
A Linear Algorithm for Exact Pattern Matching in Planar Subdivisions

Pedro Ribeiro de Andrade Neto
André Luiz Pires Guedes

Department of Computer Science
Federal University of Paraná

Centro Politécnico – Jardim das Américas. Curitiba-PR, Brazil 81531-990
{pedro,andre}@inf.ufpr.br

Abstract

Graph sub-isomorphism is a very common approach to
solving pattern search problems, but this is a NP-complete
problem. This way, it is necessary to invest in research of
approximate solutions, or in special cases of the problem.
Planar subdivisions can be considered as a special case of
graphs, because, in addition to nodes and edges, there is
a more rigid topology in relation to the order of the edges,
arising to the concept of face. This work presents a linear
algorithm for pattern search in planar subdivisions. The
presented algorithm is based on a hybrid approach between
the dual and the region adjacency graph (RAG) to represent
the patterns, saving any additional storage cost. Thus, the
patterns are looked over the search subdivision, using a re-
gion growing algorithm.

1. Introduction

Graphs with attributes in their vertices and edges are
commonly used for representing complex visual structures,
in applications of computer vision and pattern search. The
use of graphs in these applications is related with the exis-
tence of efficient algorithms for solving problems like paths,
trees and searches.

Comparison between graphs is a usual strategy for clas-
sifying images, for example, in CAD (Computer Aided De-
sign) and robotics. Isomorphism is used to compare graphs,
and it consists in a mapping that preserves the adjacency
relations between the elements of two graphs.

One of the main problems concerning isomorphism is
its time complexity. Exact algorithms require factorial time
O(n!) where n is the number of vertices, and graph sub-
isomorphism is NP-complete [4]. Therefore, we need spe-
cific strategies for each case, with the objective of turning

the problem tractable. Solutions using approximate algo-
rithms, as neural networks and genetic algorithms, are very
usual, but they can find a local maximum, and do not find
the exact solution.

As application for isomorphism we can cite pattern
matching in segmented images, for example in architecture
drawings. Note that both patterns and segmented images
have some special characteristics, that make them different
from graphs with vertices and edges:

• There is an order in the associated topology, where
edges of one vertex are sorted, following a certain di-
rection;

• Established order in the topology, the concept of face
emerges: a cycle without any edges in its internal
space;

• Almost all patterns have, in each vertex, at least two
edges. For example, in architecture drawings, patterns
are doors, tables, etc., and they are structures in this
format. Therefore, segmented image vertices that have
only one edge can be removed.

Using these information, we can define a planar subdi-
vision, a plane partition into regions named faces. Faces
are limited by line segments, the edges, which ends are ver-
tices. The patterns to be matched also have vertices, edges
and faces, then they can be considered planar subdivisions,
and its matching is a sub-isomorphism problem.

Region Adjacency Graph (RAG) is a very usual repre-
sentation in digital image processing. It consists in group-
ing neighbor pixels with similar characteristics in a same
region, that will be a vertex of the graph. One edge con-
necting two vertices determines that their respective regions
have neighbor pixels.

Lládos et al. [3] proposed solving sub-isomorphism in
segmented images using RAG’s, with a region growing al-

1



gorithm. Their algorithm is string based, and calculates sub-
isomorphism using RAG’s. During the loop, the algorithm
grows one region in both graphs, in an approximated way,
going through all elements of the regions. The authors con-
cluded that their algorithm has exponential time (due to sub-
isomorphism NP-completeness), but tests showed a pseudo-
polynomial time. The good results were justified by the
number of vertices reduced in the RAG generation. They
did not propose any data structure to store the graph nor the
RAG.

The objective of this article is to investigate the use of
RAG’s in planar subdivisions sub-isomorphism. We pro-
pose one hybrid representation between the well known
dual representation and RAG to be used in the sub-
isomorphism, getting the advantages of each one of them.
This work focuses in the problem’s time complexity. There-
fore, it is presented a linear algorithm to solve planar sub-
divisions topological sub-isomorphism. We present a RAG
based algorithm similar to Lládos et al [3], but an exact one,
and we show that this variation is linear.

This article is written in the following manner. In Sec-
tion 2 some concepts of planar subdivision are presented.
In Section 3 presents the algorithms for doing the isomor-
phism, for in Section 4 analyze the time complexity and
show the implementation results. Finally, Section 5 shows
the conclusions of this work.

