
Simple Adaptive Mosaic Effects

Geisa Martins Faustino Luiz Henrique de Figueiredo
IMPA–Instituto de Mateḿatica Pura e Aplicada

Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, RJ, Brazil

Abstract

We present an algorithm that creates a mosaic effect for
an image in an adaptive and automatic fashion. The algo-
rithm is automatic because it does not need user interven-
tion, except for the choice of a couple of parameters. The
algorithm is adaptive because it creates tiles whose sizes
are adapted to the features of the image. This is achieved
by using a centroidal Voronoi diagram with a density func-
tion that emphasizes image features.

1 Introduction

Mosaic effects add artistic touches to existing images in
a way that resembles ancient mosaics or stained-glass win-
dows. These effects are obtained by decomposing the orig-
inal image into cells (also calledtiles) and painting those
cells with a color that approximates the color distribution
inside the cell in the original image. The goal is to generate
a simplified image that still gives the overall impression of
the original image.

This paper describes an algorithm that creates mosaic ef-
fects automatically, with little user intervention, generating
an image that is adapted to the features in the original im-
age. Like some of the previous approaches, we also use
centroidal Voronoi diagrams [4]. However, we start from
an adaptive sampling of the image and use a density func-
tion that emphasizes image features. The overall effect is

that the sizes of the mosaic tiles are adapted to the features
of the image, being large in regions of less detail and small
in regions of great detail. This is our main contribution.

The banner figure above shows the main steps in our ap-
proach. A given image is sampled adaptively by placing
points near its features. Then a centroidal Voronoi diagram
is computed from these sample points. Finally, the Voronoi
cells are painted with an adequate color or texture.

2 Previous work

The earliest work on mosaic effects is probably the one
by Haeberli [7]. That paper described a general technique
for painting several effects interactively over an image, and
one of the examples was exactly a mosaic effect using
Voronoi diagrams. Since that was an interactive painting
system, the artist was in direct control of the amount of de-
tail revealed in the mosaic. Haeberli also mentioned briefly
that an iterative relaxation technique could be used to cre-
ate those effects automatically, but he gave little detail on
that technique. Moreover, the images created in this fashion
were said to take “several hours” to compute.

Hoff et al. [9] described a fast, hardware-based, tech-
nique for computing discrete Voronoi diagrams. One ap-
plication they describe briefly is mosaic effects, which they
obtain from Voronoi diagrams of random sites on the image.
Because the Voronoi diagram is computed by the graphics
hardware, it can be done in real time, even for a large num-
ber of sites. This allows the artist to tune the mosaic effect



interactively. Hoff et al. also mentioned that mosaics re-
sembling real-life mosaics could be obtained by adapting
the sites to the features of the image, but gave no details on
how these sites could be chosen.

Hausner [8] extended the approach of Hoff et al. [9] to
compute centroidal Voronoi diagrams that are aligned to the
edges of the image. He also replaced Euclidean distance by
the Manhattan distance. This allows mosaics to be made
of square tiles, giving a nice artistic effect similar to real
mosaics. Although Hausner briefly explained how to make
the size of the tiles vary according to the features of the
images, his method still requires that artists select the edges
they want to emphasize in the mosaic. (This requirement
may be a feature, from the point of view of the artist.)

Elber and Wolberg [5] extended the work of Hausner [8]
by trying to mimic the placement of tiles done by artists:
tiles are traditionally placed not only near selected image
edges but also along curves parallel to them. Their approach
is thus geometrical and relies on the computation and trim-
ming of offset curves. Voronoi diagrams are used only to
assist in the trimming phase. The result are mosaic effects
that have many features of real mosaics, even though offset
curves impose a regular patterns in the final image.

The work of Hausner [8] and Elber and Wolberg [5] still
represent the best attempts at simulating real mosaics with
computer graphics. Another approach to mosaic effects is to
try to reproduce stained-glass windows. This effect also de-
composes the original image into tiles, but they are painted
in a different way because the goal is to evoke the visual
effects of the sunlight onto stained-glass windows. Along
that line lie the work of Dobashi et al. [3] and Mould [11],
which we now discuss.

