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Abstract

We present tensor scale descriptor (TSD) — a shape de-
scriptor for content-based image retrieval, registration, and
analysis. TSD exploits the notion of local structure thick-
ness, orientation, and anisotropy as represented by the
largest ellipse centered at each image pixel and within the
same homogeneous region. The proposed method uses the
normalized histogram of the local orientation (the angle
of the ellipse) at regions of high anisotropy and thickness
within a certain interval. It is shown that TSD is invariant
to rotation and to some reasonable level of scale changes.
Experimental results with a fish database are presented to
illustrate and validate the method.

1 Introduction

Recent advances in the image acquisition technologies
have increased the demand for effective image searching
and browsing tools. Such tools should be able, for example,
to retrieve images from large collections, which are similar
to a query image. The images contain objects and the stan-
dard formats to represent the shape of these objects may be
used for this purpose, as shape descriptors. In the MPEG-7
project, for instance, several principles have been adopted to
measure the quality of a descriptor, such as its retrieval ac-
curacy, robustness, compactness, general application, com-
putational complexity, and hierarchical representation from
coarse to fine [17]. In order to accomplish these goals, a
descriptor should be simple, compact, insensitive to noise,
affine-invariant, and at same time contain all relevant infor-
mation to distinguish different images.

In this work, we present a shape descriptor based on
the tensor scale concept [26,27,29] — a morphometric pa-
rameter yielding a unified representation of local structure
thickness, orientation, and anisotropy. That is, at any image
point, its tensor scale is represented by the largest ellipse

(2D), or ellipsoid (3D), centered at that point and within the
same homogeneous region.

The algorithmic framework to compute tensor scale, as
originally proposed [26,27,29], is computationally expen-
sive. To address this problem, we propose a simpler and
yet effective implementation of the original method. Ten-
sor scale has been demonstrated for image filtering, seg-
mentation, and registration [26,27,29]. In this paper, we
discuss its applicability to create effective shape descriptors
for content-based image retrieval.

The key idea is to represent each image by its normalized
histogram of the local orientation (the angle of the ellipse)
at regions of high anisotropy and thickness within a certain
interval. The matching of two images involves correlation,
registration, and absolute difference of area between their
histograms to produce a similarity measure. This process is
invariant to rotation and to some reasonable level of scal-
ing, which does not affect the computation of the ellipses.
The rotation angle may be easily found during the matching
phase and could be used for image registration as well.

After giving the previous relevant study in Section 2,
Section 3 presents our implementation of tensor scale. In
Section 4, we present the tensor scale descriptor and its val-
idation is done in Section 5. Section 6 states conclusion and
discusses future work.

2 Background

Scale is a very used concept in image processing. Ba-
sically, scale-based approaches have been used in different
applications (such as, image classification and retrieval) to
represent and process images at various resolutions. Cur-
rent researches in this area have focused on the promising
notion of localized scale, which is space-variant resolution
method.

Punam et al. have introduced a new local scale method
called tensor scale [26,27,29]. Their approach is a natu-
ral evolution of their previous work based on a spherical



model [26,28,30] to a richer model based on ellipses. The
elliptical model overcome the major limitation of the spher-
ical model, which is the lack of local structure orientation
and anisotropy information.

The tensor scale at an image point is a parametric rep-
resentation of the largest ellipse (ellipsoid in 3D) centered
at that point and within the same homogeneous region, ac-
cording to some predefined criterion. It yields a unified
representation of local structure thickness, orientation, and
anisotropy, serving as a unique tool to analyze architecture
of image structures without explicit segmentation [26, 27,
29]. For a given pixel, the largest ellipse within the same
homogeneous region is determined by tracing sample lines
from O to 180 degrees around that pixel and computing the
following steps:

1. Intensity computation along each sample line.

2. Location of two optimum edge points on each sample
line.

3. Repositioning of the edge locations to points equidis-
tant to the given pixel, following the axial symmetry of
an ellipse.

4. Computation of the best-fit ellipse to the repositioned
edge locations.

These steps are performed for each image pixel until all el-
lipses have been computed. Next, we briefly explain these
steps as originally proposed in [26,27,29].