2. Planar Subdivisions Concepts

A planar subdivision S is a triple (V,E, F ), where the
three elements are sets, V represents vertices, E edges and
F faces. For generalizing, capital letters represent sets, and
small letters represent a set’s element. Given a set X , its
length is represented by |X|. One element of a planar sub-
division can be a vertex, an edge or a face, and its type is
the set it belongs. Each element of X has an unique identi-
fication, one integer from 1 to |X|.

In this work, we consider only finite partitions of the
plane. It is assumed that no edge passes by any vertex be-
sides their limits, and each vertex belongs to, at least, two
edges. It’s also considered that each edge separate two,
and only two, faces. In this text, frequently we will use
the word subdivision instead of planar subdivision, for sim-
plify. Now we will define some functions to access subdivi-
sions.

p(x, y): This function represents the perimeter access of an
element, defining its topological and geometric limits.
Given x ∈ X and y ∈ Y , X 6= Y , and y in x perime-
ter, this operator returns a value z ∈ Y , the next ele-
ment from y clockwise around x. Figure 1 shows the
perimeter of the three elements.

E
F

V

Figure 1. Perimeter of the elements

n(x, y): The neighborhood access involves elements be-
longing to a same set, and it is based in sharing perime-
ters. Two edges are neighbors if they share a vertex and
a face. Therefore, edges have exactly four neighbors.
Two vertices (faces) are neighbors if they share one
edge and, then, two faces (vertices). Note that vertices
and faces differ from edges, because they do not have
a fixed number of neighbors. Given x, y ∈ X , and y
adjacent to x, this primitive returns the next neighbor
of x clockwise from y. The neighborhood of the three
elements is shown in Figure 2.

E F

V

Figure 2. Neighborhood of the elements

D(S): Given a planar subdivision S = (V,E, F ), its dual
representation can be defined. The dual subdivision
D(S) = (F,E′, V ) contains vertices corresponding to
the the faces of S, and faces corresponding to its ver-
tices. Two vertices are connected by one edge in D(S)
if the corresponding faces in S contains one edge sep-
arating them. This way, for each edge joining two ver-
tices in S, there is one splitting the respective faces in
the dual, and then |E| = |E′|. There is an example of
dual in Figure 3.

Figure 3. Dual representation

2



RAG(S): given S = (V,E, F ), this function returns a
subdivision S′ = (V ′, E′, F ′). Each element of V ′

corresponds to a face of S, except the external face,
then |V ′| = |F | − 1. Two vertices are connected in
S′ if their respective faces are adjacent in S. For ex-
ample, if we generate the RAG from Figure 3 we will
have a triangle: the external face and its four edges are
removed, and there will be only one edge connecting
each pair of vertices.

3. Pattern Search Algorithm

Planar subdivisions have specific characteristics if com-
pared to graphs with only vertices and edges. The proposed
algorithm is a variation of Lládos et al.’s algorithm [3], not-
ing the differences between an attributed graph, represent-
ing an image segments, and a planar subdivision. To fa-
cilitate the algorithm’s comprehension, it was split in two
parts. The first one consists in the definition of a function
for region growing, as proposed by Lládos et. al [3], and
the second does the matching using region growing.

3.1. RAG versus dual

The algorithm proposed by Lládos et al. [3] gets as input
segments of an image, and then the RAG is built, executing
one algorithm similar to establish order in subdivisions. The
storage of a RAG in the same data structure of the original
subdivision is not straightforward. When two or more edges
share the same faces perimeter, they have to be merged in
only one in the RAG, and the adjacency relations must be
conserved. This problem would be simple if all edges that
share faces did a path: given an edge that belongs to the path
in the subdivision, it would be represented by the halves of
the two outer edges of the path. The fact that these edges
are not necessarily adjacent, as shown in Figure 4, demon-
strates the difficulty of this problem. In this Figure, the two
thickest edges are not adjacent, but they will merge in one in
the RAG. This way, storing RAG in the same data structure
implies in losing performance, because we need algorith-
mic control over the data structure. Then, the loss of per-
formance is proportional to the number of removed edges
when generating the RAG.

Analyzing the quantity of removed edges when generat-
ing the RAG, we can see that it is not always significant, be-
cause this number depends on the subdivision. For example,
in a triangular mesh, this procedure will remove only the
edges of the the external face, therefore, it will not reduce
considerably the time of the subsequent algorithm. Then,
the real advantage of using RAG’s for reducing the size of
the subdivision is the removing of the external face.