Dobashi et al. [3] proposed a method for creating mo-
saic effects that uses ordinary Voronoi diagrams and ren-
ders them in a stained-glass fashion. The method starts
with a Voronoi diagram for sites chosen as slight perturba-
tions of the centers of a regular hexagonal mesh. This ini-
tial Voronoi diagram is thus approximately centroidal. Then
the sites are moved to try to capture the global features of
the original image and the Voronoi diagram is recomputed.
The result is a Voronoi diagram whose edges are aligned to
the main edges of the original image. Two visual effects
are used: Voronoi edges are painted in wide lines whose
width depend on the color difference between adjacent re-
gions; and Voronoi regions are painted using Gouraud shad-
ing based on perturbed color values at the vertices of each
region.

Mould [11] described a complete algorithm that creates
a stained-glass effect on a given image. The image is first
segmented automatically and then regions appropriate for
tiles are extracted from this segmentation using mathemati-
cal morphology. Care is taken to avoid undesirable shapes.
Finally, the regions are colored trying to mimic the color-

ing used in medieval times. This implies the use of a lim-
ited palette. The rendering is completed by using large dis-
placement maps near the edges to mimic leading and small
displacement maps in tile interiors to mimic glass imper-
fections. This method works very well for images that have
clear silhouettes, producing impressive stained-glass rendi-
tions. The method does not work so well for images that are
difficult to segment, such as those whose visual clues reside
mainly in subtle shading.

The work on mosaic effects described above should not
be confused with the work on image mosaics or mosaicing,
whose goal is to try to mimic the original image by glueing
many small images selected from a database [6, 10].

3 Our approach

Our approach is closer to that of Hausner [8] and
Dobashi et al. [3] in that we compute Voronoi diagrams
starting from an initial set of sites which are then adjusted
to the image features. Also, like Dobashi et al. [3], our fi-
nal images display a stained-glass effect. However, our ap-
proach differs from previous approaches in that we compute
centroidal Voronoi diagrams for a density function that di-
rectly reflects image features. This makes the method both
automatic and adaptive.

Our method has three main steps, which we shall discuss
in detail in the sequel:

1. Sample the image adaptively, finding a number of seed
points.

2. Compute the centroidal Voronoi diagram of the seeds,
using a density map computed from the original image.

3. Paint each Voronoi cell.

3.1 Sampling the image

The goal of this step is to find a set ofseedsfrom which
we shall compute a centroidal Voronoi diagram.

To find the seeds, we sample the image adaptively using
a quadtree. The seeds are the centers of the leaf cells in this
quadtree. A cell is a leaf in the quadtree when the color of
all its pixels are close to the average color in the cell. More
precisely, for each cellC, we test whether

max
p∈C

d(I(p),c)2 ≤ ε,

whereI(p) is the color of the pixelp∈C, c is the average
color in C (obtained by averaging the red, blue, and green
components separately), andε is a user-selected tolerance.
The distanced between two colors is just the Euclidean dis-
tance in RGB space. To avoid getting to single-pixel cells,
we also stop the subdivision when cells get too small (for
instance, when they have less than 64 pixels).



Figure 1. Quadtree decomposition (left) and
sample points (right).

This simple sampling method generates two sets of
points: points that are clustered around the image edges,
and points in the middle of regions of low detail. Both types
of points are needed for a fair sampling of the image. Fig-
ure 1 shows the quadtree and the sample points for the duck
image shown in the introduction.

Because the sampling is just meant to find starting sites
for computing the centroidal Voronoi diagram, this sim-
ple sampling method is quite adequate. More sophisticated
sampling methods might sample the image better, but would
not necessarily have much influence in the final result. We
have not pursued this line of research.

3.2 Finding the cells

Starting from the seeds found in the sampling step, we
compute a centroidal Voronoi diagram.

TheVoronoi diagramof a set of points, calledsites, is a
decomposition of the space into cells, one cell for each site.
The cell corresponding to a sitep is the set of all points
in space whose closest site isp. For a survey of Voronoi
diagrams, see [1, 12]. Acentroidal Voronoi diagramis a
Voronoi diagram in which each Voronoi site is the centroid
of its Voronoi cell. For a survey of centroidal Voronoi di-
agrams, see [4]. Figure 2 shows a Voronoi diagram and a
centroidal Voronoi diagram. Note the regular geometry of
the cells in the centroidal Voronoi diagram.