For a given sample line passing through a given pixel,
the method considers the two radially opposite segments
from that point (center of the pixel) in order to locate the
closest edge points, being one on each segment. The dis-
tribution of the sample lines is approximately uniform over
the entire angular space (from 0 to 180 degrees) around the
pixel. This is important to guarantee invariance to rotation.
A unit vector is used to represent the direction of each seg-
ment. There are m pairs of these mutually opposite unit
vectors, denoted by (71, 7 ), (T2, Ta)s -y (Trns To )- The seg-

ment with direction 7; emanating from a pixel p is denoted

(p) .

by m;”” : [0, L] — R? and its opposite segment with direc-

tion 7/ is denoted by 7; 1),

AP = p+IE | A€o, (1)

These segments have maximum length A = L (an input
parameter that represents the largest local scale). Previous
experiments have shown that suitable values of L are from 8§
to 15 points. Larger values increase the computational cost,
usually without a proportional gain in scale estimation. An
intensity profile fi(p )(/\) on each segment is computed by
interpolating image intensities.

The local edge detection on each segment is based on the
maximum £YF) and minimum .5, ) N intensity profiles along
T

the segment.

WH0) = max fP(), @)
PN = min fP(a) 3)

The main goal here is to handle the cases of “step-up” and
“step-down” edges separately, filtering locally disconnected
structures of similar intensities [26,27,29]. A conventional
edge detector is subsequently applied to locate an edge point
on the minimum and maximum intensity profiles. The op-
timum edge location on the segment is then determined as
the one closer to the point p.

Optimum edge location is an active research area [5, 11,
21,32]. Punam et al. have adopted the LoG function pro-
posed by Marr and Hildreth [21] to compute the optimum
edge location on the ;Y (p) and %, ) N profiles. The edge lo-

cation is given as the ﬁrst (from the pixel p) zero-crossing
point of the LoG function, where the intensity gradient is
above a threshold. The intensity gradient is computed by
convolving the minimum and maximum profiles with the
first derivative of a Gaussian.

The computed edge locations along all sample lines are
used to fit an ellipse centered at the point p. Since two ra-
dially opposite points on a given line are expected to be
equidistant to p, they need to be repositioned. The method
selects the edge point closer to p on each pair of opposite
segments and replaces the other by the reflection of the se-
lected point.

The computation of the best-fit ellipse is accomplished
in two sub-steps.

1. Determination of ellipse orientation.
2. Computation of the lengths of the semi-axes.

Punam et al. used principal component analysis [13] to im-
plement the first sub-step. In their solution, the orientation
0 of an ellipse is given by the smaller angle between the
eigen-vector associated with the largest eigen-value of the
covariance matrix > and the horizontal axis, where the ele-
ments 3; ; of X are defined as follows:
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1=1,2,...,.2m
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e D D R (5)
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1=1,2,...,.2m
Yo = Y12 (7)



The points (x;,y;)|t = 1,2,...,2m are the edge points af-
ter the reposition phase and (x,, y,,) are the coordinates of
pixel p (the central point of the ellipse).

The second sub-step is accomplished by minimizing the
error function below, where a and b are the lengths of the

two semi-axes.
2 212
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.f error — Z
i=1,2,...,.2m
where (u;,v;)[i = 1,...,2m are the relative coordinates
of the repositioned edge points with respect to p and after
rotation by angle —6, such that the ellipse’s major semi-axis
becomes aligned to the horizontal axis. To minimize the
error function, the partial derivatives of f.,..o» With respect
to a and b must be zero. It may be proved that a and b,
which minimize fe;.or, are
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B = Z v2, (12)
i=1,2,....2m

C = > uy, (13)
i=1,2,....2m

D = >, (14)
1=1,2,....2m

E = v} (15)
i=1,2,....2m

In the following, I1(p) and l3(p) denote the two semi-
axes of the ellipse centered at pixel p, where ||I3(p)|| >
|I2(p)||. The ellipse just computed gives us three factors
— orientation 6 of the major semi-axis fl(p), anisotropy

(\/1 —1ll2(P)|12/111(p)||?), and thickness (||l2(p)||). For
display purpose, these attributes are represented as a 2D im-
age using the HSI color coding. It is adopted hue (H) for
orientation, saturation (S) for anisotropy, and intensity (I)
for normalized thickness. One may also use the square root
of the normalized thickness to achieve better visualization
at low thickness values.