In the case of planar subdivisions, we can consider that
the algorithm to establish order in the subdivision was al-

Figure 4. Two non adjacent edges can share
the same faces perimeter

ready executed, and then the faces were generated. But they
are not necessarily the same of RAG’s faces, because in this
scenario all faces are preserved.

As to avoid the storage of the subdivision and its RAG
in different structures, and because this representation does
not have a real time advantage, we propose a hybrid struc-
ture between dual and RAG to represent the subdivision,
taking their advantages. This representation has the same
characteristics of dual, with two differences: (i) the exter-
nal face must be marked with a special value, called NULL,
and (ii) one edge belongs to the dual iff the two faces of its
perimeter do not have NULL value. Therefore, it contains
only the internal regions of a planar subdivision. Given a
subdivision S, this representation is named DR(S).

3.2. DCEL (Doubly-Connected-Edge-List)

The algorithm proposed in the next Subsection has as
input subdivisions represented using DCEL [5]. DCEL is
one of the simplest data structures to represent planar sub-
divisions, and its name is due to the fact that each edge is
connected to only two other edges in the data structure, in-
stead of four, as in Winged Edge[1]. A comparative study
between these data structures can be found in [2].

This structure is composed by a table with six columns,
where four of them contain information (V 1, V 2, F1 and
F2) and the other two contain pointers (P1 and P2). Each
line of the table represents one edge, with its two vertices,
begin (V 1) and end (V 2), and its two faces, left (F1) and
right (F2). As edges need orientation and direction, there
are two pointers P1 and P2. P1 stores the first edge coun-
terclockwise from V 1, and it also is the first edge clockwise
from F1. Similarly, P2 is used as reference for V 2 and F2.

3.3. Region growing

The first part of the algorithm consists in a region grow-
ing, as proposed by Lládos et al [3]. This algorithm repre-

3



Input: T = {TE , TV , TF }, ep and vp.
Output: If the region growing was successfully done (T is or not valid).

1. es ← TE [ep], vs ← TV [vp]

fp ← right face from vp in ep, fs ← left face from vs in es

eloopp ← ep, eloops ← es

ofp ← p(ep, fp), ofs ← p(es, fs)

2. if fp = NULL return true, else if fs = NULL return false

3. if TF [fp] 6= NULL return TF [fp] = fs, else TF [fp]← fs

4. do

(a) if TV [vp] /∈ {NULL, vs} return false else TV [vp]← vs

(b) if TE [eloopp] /∈ {NULL, eloops} return false else TE [eloopp]← eloops

(c) if ofp 6= NULL and TF [ofp] /∈ {NULL, ofs} return false

(d) vp ← p(eloopp, vp), vs ← p(eloops, vs)

(e) eloopp ← n(eloopp, vp), eloops ← n(eloops, vs)

(f) ofp ← p(eloopp, fp), ofs ← p(eloops, fs)

while eloopp 6= ep and eloops 6= es

5. return eloopp = ep and eloops = es

Figure 5. Region growing algorithm

sents a function, and it will be used by the matching algo-
rithm. Figure 5 shows its steps.

The region growing algorithm has three arguments. The
first one is T, one triple (TE , TV , TF ), where the reference
of each pattern’s element is stored. If x ∈ X does not have a
reference in the search subdivision, TX [x] will have NULL
value. In this algorithm, T is an argument taken by refer-
ence, then, if its values are changed, the variable used as
argument will be changed too.

The other two arguments are an edge ep, indicating from
where the face will start, and a vertex vp, establishing the
search direction, that will be from vp to p(ep, vp), circulat-
ing the face in the right side of ep. The index p indicates that
the variable refers to the pattern, and the algorithm consid-
ers that ep and vp have already a reference in T before it
starts.

Given T, ep, and vp, the algorithm has two objectives.
First, to verify if it is possible to realize the isomorphism
for all ep right face adjacent elements, based in a partial
isomorphism stored in T. The second objective is to up-
date T with the new references found while circulating the
face. The algorithm returns a boolean value, indicating if it
was possible to do the region growing, i.e., the required T
modifications were done successfully.