Centroidal Voronoi diagrams are very rare. However,
any Voronoi diagram can be transformed into a centroidal
Voronoi diagram by the following simple iterative pro-
cedure: replace each Voronoi site by the centroid of its
Voronoi cell, recompute the Voronoi diagram for the new
sites, and repeat. This procedure is known asLloyd’s algo-
rithm. Formally, this algorithm is only known to converge
in dimension 1 and then only for constant density functions.
In practice, it performs well in the general case, even if it is
a bit slow to converge. (However, as we shall see, we do not
need to reach convergence.)

Figure 2. Voronoi diagram (left) and centroidal
Voronoi diagram (right) [4].

As hinted above, a major ingredient in definition of a
centroidal Voronoi diagram is an underlyingdensity func-
tion. The centroids of the Voronoi cells are computed using
a given density function. Formally, the centroid of a re-
gionV according to a density functionµ is the pointzgiven
by

z=

∫
V

xµ(x)dx∫
V

µ(x)dx
·

Note that the density functionµ enters only in the compu-
tation of the centroid. It does not enter in the computation
of the Voronoi diagram, which is still computed using the
Euclidean metric.

The power of centroidal Voronoi diagrams in applica-
tions lies in choosing a suitable density function. Centroidal
Voronoi diagrams adapt themselves to the mass distribution
implied by the density function, having larger cells where
the density is low and smaller cells where the density is
high. (See Figure 3.) This is exactly the adaptive feature
that we look for in our mosaic effects. It is also very use-
ful in other applications, such as mesh generation. In this
case, the fact that a centroidal Voronoi diagram is still an
ordinary Voronoi diagram allows meshes to be based on
the Delaunay triangulation, which has many nice proper-
ties. Centroidal Voronoi diagrams have recently attracted
much attention for graphics applications.

The density function that we use for creating mosaic ef-
fects in images is the norm of the gradient of the luminance
of the image. In other words, we convert the image to gray
and compute the Euclidean norm of the gradient for the gray
image. The gradient is computed using central differences.
Computing image gradients is a traditional tool in image
segmentation, and so it is not surprising that it captures im-
age features well. Figure 4 shows the gradient image of the
duck image. The darker the pixel, the higher the density.

Using the gradient of the image as density function
forces the corresponding centroidal Voronoi diagram to
adapt itself locally to the edges of the image. This helps to



Figure 3. Centroidal Voronoi diagram for con-
stant density (right) and variable density
(left) [4].

Figure 4. Image gradient as density function.

preserve the main visual features of the original image in the
final mosaic. Other density functions can be used, depend-
ing on what the artist wishes to emphasize in the mosaic.
Research along this line is left for future work.

Figure 5 (left) shows the Voronoi diagram of the initial
seed points. Note how the quadtree sampling imposes a
regular structure on the Voronoi diagram. Figure 5 (right)
shows the corresponding centroidal Voronoi diagram, com-
puted after 10 iterations of Lloyd’s algorithm. Note how the
cells have nicer geometry and are better distributed accord-
ing to the features of the image.

The centroidz of a regionV in the image is given by

z=
∑
x∈V

xµ(x)

∑
x∈V

µ(x)
,

where the sums run over all pixelsx in V. Of course, these
sums are the discrete analogues of the integrals above.

Note that the centroid is probably not at a pixel loca-
tion. In other words, although the pixelsx in V have integer
coordinates, the centroid ofV must be allowed to have frac-
tional coordinates. This is an important detail: truncating
or rounding the position of the centroids to integers inter-
feres with the convergence of Lloyd’s algorithm and may
generate ugly visual effects.

Figure 5. Initial Voronoi diagram (left) and cen-
troidal Voronoi diagram (right).

Although we could have used the graphics hardware for
computing Voronoi diagrams, as Hoff et al. [9] did, we have
opted to compute them directly, by finding which site is
closest to each pixel. Internally, the Voronoi diagram is rep-
resented as a matrix that labels each pixel with the index
of the site closest to it. (Ties are broken arbitrarily.) This
method is straightforward to implement and not too slow in
current machines.

