
Fast Polygonization of Variational Implicit Surfaces

ALVARO CUNO, CLAUDIO ESPERANÇA , ANTONIO OLIVEIRA , PAULO ROMA CAVALCANTI

PESC-Programa de Engenharia de Sistemas e Computação
COPPE/Universidade Federal do Rio de Janeiro

{alvaro, esperanc, oliveira, roma }@lcg.ufrj.br

Abstract. This article presents a simple hierarchical adaptation of the Marching Cubes algorithm for polygonizing
variational implicit surfaces used in modelling and reconstruction applications. The technique relies on placing
the normal and boundary constraint points respecting a pseudo-Euclidean distance metrics. This procedure makes
it possible to quickly prune the space and minimize the number of costly function evaluations and thus converge
rapidly to the surface. Timings show that this technique tends to perform faster than Bloomenthal’s continuation
polygonizer [5].

1 Introduction

The process of creating implicit models has been inten-
sively studied in the last few decades. This is attributed to
the fact that implicit models enjoy several nice properties,
such as definition of the surface by one analytical function,
unification of the surface and volume modeling, easiness
to perform complex edit operations, capacity to represent
complex objects and inside/outside tests.

Recently, the use of radial basis functions (RBFs) for
the creation of implicit models has been reported in quite a
few publications [7, 20, 10, 11, 30, 15, 16, 8]. These mod-
els offer nice properties such as smoothness (the function is
continuous and differentiable) and direct control over sur-
face creation. Furthermore, the modelling process does not
require previous knowledge of the surface topology.

Turk and O’Brien [26] introduced a new approach of
creating implicit surfaces based in RBFs. These surfaces
are described by so-called constraint points, i.e., locations
in 3D through which the surface should pass and locations
that are interior or exterior to the surface. A 3D implicit
function is created from these constraint points using a vari-
ational scattered data interpolation approach. They coined
the termvariational implicit surfaceto refer to the zero-
set of such a function. This implicit function is a sum of
weighted radial basis functions (RBFs) centered on the con-
straint points (Turk and O’Brien used triharmonic splines as
RBFs). The weights of the RBFs are determined by solving
a linear system of equations.

The construction of the equations system requiresO(n2)
time andO(n2) space, wheren is the number of constraint
points, whereas solving the equations system using direct
methods such as LU-decomposition or singular value de-
composition hasO(n2) andO(n3) computational and stor-
age complexity, respectively.

In addition to the cost related with the solution of the
equations system, a high quality visualization of the iso-

surface requires the function to be evaluated at a very large
number of points. Because of the global nature of vari-
ational implicit functions, all their terms must be used in
computing the value function at any one point1. Thus, each
evaluation of the interpolated function hasO(n) time com-
plexity.

The visualization of surfaces of this type can be done
by direct methods such as ray-tracing [13]. Also, Reuter et
al. [22] present a point-based rendering developed specif-
ically for RBF-based surfaces. Nevertheless, visualization
is most frequently achieved by employing a polygonization
schema such as Bloomenthal’s continuation algorithm [5]
or the Marching Cubes algorithm [18].

Most practitioners of implicit shape modelling based
on RBFs favor the use of Bloomenthal’s algorithm, since it
is very efficient and has a fairly well known implementa-
tion. It also has the advantage of sampling the space only in
the neighborhood of the desired iso-surface. Being a con-
tinuation method, however, it requires a “seed” point for ev-
ery connected component of the iso-surface and providing
a complete but non-redundant set of such seeds may prove
to be hard in some cases.

On the other hand, methods which sample the space
regularly (e.g., Marching Cubes) are guaranteed to produce
a correct result. However, they are clearly not suitable for
the task at hand since they pay a heavy performance penalty
by sampling the space at irrelevant locations. In this con-
text, a hierarchical method may prove useful, provided that
it is capable of converging rapidly to space regions (cells)
which straddle the desired iso-surface.

In this paper, we present an iso-surface extraction tech-
nique based in the hierarchical sampling of the implicit func-
tion domain. The technique minimizes the number of func-
tion evaluations and thus the efficient application of the

1It must be mentioned that approximate methods such as those de-
scribed by [7] may help in reducing the number of terms in the summation.

Marching Cubes algorithm. The idea is based in interpolat-
ing a pseudo-Euclidean distance metric enforced by a care-
ful choice of normal constraint points.

This paper is organized as follows. Section 2 out-
lines methods used for the construction and visualization
of implicit models based in RBFs. Section 3 briefly intro-
duces several concepts related to variational implicit sur-
faces. Section 4 explains the proposed technique. In Sec-
tion 5, experimental results are presented. Section 6 presents
concluding remarks and suggestions for future work.

2 Related work

2.1 RBF-based implicit function construction

The idea of using RBFs for modeling implicit surfaces was
introduced by Savchenko [23] and Turk and O’Brien [26].
It consists of producing an scalar field in which the desired
surface is a zero-set, whereas points inside/outside the sur-
face are mapped to negative/positive values. Unfortunately,
the global nature of this representation encumber its use
in modelling surfaces described by a very large number of
points.