First, the algorithm initiates some variables. By conven-

tion, fp represents the right side face of ep going from vp

to p(ep, vp). The variable ofp stores the other face of ep

related to fp, i.e., p(ep, fp). eloopp represents an edge that
initially has the value of ap, and will be used for circulat-
ing the face edges. For each of these variables, and also
for ep and vp, there is a variable storing the reference of its
element in the search subdivision, and they will be used to
verifying and updating T. These variables have a index s to
indicate that they refer to the search subdivision.

Step 2 verifies some characteristics about the faces to be
circulated. If pattern’s face is the external face (NULL),
then the algorithm ends returning true value. The external
face can’t be compared with other faces, because it usually
corresponds to more then one face in the search subdivision.
The same occurs with the search subdivision external face.
As it cannot be circulated (there is not a pattern face with its
length), if the algorithm find this situation, it stops returning
false. The external face is important only when we search
for isomorphism. If the search subdivision does not have
an external face, the condition that verifies its external face
might be removed.

Step 3 checks if TF already stores some reference to fp,
meaning that this face was circulated before. If this situation
occurs, the algorithm returns if the face reference is equal
to the value in TF . If the face was not circulated yet, the

4



algorithm attributes fs to TF [fp], and then starts to circulate
fp and fs.

The repetition of this algorithm is represented by step 4.
It has six sub-steps, the first half (a,b,c) verify the isomor-
phism and update T, and the second half (d,e,f) update the
variables, going through fp and fs. The first three steps ver-
ify the T entries, checking if the element already has some
reference, and if this value is different from what was found.
If the algorithm finds a new value to an element already ref-
erenced, then the isomorphism fails. If not, the new value
will be the reference to the element, and its slot is changed
in T. Note that the algorithm does not change TF in sub-
step c, because face references are updated once for each
execution of this algorithm, only for the face that is being
circulated, and it is represented by step 3, outside the loop.

If the algorithm does not fail in the verify-and-update-T
steps, the next three sub-steps change the variables. Values
of eloopp, vp e ofp (as their references) are updated with the
next value clockwise around fp. The new values of vp and
ofp are calculated using the edge’s perimeter, and eloopp

is updated with vp’s neighbor, because going counterclock-
wise v is the same as to go fp clockwise. Therefore, this
algorithm always go through one face only in one direction,
obeying the DCEL requirements.

The loop circulates fp and fs, until at least one of them
come back to its initial value. If the algorithm finishes the
repetition, there is a matching with the two faces’ elements,
if they were completely gone around, and then they have
the same number of adjacent elements. At the end of the
algorithm, T is up-to-dated.

One example of region growing is shown in Figure 6.
The images demonstrate the variable updating, in its re-
spective steps (hatched lines). If the algorithm continues
from the last drawing, there will be two more repetitions,
until eloopp becomes equal to ep again. Then the algorithm
stops and return false, because the two faces have different
lengths (eloops 6= es). Note that the algorithm can stop
before, if it finds an invalid slot in T.

3.4. Sub-isomorphism algorithm

Once the region growing algorithm is defined, now we
will describe the main part of the algorithm, that executes
the sub-isomorphism. Given two subdivisions S and P ,
where P is the pattern to be matched, and S represents the
search subdivision, the algorithm uses region growing for
calculating the sub-isomorphism. The steps executed by the
algorithm are shown in Figure 7.

The first step of this algorithm generates DR(P ). After
it, a list Result, that will store the sub-isomorphisms found
during the search, is initiated with void. Then, there are two
possibilities for the edge set of DR(P ), to be checked in
steps 2 and 3:

eloops

eloopp
vp

vsofs

ofp

4(d)

4(d)

4(e)

4(e)

4(f)

4(f)

eloops

eloopp

vp

vs

ofs

ofp
4(e)

4(d)4(f)

4(f)

4(d)
4(e)

Figure 6. Example of region growing

|EDR(P)| 6= 0. The pattern has at least two internal faces,
and their vertices will be united by one edge in DR(P ).
Then, one of DR(P ) edges must be chosen to start the
search. This way, the algorithm will execute a breadth-
first search, looking for edges in DR(P ), in step 3.
The order of edges to have its regions circulated must
be the same order found in the search, because, once
one given face of an edge has been circulated, the edge
neighbors have already reference in T, and can have
its faces circulated (note that, when the region grow-
ing algorithm is executed for a neighbor of one edge,
one of its two faces have already been gone through).
Therefore, there is no difference between depth-first or
breadth-first search, because both guarantee a valid re-
gion growing order.

|EDR(P)| = 0. P has only two faces, one external and
other internal. Then, the growing of only one region
is sufficient for solving the problem, and therefore any
edge can be chosen.