3 Faster tensor scale computation

The main problem of tensor scale, as originally pro-
posed [26,27,29], is its expensive computational time. Its

extension to 3D is almost prohibitive. It is not difficult to
verify that tensor scale would take hours to be computed
for typical 3D image datasets running on conventional PCs.
The implementation we propose next is simpler and yet ef-
fective. Instead of using the previous complex edge de-
tection scheme, we adopted another criterion to define the
homogeneous region around a given pixel, which leads to
faster implementations. Our approach does not need the
reposition phase and we have also improved the ellipse
computation phase.

During the edge location phase, our approach is to go
along each pair of opposite segments, alternately and at
same time, instead of going along one entire segment by
turn. When the edge location is found on a segment, the
opposite edge point is already in the correct position, and
therefore, reposition phase is no longer necessary. This is a
great improvement because, when there are one edge point
far away of p on one segment and another edge point close
to p on the opposite segment, these segments could be tra-
versed in a naive order according to the previous execution
way. In our implementation, the shortest execution way is
always guaranteed.

The original approach for edge detection also involves
the standard deviation (a scale parameter) of the Gaussian
and LoG functions, and a threshold on the intensity gradi-
ent. Unfortunately, there exists no natural scale or gradi-
ent threshold which can be defined a priori to distinguish
edges from non-edges. Edge detectors are typically de-
signed to recover abrupt discontinuities in an image, how-
ever the edges of physical structures are usually blurred. Al-
though larger scales are more suitable to detect smooth in-
tensity transitions, while smaller scales may detect fine de-
tails [11], we will always run the risk of missing true edges.
Besides, the use of the filtered intensity profiles u:(f) and

pP2 has a serious drawback. It duplicates the efforts in
T,

edée detection and forces us to compute the gradient on-
the-fly for each segment.

In view of the difficulties above, we noted that what is re-
ally needed is a simple method that correctly detects edges,
when they are abrupt discontinuities, and stops the edge de-
tection process on smooth transitions to a different region.
The key idea is that we are not interested in the exact loca-
tion of complex edges. It is better to miss the right position
of an edge by one or two pixels than lose it at all, as often
happens when using a threshold on the intensity gradient.

We use two connected thresholds, thl and th2 (i.e.,
th2 = n-thl, where n € [2,4]), where the first is the maxi-
mum expected absolute intensity difference within homoge-
neous regions of the image and the second is the maximum
cumulative absolute intensity difference allowed inside a
homogeneous region. Both thresholds are computed with
respect to the intensity of the central pixel p. The first tries



to capture abrupt discontinuities, while the second aims at
stopping the edge detection process in the case of smooth
intensity transitions. Each two opposite segments are tra-
versed alternately at the same time. The absolute intensity
difference d between the current point and p is computed
and compared to thl. If d < thl, then it is cumulated
into a variable ¢, whose value is compared to th2. The pro-
cess stops either when d > th1 (abrupt transition) or when
¢ > th2 (smooth transition).

In the case of binary images, the edge detection phase is
trivial. We just stop traversing a pair of opposite segments,
when one of them reaches the background. The rest of the
algorithm is the same.

To improve the ellipse computation phase, we use a
more straightforward solution. Instead of using the princi-
pal component analysis [13] to compute the ellipse’s orien-
tation 6 (which involves determining the eigen-values and
eigen-vectors), we define a function g(+y) that gives us the
angle 60 directly.

gly) = Z (7% — 4%, where (16)
i=1,2,...,2m

] = xjcosy—y,siny a7)

y; = xjsiny+y;cosy (18)

(«}, y}) are the relative coordinates of the edge points with
respect to the center p = (xp,yp) of thg ellipse, E}nd
(«f,y!') are the new coordinates after applying a rotation
by angle v (i.e., «y is a candidate for —6). The ellipse’s ori-
entation is obtained from the value of v which maximizes
the function g.

By setting the derivative of this function to zero (¢’(y) =
0), it can be shown that  has the form.

