
outlined below:

Minkowski addition: Given two setsA and B, their
Minkowski sum is defined as

A + B = {x + y : x ∈ A, y ∈ B}. (2)

This definition does not seem correct since addition of
points is meaningless. In this loose notationx andy should
rather be understood as the vectors~x = x − 0, where0 is
the origin of the world coordinate system.

Configuration Space Obstacle (CSO):For a pair
(A,B) of convex objects, their CSO is given byA − B,
i.e., the Minkowski sum ofA and−B. This set is specially
useful in collision detection because it can be proved thatA
andB intersect if and only if their CSO contains the origin:

A ∩ B 6= ∅ ≡ 0 ∈ A − B. (3)

Moreover, their distance is given by

d(A,B) = min{‖x‖: x ∈ A − B}. (4)

Similarly, the penetration depth of pairs objects can be
expressed in terms of their CSO as

p(A,B) = inf{‖x‖: x ∈ A − B}. (5)

For a pair of intersection objects, the penetration depth is
realized by a point on the boundary ofA−B that is closest
to the origin.

Support Mapping: The support mappingSA(v) is a
function that, given a vectorv and a convex setA, returns
the most “extreme” point ofA in the direction ofv. For-
mally speaking,

SA(v) ∈ A | v · SA(v) = max{v · x : x ∈ A}. (6)

Separating Plane / Axis:Given two objectsA andB, a
planeH(v, δ) separatesA andB if for every pointa ∈ A,
v · a + δ ≥ 0 and for every pointb ∈ B, v · b + δ ≤ 0.
Vectorv is known as aweakly separating axisof A andB
since there is at least one separating plane which is normal
to it or, equivalently,

v · SA(−v) ≥ v · SB(v). (7)

The general idea of the GJK algorithm is to examine the
CSO of two given objectsA andB looking for a simplex
which contains the origin. If this search ends with a negative

Collision Type CSO face

p0

p1p2

p3

p4

p5

p7

p6

q3 q2

q1q0q7 q6

q4

q5

(0 7)p ,q

(5 7)p ,q

(4 7)p ,q

p0

p1

p2p3

p4

p5

p7

p6

q3 q2

q1q0

q7
q6

q4

q5

(0 7)p ,q

(0 3)p ,q

(1 3)p ,q

Figure 1. The two types of collision and cor-
responding CSO face: face-vertex (top) and
edge-edge (bottom).

answer, i.e., the origin lies outside the CSO, then the objects
do not intersect. In this case, the point of the CSO which is
closest to the origin represents a separating axis ofA andB,
and this in turn can be used as a starting point for collision
testing in subsequent frames.

On the other hand, if the search is successful, then the ob-
jects do intersect and in order to perform collision response
several other details about the collision must be computed.
For instance, typical schemes try to determine thepene-
tration depthwhich, in turn, requires finding the point on
the boundary of the CSO which is closest to the origin.
Bergen [24] suggests an expanding polytope algorithm for
this purpose. Our system, however, computes a related in-
formation: thehit face, i.e., the face on the CSO hull which
is closest to the origin. By analyzing the vertices of this
face, it is possible to determine which object features took
part in the collision. Here, we distinguish two main cases:
edge-edge and vertex-face collisions1. In order to under-
stand how the features are identified, notice that each ver-
tex of the CSO corresponds to a pair of vertices(ai, bj),
ai ∈ A, bj ∈ B. For instance, a vertex ofA colliding with
a face ofB would be characterized by having all three ver-
tices of the hit face corresponding to the same vertex ofA
but to three different vertices ofB (see Figure 1).

5.2 Sphere Trees

Collision detection of deformable bodies is usually sup-
ported by some hierarchical bounding volume scheme. The
literature describes two types of bounding sphere hierar-

1Although other configurations are possible – edge-face or vertex-edge,
for instance – these can be mapped to the previous cases

chies [1]: wrapped hierarchieswherein spheres enclose
the geometry tightly, andlayered hierarchiesin which the
sphere of a parent node merely encloses the spheres of its
children (see Figure 2).

Figure 2. A layered sphere tree (left) and a
wrapped sphere tree (right).