The first three steps prepare the variables to be used in
step 4, that does the pattern search. Each search subdivi-
sion edge can be matched with the first edge of L, and these
edges can be matched only in the two possible combina-
tions of their vertices. Steps (a) and (b) initiate the last vari-
ables before checking the isomorphism, and they are (a) the
cleaning of all T positions with NULL and (b) the setting of
true value to isomorphic, i.e., there is a matching unless it
is proven no. Step (c) selects the first edge of L, and in (d)
changes the first values in T: the equivalence between ep

5



Input: One pattern P = (VP , EP , FP ) and one search subdivision S = (VS , ES , FS)
Output: One list Result with the sub-isomorphisms found

1. generate DR(P ), Result← void

2. if |EDR(P )| = 0, initiate a list L with an edge e ∈ EP , else choose e ∈ EDR(P ) to
initiate the list

3. if |EDR(P )| 6= 0, execute a breadth-first search algorithm, from e in DR(P ), pushing all
found edges in the back of L

4. for each edge es ∈ ES and for v ∈ {V 1, V 2} do

(a) initiate each position of T with NULL

(b) isomorphic← true

(c) ep ← top of L

(d) TE [ep]← es, TV [ep[v]]← es[V 1], TV [p(ep, v)]← es[V 2]

(e) while not reach the back of L and isomorphic repeat

i. if not grow region(T, ep, ep[V 1]) isomorphic← false
ii. if not grow region(T, ep, ep[V 2]) isomorphic← false

iii. ap ← next of L

(f) if isomorphic insert T in Result

5. return Result

Figure 7. Algorithm for planar subdivisions sub-isomorphism

and es, and one vertex combination. Therefore, step 4 must
be repeated 2|ES | times.

In step (e), ep goes through L, and the region growing
function is called for both ep faces. If any region growing
fails, there is not an isomorphism using the initial configu-
ration (es and one vertices combination). But, if all regions
are successfully gone through, the isomorphism exists, and
T is pushed into Result. Finally, at step 5, Result is re-
turned with all sub-isomorphisms found.

Figure 8 shows an example of executing step 4(e) of the
second algorithm. In this case, there are five (|EDR(P )|)
repetitions, and let us suppose that L has the sequence
a → b → c → d → e. The region growing algorithm is
called ten times, but only in five the regions are really circu-
lated, and they are represented by the thick lines. Hatched
lines indicate that the region growing algorithm was done
before in this face. Therefore, once the first edge (a, in
this case) is matched in the search subdivision, there is not
any combinatorial factor, because as the structure is closed,
there are only verifications to be done, and it depends on the
pattern’s size, but not on the search subdivision size.

Note that, in this Figure, there is another matching using
the same initial edge, and it occurs if its vertexs are traded.
This justifies the need of two repetitions for each edge of
the search subdivision.

4. Algorithm Analysis

To validate the pattern search algorithm, we analyzed its
time complexity and implementation. They are described in
this Section.

4.1. Time Complexity

For analyzing the algorithm complexity, first we will
check the second part, and then the first. In the second part
of the algorithm, the loop at step 4 requires more processing
time, because any pattern alone processing would take less
time then O(|ES |) . In this step, there are two code stretches
that requires more time. The first one is step (a), that initial-
izes all T positions with NULL, and consumes time equals
to its size, that is |VP |+ |FP |+ |EP | = 2|EP |. The second
stretch is the step (e), that calls region growing for the faces
in the perimeter of each edges belonging to L. So the time
complexity of this step depends on the region growing time.

Each region growing algorithm calling circulates the
edges of two faces, one of the pattern and other of the search
subdivision, simultaneously, until one of them reach its ini-
tial value again. As DCEL need constant time for all opera-
tions used in this algorithm, the region growing function has
time equals to the minor perimeter. Then, we can consider

6



b

d

a

c

e b

d

a

c

e b

d

a

c

e

a a a

b

d

a

c

e

a

b

d

a

c

e

a

1 2 3 4 5

Figure 8. Example of the sub-isomorphism algorithm

that this time is limited by the pattern’s face perimeter.
Note that each pattern face is circulated only one time,

because the region growing algorithm verifies if the face
was circulated before, trying to avoid the loop. As each face
is circulated just once, then the algorithm goes through each
pattern edge at maximum two times. This way, step 4(e) of
the second algorithm needs time limited by 2|EP |. So, for
each repetition of step 4 of the sub-isomorphism algorithm
it is consumed time 4|EP | = O(|EP |).