2-F
arctan |:G——H:|

vy = — where (19)

Fo= Y &y, (20)
i=1,2,....2m
2

G = > 1)
i=1,2,....2m

H = S af (22)
i=1,2,....2m

We have to observe that ¢’() = 0 may also imply that g is
minimum and the difference between the maximum and the
minimum values is 7/2. This situation can be corrected as
follows.

if(F<0.0 and ~ <0.0) ye—y+m/2

elseif(F > 0.0 and ~>0.0) ~v«—vy—m7/2 (23)

The above approach is very simple and yet effective. One
may also note that due to the symmetry of the ellipse, it is

not necessary to perform sums F, GG, and H for all edge
points. We may only consider one point for each pair of
opposite segments, since y/° = (—y})2, 2> = (=),
and z} - y. = (—x) - (—y}). Thus, the sums F, G, and
H will be half sized. The same observation also applies
to the computation of the length of the semi-axes. More
specifically, for each opposite pair of segments we may add
only once any of the two opposite edge points during A, B,
C, D, and E computations.

4 Content-based image retrieval using tensor
scale

Distinct objects often present different tensor scale lo-
cal orientation distributions of their shape, or even of their
texture. The tensor scale descriptor (TSD) is based on this
statement. We first compute the tensor scale parameters for
the original image and then analyze the local orientation his-
togram. The computation of the local orientation histogram
only considers pixels of high anisotropy and with thickness
within a certain interval. This is done because pixels with
either low anisotropy or high thickness do not have a well
defined orientation and because pixels with low thickness
stand over the edges and have their orientation influenced
by pixel geometry.

The local orientation histogram is circular. The effect of
image rotation on it is just the displacement by a constant
offset. The matching of two given images is made by tak-
ing the absolute difference of area between their histograms,
after correcting the displacement between them by correla-
tion. The maximum correlation between two histograms
gives us the best offset. Therefore, the process is invariant
to rotation. To make the method more insensitive to scale,
we use normalized histograms.

Figure 1a shows a fly wing image. The tensor scale im-
age of Figure la and of its rotation by 15° are shown in
Figure 1b, together with the circle on the right which repre-
sents the HSI color coding. As we may see, the two tensor
scale images have a very good agreement. Figure 1c illus-
trates the matching of their local orientation histograms, af-
ter offset correction by correlation. Note that we can find
the rotation angle by converting the offset to degrees and
this information could be used for registration.

5 Experimental Results

This section compares the tensor scale descriptor (TSD)
to commonly used shape descriptors.

5.1 Shape database

The shape database is a set with one thousand and one
hundred fish contours obtained from [31]. Since there is
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Figure 1. (a) A fly wing image. (b) The tensor
scale images of (a) and of its rotation by 15°,
and a circle representing the HSI color cod-
ing. (c) The matching of their local orientation
histograms by correlation.

no semantic definition of classes for the fish contours in
this database, we defined a class as consisting of 10 differ-
ent manifestations of each contour by rotation and scaling.
Then, the problem consists of 1100 classes with 10 shapes
each.

5.2 Evaluated descriptors

Table 1 shows the set of implemented shape descriptors.
Beam Angle Statistics and Curvature Scale Space have been
widely used as shape descriptors [1-3,24]. Many versions

Descriptor Id Descriptor Name
TSD Tensor Scale Descriptor
CCS Convex Contour Saliences
CSS Curvature Scale Space
BAS Beam Angle Statistics

Table 1. List of evaluated descriptors.

of these methods have been proposed, but, in this work, we
consider conventional implementations.

Convex Contour Saliences (CCS): The CCS of a con-
tour is definined as the influence areas of its higher cur-
vature convex points [7,8]. Previous work [7] has shown
that CCS outperformes Multiscale Fractal Dimension [7],
Fourier Descriptors [12,22], Moment Invariants [10, 14],
CSS [1,24] and BAS [3] with respect to the multiscale sep-
arability measure [7]. Experiments with Precision x Recall
have also shown better results with the CCS as compared to
CSS, Fourier Descriptors, and Moment Invariants [8].

Curvature Scale Space (CSS): The CSS descriptor ex-
traction algorithm is described in [1,24]. The CSS descrip-
tor vector represents a multiscale organization of the curva-
ture zero-crossing points of a planar curve. In this sense,
the descriptor dimension varies for different shapes, thus
a special matching algorithm is necessary to compare two
CSS descriptors [24]. We implemented a C version of the
Matlab prototype presented in [23].