One consequence of representing the Voronoi diagram
by a label matrix is that the Voronoi regions required for
computing the centroids are not explicitly represented; they
have to be extracted from the label matrix. Nevertheless,
it is simple to compute the centroids without explicitly ex-
tracting the Voronoi regions: A single pass through the label
matrix allows us to compute all the required sums simulta-
neously, by incrementally updating the sum corresponding
to each entry in the label matrix.

3.3 Painting the cells

Once the image has been decomposed into tiles by a suit-
able centroidal Voronoi diagram, we have to paint the tiles
and the edges. There are several alternatives for this.

The simplest alternative is to color a tile with the color of
the corresponding site in the image. Because, as discussed
before, the site is probably not exactly at a pixel location,
we have to use an approximate color. The simplest approx-
imation is the color of the pixel closest to the site.

A better alternative, which is equally simple to imple-
ment, is to color a tile with the average color of the image in
the tile. This gives a better visual result. However, this tech-
nique naturally introduces a blur effect near image edges,
specially in images that have a solid background (such as
the duck). The effect is much less pronounced in images
with complex backgrounds. The reason for this blur effect is
that Voronoi cells tend to straddle image edges. If the effect
is annoying, it can probably be removed a post-processing
step, but we have not pursued this.



Figure 6. Mosaic effect obtained from painting Voronoi edges with a background color.

We find the Voronoi edges directly from the label matrix,
using simple edge detection: pixels whose neighbors have
different labels are on an edge. We only check the neigh-
bors below and to the right of a pixel; this ensures that the
Voronoi edges are one pixel wide.

Painting the edges with black gives a stained-glass effect.
Painting the edges with a light color close to overall back-
ground color of the original image gives a mosaic effect.
See Figure 6.

There are many other ways to add artistic touches in the
rendering step. A thorough investigation of the artistic pos-
sibilities was not the main focus of our work; we describe
here just a few simple techniques.

A simple way to add realism to stained-glass effects is
to add glass texture by copying the attenuation factor from
a photograph or high-quality rendering of an illuminated
glass window. This is similar to the displacement maps used
by Mould [11], but is more realistic (though perhaps not as
interesting artistically). On the other hand, the result mosaic
may appear to be painted onto the glass, instead of being
composed of little glass panes. Another way is to add syn-
thetic illumination based on a simulated 3D geometry inside
each cell. The challenge here is to choose a nice geometry.
Figure 7 shows these two kinds of artistic touches.

4 Results

We tested our algorithm on several images. The results
are shown in Figures 8 and 9, which show the original im-

age, a mosaic effect, a painterly effect obtained by not paint-
ing Voronoi edges, and a quilt effect obtained by simulating
an illuminated round surface over each Voronoi cell. The
table below gives the parameters used for creating those im-
ages: the toleranceε and the minimum cell size used in the
sampling. It also lists the number of seed points found. In
all cases, we ran 10 steps of Lloyd’s algorithm.

Image ε min cell seeds
Duck 0.20 81 868
Butterfly 0.45 81 1012
Die 0.15 64 646
Garfield 0.30 81 1618
Flower 0.20 81 1066
Peppers 0.20 81 352
Michelangelo1 0.25 81 2029
Michelangelo2 0.25 81 877
Sibyl 0.12 81 1675
Street 0.25 81 2176

The test images (and others) and additional vi-
sual effects are available in full size and color at
http://www.impa.br/~geisamf/sibgrapi2005/.

5 Conclusion

Our algorithm produces nice mosaic effects with little
user intervention. The algorithm is simple to implement
and does not require special hardware. Nevertheless, if the
artist wants interactive intervention, the algorithm can be



Figure 7. Two stained-glass effects: glass texture (left) and synthetic illumination (right).

modified to use the graphics hardware to compute Voronoi
diagrams [9].

There are several questions left open by our approach:
Would using a metric in a perceptual color space give a bet-
ter initial sampling? Does a better initial sampling influence
the final result? What other density functions can be used?
How does one choose a density function if one wants a dif-
ferent emphasis in the final result? What kind of interactive
control is suitable for artists?