In general, a wrapped hierarchy is preferable to a layered
hierarchy since the former is tighter than the latter. Another
important aspect concerns the update strategies that must be
employed after the object moves or deforms. In particular, if
the bounded object is non-deformable, both hierarchies sup-
port an update procedure which can performed top-down in
a “lazy” manner, i.e., the children of a node need only be up-
dated if the node has been found to intersect another object
or node. In the worst case, the update requiresO(n) time
if all leaves take part in the collision, but more frequently,
when only one or a small number of leaves is involved, the
update will takeO(log n) time. Wrapped hierarchies, on
the other hand, may be updated inO(n) expected time for
some object classes bodies such as necklaces2 [1], but in
order to support generally deformable objects it is neces-
sary to spendO(n log n) time in the worst case. For these
objects, a layered sphere-tree which can be updated inO(n)
time is frequently more indicated.

Our system maintains sphere trees attached to all objects:
wrapped hierarchies are used for rigid bodies and layered
hierarchies for deformable bodies. We employ the tradi-
tional collision detection algorithm [1] which is based on a
recursive descent on both hierarchies. At each step, an inter-
section test is performed on a pair of spheres(sa, sb), where
sa (or sb) is a bounding sphere of the tree corresponding to
objectA (respectivelyB). If a leaf node is visited during
the process, the enclosed object is then subject to an exact
intersection test.

The trees are built in a manner similar to that reported
by Quinlan [23]. Sphere trees which enclose deformable
bodies are updated bottom-up in straightforward way, i.e.,
the leaf-nodes are updated by constructing new bounding
spheres for the moved particles, whereas internal nodes are
built as minimum bounding spheres for the children nodes’
spheres.

2James and Pai [15] reported a sub-linear update algorithm which is
restricted to objects subject to reduced deformations (as opposed to general
deformations).

The top-down procedure for updating rigid body sphere
trees takes advantage of the fact that any bounding sphere
for a set of points may be constructed as the circumsphere of
a subset of at most four points [27, 8], which are termedsup-
port points. During the construction of of the tree, links to
the support points (i.e., particles) of each sphere are stored
in the corresponding node. Thus, when the particles move,
each bounding sphere may be re-computed inO(1) time.

6 Collision response

The response to a collision can be divided in two distinct
steps. The first step consists of separating the object fea-
tures (vertex, edge or face) which were found to intersect.
This is purely a geometric step since it entails only mov-
ing particles based on the collision geometry. The second
step is an iterative relaxation process in which the remain-
ing object features find their proper positions by enforcing
the constraints.

6.1 Feature separation

If two non-deformable objectsA andB collide, the fea-
ture separation requires three parameters which are com-
puted by the collision detection engine. The first ispA, the
contact point onA, the second ispB , the contact point on
B and the third is what we call aprojection point, i.e., a
point q in space where the simulation assumes the two ob-
jects first touched. Jakobsen describes a fairly simple col-
lision response approach [14] for a moving and a static ob-
ject which is based on the concept of projection, although
no details are given about the computation of the required
parameters.

Let us analyze how the response is computed forA (B
is handled in a similar way). OncepA and q are known,
pA is moved so that it coincides withq. If the feature is
a vertex, then this is trivial. If it is an edge or a face, then
other vertices of the feature must be moved accordingly (see
Figure 3 for an edge collision example). Since all particles

x1

x2

q

pA

x 1'

x 2'

Figure 3. Collision response for an edge.

of an object have identical mass, the feature’s new position
depends only on the feature’s geometry. For example, in
Figure 3, if x1 andx2 are the endpoints of the edge and
pA = (1−α)x1 +αx2, then Jakobsen computes the edge’s

new position as

x′

1
= x1 +

1 − α

(1 − α)2 + α2
(q − pA) (8)

x′

2
= x2 +

α

(1 − α)2 + α2
(q − pA). (9)

A face collision is handled in a similar way.
All it remains is to compute the parameterspA, pB andq.

Two constructions are possible depending on the collision
type – vertex-face or edge-edge (see Figure 4). If, say, a

fB

vA
qpB

eB

eA

pB
pA

q

Figure 4. Vertex-face collision (left) and edge-
edge collision (right).

collision occurred between vertexvA ∈ A and facefB ∈
B, thenpA = vA andpB is a point onfB which is closest
to pA. Pointq lies on the line segmentpApB and its exact
position depends on the body masses. IfmA andmB are
the masses ofA andB then

q =
mB

mA + mB

pA +
mA

mA + mB

pB (10)

For a collision occurring between edgeseA andeB , the
construction is similar (see Figure 4).pA is the point ofeA

which is closest toeB andpB is the closest point ineB to
eA andq is computed by Eq. 10.