Beam Angle Statistics (BAS): The BAS descriptor has
been compared with several others [4, 6, 16, 19,20, 24], in-
cluding the CSS descriptor. In [3], it was shown that the
BAS functions with 40 and 60 samples outperform all of
them. The experiments of the present paper use the BAS
descriptor with 60 samples. Basically, the BAS descriptor
is based on the beams originated from a contour pixel. A
beam is defined as the set of lines connecting a contour pixel
to the rest of the pixels along the contour. At each contour
pixel, the angle between a pair of lines is calculated, and the
shape descriptor is defined by using the third-order statistics
of all the beam angles in a set of neighborhoods. The sim-
ilarity between two BAS moment functions is measured by
an optimal correspondent subsequence (OCS) algorithm, as
shown in [3].

5.3 Effectiveness measures

Our experiments rely on the creation of a shape-based
image retrieval system, which can be characterized as fol-
lows. Assume that we have a database containing a large
number of images. Given a user-defined query pattern (e.g.,
a query image), the system must rank the images stored in
the image database in increasing order of their distance of
the query image (similarity), according to the image content
(i.e., the objects are represented by shape properties).



The purpose of our experiments is to evaluate the ef-
fectiveness of the similarity-search of different descriptors
in retrieving relevant images. Effectiveness evaluation is a
very complex task, involving questions related to the defini-
tion of a collection of images, a set of query images, a set of
relevant images for each query image, and suitable retrieval
effectiveness measures. In our case, we use each original
image as query image and we consider its manifestations as
relevant images.

In our experiments, we use two graphical measures: Pre-
cision vs. Recall and # vs. Recall. Precision vs. Recall
(P x R) curves are the commonest evaluation measure used
in CBIR domain. Precision is defined as the fraction of re-
trieved images which is relevant to a query. In contrast,
recall measures the fraction of the relevant images which
has been retrieved. A recall is a non-decreasing function of
rank, while precision can be regarded as a function of recall
rather than rank.

A 0 x R curve can be seen as a variation of the P x R.
We define 6 as the average of the precision values measured
whenever a relevant image is retrieved. For 100% of recall,
the 6 value is equivalent to the average precision. The main
difference between the measures is that, unlike precision, ¢
value is cumulative (i.e., its computation considers not only
the precision at a specific recall but also the precision at
previous recall levels).

In general, both curves (P x R and 6 x R) closest to the
top of the chart indicates the best performance.

5.4 Experimental results

This section discusses our experimental results related
to the effectiveness of the proposed Tensor Scale approach.
We compare TSD and the CBIR approaches reviewed in
Section 5.2, showing that 7SD outperforms them. Figures 2
and 3 show respectively the P x R and 6 x R curves obtained
for all descriptors.

Observe that the 7SD presents the best P x R curve (Fig-
ure 2). For the 6 x R curve (Figure 3), a similar result can
be verified. Again, the 7SD outperforms the others.

Figure 4 shows examples of similarity retrieval using
four different query images (first column) and by taking into
account the 7SD. Each returned image is accompanied with
the distance value with respect to the query image. As we
can see, TSD was able to return similar images in the first
positions.

6 Conclusions and Future Work

We have presented a simpler and yet effective imple-
mentation of the tensor scale concept and proposed a ten-
sor scale descriptor based on local orientation. The TSD
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Figure 2. Precision versus Recall curve.
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Figure 3. 6 versus Recall curve.

was evaluated using a fish database (binary images) in or-
der to compare its effectiveness for content-based image re-
trival with the ones obtained by other well known shape de-
scriptors: Convex Contour Saliences [7, 8], Curvature Scale
Space [1,24], and Beam Angle Stastistics [3]. The effec-
tiveness of the proposed descriptors is evident regarding the
Precision vs. Recall and 6 vs. Recall curves. The pres-
ence of manifestations, obtained by rotating and scaling op-
erations, in the relevant sets suggests that the TSD is more
robust to these kind of transformations than the others.

We are currently creating an image database of fly wings
to support research in Biology. Preliminary tests have
shown that TSD on texture is very promising for fast identi-
fication of similar species of flies using content-based image
retrieval. We also intend to investigate other simple ways of
defining local orientation, such as the gradient field over the
image [9, 15, 18,25, 33], and compare them with the TSD.
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