As the sub-isomorphism algorithm does two repetitions
for each edge of the search subdivision, the total time is
2|EP | × O(|ES |) = O(|EP ||ES |). The pattern can be
considered very small, and therefore we can ensure that
the algorithm has linear time. In the isomorphism case, as
(|EP | = |ES |), the algorithm needs time O(|ES |

2).

4.2. Implementation and tests

The algorithm was implemented using C++, and, to gen-
erate test subdivisions, we used the program triangle [6]. It
can build triangular meshes given an evolving polygon and a
resolution. From these meshes, we randomly removed some
edge, but only if both vertices have at least three edges,
keeping the data structure closed. The probability of re-
moving one edge was 15%. This way, the generated sub-
divisions are always evolved in a rectangle, but it is not a
requirement of the algorithm, because it works with subdi-
visions in surfaces too.

For test, we used a Debian/Linux Pentium IV 2.4GHz
with 512Mb of RAM. Figure 9 shows two examples of pat-
terns used in the tests, and in Figure 10 we have the results
of matching these patterns in a random subdivision. Fig-
ure 10(a) has ten patterns, and two of them shares five edges.
Figure 10(b) has only two matches, because the generated

subdivision was from a triangle mesh, and then different
patterns are more difficult to be found.

(a) (b)

Figure 9. Examples of patterns

The algorithm was tested using subdivisions of size from
1.500 to 1.500.000 edges, and the times to search the pattern
in Figure 9(a) are shown in Figure 11. As we can see, the
algorithm has linear growing, proving the analysis.

5. Conclusions

Using RAG’s, as proposed by Lládos et al. [3], not al-
ways reduce significantly the size of the subdivision, there-
fore, this representation do not reduce the time complexity
of the associated algorithm. In this paper, we proposed a hy-
brid representation between RAG and dual, in the way that
it can be stored in the same data structure of the subdivision.

The presented algorithm does planar subdivisions sub-
isomorphism based in edges matching, vertices and faces
are used only to verify. There are 2|A| possibilities for
matching edges, and, as the faces keep the data structure
united, the algorithm needs only to check if the other edges
matches the pattern conditions. This way, the time to verify

7



(a) Result of searching the pattern of Figure 9(a) (b) Result of searching the pattern of Figure 9(b)

Figure 10. Searching results

the sub-isomorphism, given a pair of edges to be matched,
is equal to the pattern size. As the pattern has very small
size, linear time is sufficient to solve the problem. The al-
gorithm was implemented, and the results prove the time
complexity.

0 500 1000 1500

0
10

20
30

40

Number of edges (thousands)

Ti
m

e 
(s

ec
)

Figure 11. Pattern search times

One deeper study of Lládos et al. work [3] can prove
that their algorithm has polynomial time, as shown in their

tests, not by the reduction of the edges number, as justified
by them, but indeed because the data structure is united by
the existence of faces. Two improvements can be done in
their algorithm: the first is to use the hybrid representation
here presented, saving space, and the second is to execute a
search algorithm in the pattern, before the matching, to find
the order of the region growing callings.

References

[1] B. G. Baumgart. A polyhedron representation for computer
vision. AFIPS National Computer Conference, pages 589–
596, 1975.

[2] P. R. de Andrade Neto. Busca de padrões em subdivisões
planares. Master’s thesis, PPGINF – UFPR, Curitiba – PR,
2004.

[3] J. Lladós, E. Martı́, and J. J. Villanueva. Symbol recogni-
tion by error-tolerant subgraph matching between region ad-
jacency graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(10):1137–1143, Oct. 2001.

[4] K. Mehlhorn. Graph Algorithms and NP-Completeness.
Springer-Verlag, 1984.

[5] F. P. Preparata and M. I. Shamos. Computational Geometry:
An Introduction. Springer-Verlag, 1985.

[6] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh
generator and delaunay triangulator. First Workshop on Ap-
plied Computational Geometry, pages 124–133, May 1996.

8