When a collision occurs between two deformable ob-
jects, then the feature separation is done in a somewhat
cruder way. In particular, the sphere tree-based collision
detection stops after detecting the intersection between two
bounding spheres corresponding to leaf nodes in the tree,
that is, it does not test the actual bounded features for in-
tersection. This approach is justifiable for ropes and cloth
pieces, provided that their geometries are finely sampled so
that the leaf bounding spheres provide a good approxima-
tion for the actual object. Consider two featuresfA ∈ A
andfB ∈ B whose bounding spheressA andsB are found
to intersect (see Figure 5). LetcA (cB) be the center andrA

(rB) be the radius ofsA (sB). Then all particles offA are
displaced by−~d/2 and all particles offB are displaced by
~d/2, where~d is the vector given by

~d =

(

(rA + rB)

||cB − cA||
− 1

)

(cB − cA) (11)

d
cB

sA

sB

cA

rA

rBfB

fA

Figure 5. Separating two features enclosed in
bounding spheres.

sA

sB

cA rA

rB

cB

qd

fB
pB

fA

Figure 6. Separating features: non-
deformable object vs. deformable object.

Finally, when the collision occurs between a deformable
objectA and a non-deformable objectB, the feature sepa-
ration procedure is a mix of the two cases described above.
The system will consider the intersection between a bound-
ing spheresA and an actual featurefB a collision only if
cA, the center ofsA, is insideB (see Figure 6). FeaturefB

is moved as in first case (non-deformable objects), whereas
featurefA is moved as in the second case (deformable ob-
jects). The projection pointq is computed as the midpoint
of the line segmentcApB , where the contact pointpB is
the closest point offB to cA. Vector ~d is given simply by
pB − cA.

6.2 Iterative Relaxation

The relaxation process is used to reestablish the con-
straints of the system after some particles have moved ei-
ther because forces were applied to them or as a result of
the feature separation procedure. In order to enforce a linear
constraint after the movement of one or both particles, one
must push the particles away from each other or pull them
closer together depending on whether their present distance
from each other is greater or smaller than that prescribed by
the constraint.

Jakobsen [14] suggests that all existing constraints are
processed sequentially a few times (around ten) in no partic-
ular order, and this will lead to a realistic simulation. Unfor-
tunately, however, if a constraint was violated so that parti-
cles deviate too strongly from their prescribed distance, the
relaxation may require many iterations. This is the case,

for instance, when a rigid body containing a large number
of constraints hits a wall at high speed. It is reasonable to
suppose that, in this case, the particles that were moved as
a consequence of the projection process should have their
constraints enforced before the others. Moreover, these con-
straints should probably be processed more times than the
others.

This observation prompted us to use a heuristic scheme
by which constraints of rigid objects are enforced in dif-
ferent orders depending on which particles took part in the
feature separation process. For each particlev, a list of con-
straintsCv is constructed wherein all constraints of the rigid
body appear in increasing order of distance – in the sense
of path length – fromv in the constraint graph. This is
a graph whose vertices represent particles of a given body
and whose edges represent constraints between two parti-
cles. Thus, for instance, for particlev in Figure 7, listCv

would contain< c1, c5, c2, c6, c7, c4, c3 >. In fact, in our
implementation, constraints which correspond to neighbors
of v (e.g. c1 andc5) are repeatedn times in the list, where
n is the distance of the farthest constraint fromv (3, in this
example, corresponding to the distance ofc3). Similarly,
those which correspond to neighbors of neighbors ofv are
repeatedn/2 times (e.g.c2, c6, c7 andc4) and so forth, with
distant constraints appearing at least once in the list.

v
c1

c2

c3

c4

c5

c6

c7

Figure 7. Vertex constraint graph.

The constraint lists for all particles of all object types are
precomputed before the beginning of the simulation. Dur-
ing the simulation, if an object takes part in a collision, the
particle which was subject to the largest movement is se-
lected and its constraint list is used during the relaxation. If
the object did not collide with any other, then its constraints
are relaxed in any order, as per Jakobsen’s approach.

7 Results

We have implemented the described system in the C++
language using OpenGL [7] for graphics rendering and the
Computational Geometry Algorithms Library (CGAL) [5]
which provided many geometric data structures. The sys-
tem was used to run several experiments on a PC equipped
with 512Mb main memory, a Pentium-IV 1.8 GHz proces-
sor and a ATI Radeon 9800 Pro graphics card.