We have found that the density function that we chose
works only for the local adaption of the Voronoi diagram to
the features of the image. This happens apparently because
the gradient has a limited range and varies too smoothly. For
this reason, we only ran a few steps of Lloyd’s algorithm.
Waiting for convergence would create an almost uniform
Voronoi diagram and destroy the adaptive effect. By con-
trast, the exponentials used as density functions in [4] seem
to provide global adaption.

Moreover, as mentioned in Section 3.3, the Voronoi cells
obtained from this local adaption straddle image edges,
which may introduce blur for some images. Previous ap-
proaches (e.g., Dobashi et al. [3]) have worked hard to try
to align Voronoi edges with image edges. In our framework,
the natural way for trying to do that would be to find a suit-
able density function that captures this alignment. We have
not pursued this any further, but it remains a very interest-
ing line of research. The work of Hausner [8] is a step in
that direction, but he only used constant-density centroidal
Voronoi diagrams.

Acknowledgments. G. M. Faustino is partially supported by a
CAPES M.Sc. scholarship. L. H. de Figueiredo is partially sup-
ported by a CNPq research grant. The authors are members of
Visgraf, the computer graphics laboratory at IMPA, which is spon-
sored by CNPq, FAPERJ, FINEP, and IBM Brasil. The authors
thank Luiz Velho for his careful reading and suggestions, and Lu-
cia Darsa and Bruno Costa for the die image from [2].

References

[1] F. Aurenhammer. Voronoi diagrams—a survey of a funda-
mental geometric data structure.ACM Computing Surveys,
23(3):345–405, 1991.

[2] L. Darsa and B. Costa. Multi-resolution representation and
reconstruction of adaptively sampled images. InProceed-
ings of SIBGRAPI ’96, pages 321–328, 1996.

[3] Y. Dobashi, T. Haga, H. Johan, and T. Nishita. A method
for creating mosaic images using Voronoi diagrams. InPro-
ceedings of Eurographics 2002 Short Presentations, pages
341–348, 2002.

[4] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi
tessellations: Applications and algorithms.SIAM Review,
41(4):637–676, 1999.

[5] G. Elber and G. Wolberg. Rendering traditional mosaics.
The Visual Computer, 19(1):67–78, 2003.

[6] A. Finkelstein and M. Range. Image mosaics. InPro-
ceedings of the 7th International Conference on Electronic
Publishing, Lecture Notes In Computer Science; Vol. 1375,
pages 11–22. Springer-Verlag, 1998.

[7] P. Haeberli. Paint by numbers: abstract image representa-
tions. In Proceedings of SIGGRAPH ’90, pages 207–214.
ACM Press, 1990.

[8] A. Hausner. Simulating decorative mosaics. InProceedings
of SIGGRAPH 2001, pages 573–580. ACM Press, 2001.

[9] I. Kenneth E. Hoff, J. Keyser, M. Lin, D. Manocha, and
T. Culver. Fast computation of generalized Voronoi dia-
grams using graphics hardware. InProceedings of SIG-
GRAPH ’99, pages 277–286. ACM Press, 1999.

[10] J. Kim and F. Pellacini. Jigsaw image mosaics. InPro-
ceedings of SIGGRAPH 2002, pages 657–664. ACM Press,
2002.

[11] D. Mould. A stained glass image filter. InProceedings of
the 14th Eurographics Workshop on Rendering, pages 20–
25. Eurographics Association, 2003.

[12] A. Okabe, B. Boots, and K. Sugihara.Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. John Wi-
ley & Sons, Inc., 1992.



Figure 8. From left to right: original image, mosaic effect, painting effect, quilt effect. From top to
bottom: Butterfly, Die, Garfield, Flower, Peppers.



Figure 9. From left to right: original image, mosaic effect, painting effect, quilt effect. From top to
bottom: Michelangelo1, Michelangelo2, Sibyl, Street.

Note added in press.We have just come across this paper, which proposes a new approach for simulating real mosaics:
G. Di Blasi and G. Gallo, Artificial mosaics, to appear inThe Visual Computer(doi:10.1007/s00371-005-0292-4).