The first experiment consists of a simple scene where
several rigid icosahedra (36 constraints, each) are thrown
in a cubical room (see Figure 8 (a)). The simulation runs
in real time (around 20 fps) if up to 50 objects are placed in
the scene. The chart in Figure 9 (a) shows the average frame
rate as a function of the number of objects in the scene.

(a)

(b)

(c)

Figure 8. Experiments: Icosahedra on a cubic
room (a), piece of cloth falling on a cube (b)
and on a hung rope (c).

The same experimental setup was used to assess the
effectiveness of the proposed relaxation heuristics based
on constraint graphs by comparing it with Jakobsen’s un-
ordered relaxation. In this experiment, an object has each of
its constraints relaxed only if it deviates more than 1% from
their prescribed length. The chart in Figure 9 (c) shows
the total number of required constraint relaxations needed
for each relaxation scheme as a function of the number of
objects in the simulation. The results suggests that the pro-
posed scheme requires roughly half as many relaxations on
the average than unordered relaxation.

Two other simulation experiments involving deformable
objects were conducted. In the first, a piece of cloth is
dropped on top of a cube and in the second, the cloth is
dropped on a rope hanged by its two endpoints, as shown in
Figure 8 (b,c). In these experiments the cloth resolution was
varied from a coarse20×20 mesh to a denser40×40 mesh.

0

100

200

300

400

500

600

700

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Number of objects

F
P

S

(a)

0

2

4

6

8

10

12

14

16

20x20 25x25 30x30 35x35 40x40

Cloth Resolution

F
P

S

Cloth vs. Cube Cloth vs. Rope

(b)

0

5000

10000

15000

20000

25000

30000

35000

40000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Number of objects

N
u

m
b

e
r

o
f

re
la

x
a

ti
o

n
s

Constraint Graph Jakobsen

(c)

Figure 9. Simulation results: (a) rigid body
frame rate, (b) deformable object frame rate,
and (c) constraints relaxed per time step.

The hanging rope has 50 segments in all tests. The number
of frames per second is plotted as a function of the cloth res-
olution in Figure 9 (b). These results show that finer cloth
resolutions impose a severe impact on the collision detec-
tion engine. Even with a coarse mesh, the performance was
only close to real time. This can be attributed to the cost of
performing self-collision using a bounding volume hierar-
chy which is not very tight. Another point which deserves
to be mentioned is that the simulation of “thin” objects must
be conducted with very small time steps at the risk of allow-
ing one object “go through” another.

8 Conclusions and Future work

We have described a system which uses a simpli-
fied physical animation framework originally proposed by
Jakobsen [14] but which was extended with a true collision
detection engine. In particular, we have described a scheme
for resolving collisions between rigid bodies which does not
require exact contact points to be computed but which nev-
ertheless produce convincing collision responses. Similarly,

a sphere tree-based collision response scheme is described
for coping with deformable objects.

It should be noted that the present paper is necessarily
terse in the description of implementation details. For in-
stance, we omitted details about the simulation of friction
and some techniques borrowed from many sources when it
comes to reducing the overhead of stacked objects (i.e., ob-
jects which continually collide but do not move).

We plan on extending the prototype system in many
ways. As a first step, rotation physics will be incorporated
using Baltman’s [2] approach. Next, the sphere hierarchies
will be put to much better use, probably by adopting some
recently reported techniques [15]. Finally, the code needs
some streamlining which should make the system a little
less sluggish.

References

[1] P. Agarwal, L. Guibas, A. Nguyen, D. Russel, and L. Zhang.
Collision detection for deforming necklaces. InComput.
Geom. Theory Appl., volume 28, pages 137–163, Amster-
dam, The Netherlands, The Netherlands, 2004. Elsevier Sci-
ence Publishers B. V.

[2] R. Baltman. Verlet integration and constraints in a six degree
of freedom rigid body physics simulation.Game Developers
Conference, 2004.

[3] D. Baraff. Fast contact force computation for nonpenetrat-
ing rigid bodies. InSIGGRAPH ’94: Proceedings of the
21st annual conference on Computer graphics and interac-
tive techniques, pages 23–34, New York, NY, USA, 1994.
ACM Press.

[4] D. Baraff. Linear-time dynamics using Lagrange multipli-
ers. InSIGGRAPH ’96: Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Tech-
niques, pages 137–146, New York, NY, USA, 1996. ACM
Press.

[5] CGAL. The computational geometry algorithms library.
http://www.cgal.org.

[6] J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi. I-
COLLIDE: an interactive and exact collision detection sys-
tem for large-scale environments. InSI3D ’95: Proceedings
of the 1995 symposium on Interactive 3D graphics, pages
189–ff., New York, NY, USA, 1995. ACM Press.

[7] Corporate OpenGL Architecture ReviewBoard.OpenGL
reference manual: the official reference document for
OpenGL, release 1. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1992.

[8] B. Gartner. Fast and robust smallest enclosing balls. InPro-
ceedings of the 7th Annual European Symposium on Algo-
rithms, pages 325–338, 199.

[9] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast pro-
cedure for computing the distance between complex objects
in three dimensional spaces.IEEE Journal of Robotics and
Automation, April 1988.

[10] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: a hi-
erarchical structure for rapid interference detection. InSIG-
GRAPH ’96: Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques, pages 171–
180, New York, NY, USA, 1996. ACM Press.

[11] J. K. Hahn. Realistic animation of rigid bodies. InSIG-
GRAPH ’88: Proceedings of the 15th annual conference on
Computer graphics and interactive techniques, pages 299–
308, New York, NY, USA, 1988. ACM Press.

[12] C. Hecker. Rigid body dynamics, 1998.
http://www.d6.com/users/checker/dynamics.htm.

[13] P. M. Hubbard. Collision detection for interactive graphics
applications.IEEE Transactions on Visualization and Com-
puter Graphics, 1(3):218–230, 1995.

[14] T. Jakobsen. Advanced character physics. InProceedings of
GDCONF’2001 Game Developer’s Conference 2001, 2001.

[15] D. L. James and D. K. Pai. Bd-tree: output-sensitive col-
lision detection for reduced deformable models. InACM
Trans. Graph., volume 23, pages 393–398, New York, NY,
USA, 2004. ACM Press.

[16] P. Jimenez, F. Thomas, and C. Torras. 3d collision detection:
A survey. Computer and Graphics, 25(2):269–285, April
2001.

[17] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral,
and K. Zikan. Efficient collision detection using bounding
volume hierarchies of k-dops.IEEE Transactions on Visu-
alization and Computer Graphics, 4(1):21–36, 1998.

[18] M. C. Lin and S. Gottschalk. Collision detection between
geometric models: A survey. InIMA Conference on Mathe-
matics of Surfaces, pages 37–56, 1998.

[19] M. Mantyla. Introduction to Solid Modeling. W. H. Freeman
& Co., New York, NY, USA, 1988.

[20] B. V. Mirtich. Impulse-based dynamic simulation of rigid
body systems. PhD thesis, University of California at Berke-
ley, 1996.

[21] M. Moore and J. Wilhelms. Collision detection and response
for computer animation. InSIGGRAPH ’88: Proceedings of
the 15th annual conference on Computer graphics and in-
teractive techniques, pages 289–298, New York, NY, USA,
1988. ACM Press.

[22] M. Ponamgi, D. Manocha, and M. C. Lin. Incremental al-
gorithms for collision detection between solid models. In
SMA ’95: Proceedings of the third ACM symposium on Solid
modeling and applications, pages 293–304, New York, NY,
USA, 1995. ACM Press.

[23] S. Quinlan. Efficient distance computation between non-
convex objects. IEEE Intern. Conf. on Robotics and Au-
tomation, pages 3324–3329, 1994.

[24] G. van den Bergen. Efficient collision detection of com-
plex deformable models using AABB trees.J. Graph. Tools,
2(4):1–13, 1997.

[25] G. van den Bergen. A fast and robust GJK implementation
for collision detection of convex objects.Journal of Graph-
ics Tools, 4(2):7–25, 1999.

[26] A. Verlet. Computer experiments on classical fluids: I. ther-
modymamic properties of leonard-jones molecules.Phys.
Review, 159:98–103, 1967.

[27] E. Welzl. Smallest enclosing disks(ball and ellipsoids). In
New Results and New Trends in Computer Science, Vol-
ume 555 of Lecture Notes Comput. Sci., pages 359–370.
Springer-Verlag, 1991.