Morse et al. [20] have used compactly supported ra-
dial basis functions (CSRBFs), introduced by Wendland in
[29], to confront this problem. Kojekine et al. [15] im-
proved the method by organizing the sparse matrix pro-
duced by Morse into a band-diagonal sparse matrix which
can be solved more efficiently. Because of the multiple
zero-level sets created by this method, the resulting func-
tion has limited application in CSG, interpolation or similar
applications [20].

Carr et al. [7] have used RBFs for reconstructing the
surface of objects for which range data is available. In order
to be able to cope with large amounts of data, they benefit
from several optimizations reported by Beatson [3, 2]. Af-
terwards, Laga et al. [16] introduce theParametric Radial
Basis Functions, similar to the work of Carr, but adapted for
fitting smooth objects as well as objects with sharp bound-
aries.

Recently, Tobor et al. [24] present a new approach to
reconstruct large geometric datasets by dividing the global
reconstruction domain into smaller local subdomains, solv-
ing the reconstruction problems in the local subdomains us-
ing radial basis functions with global support, and com-
bining the solutions together using the partition of unity
method [21].

2.2 Polygonization

Once modelled, an analytically-defined implicit function
such as the kind produced by RBFs may be visualized in
several ways. Most frequently, one wishes to produce a
piecewise linear approximation of its zero-set. This pro-
cedure is known as polygonization. A detailed survey of

polygonization methods is out of the scope of this paper.
We refer the interested reader to comprehensive works in
the area such as [1, 28].

Lorensen and Cline [18] presented the Marching Cubes
algorithm for constructing iso-surfaces of 3D medical data.
The basic principle is to reduce the problem to that of trian-
gulating a single cube, which is intersected by a surface.

Bloomenthal [4] presented a polygonization algorithm
in which the implicit function is adaptively sampled by sub-
dividing space with an octree-like partitioning scheme, which
may either converge to the surface (using octree cubes sub-
division) or track it (by cell propagation). Terminal octree
cells are then poligonized in constant time. Adaptive sub-
division is also used to solve ambiguity problems.

In addition to these two basic approaches, many vari-
ants were proposed in order to deal with the inherent sam-
pling problems (e.g., [25, 19]). In essence, these variants
try to reduce the sampling rate and, at the same time, mak-
ing sure that the resulting surface is geometric and topolog-
ically correct.

In general, any polygonizer developed for general im-
plicit functions can be used to polygonize variational im-
plicit surfaces. Turk and O’Brien [26, 27], Karpenko [14]
perform iso-surface extraction using Bloomenthal’s contin-
uation method. Huong Quynh Dinh et al. [10, 11] extracted
iso-surfaces using Marching Cubes [18]. Carr et al. [7]
used a continuation method based on the marching tetrahe-
dra algorithm [25].

Specific polygonizers for variational implicit surfaces
were presented by [9, 16, 12]. The Crespin [9] algorithm
performs an incremental Delaunay tetrahedralization of the
constraints points. But it is very expensive and does not
present visually good results.

Laga et. al. [16] use an octree scheme to find voxels
near constraint points. The voxel classification procedure’s
main advantage is the fact that it does not require evaluation
of the implicit function. After boundary voxels are found,
they are polygonized by having their corners evaluated. The
main shortcoming of this method is that it cannot be used
when the point density is low.

Xiaogang et al. [12] present an approach which re-
quires a coarse input mesh which approximates the desired
iso-surface. This control mesh is recursively subdivided to
a given level using a polyhedral subdivision scheme. Since
the new added vertices usually do not lie on the implicit
surface, they are mapped to the implicit surface using New-
ton’s iteration method. The algorithm is efficient and pro-
duces high-quality meshes as a result of the interpolating
subdivision scheme. The only drawback is that it requires a
triangular mesh in order to supply the necessary connectiv-
ity information.

3 Variational implicit surfaces

Variational implicit surfaces are used in the context of the
scattered data interpolation problem stated as follows:

Given a set ofn distinct constraint points{c1, c2, . . . , cn},
c ∈ <3, and a set of function values for each
of these points{v1, v2, . . . , vn}, v ∈ <, find the
smooth functionf : <3 7→ < such thatf(ci) =
vi, for i = 1...n. The smoothness off is enforced
by minimizing the second order energy functional
given by

∫

xε<3

∑

i,j

(
∂2f(x)
∂xi∂xj

)2dx. (1)

The solution to this problem is unique, and is known
as the thin-plate interpolation of the points [17, 6]. There
are several numerical methods that can be used to compute
it, such as finite elements and finite differencing techniques.
Alternatively, the solution can be expressed it in terms of a
linear combination of RBFs:

f(x) =
n∑

j=1

λjφ(x− cj) + p(x), (2)

wherecj are the positions of the known constraint points,
λj are the weights of the radial basis functions centered at
those points andp(x) is a polynomial term.

For the thin-plate solution in 3D, Turk and O’Brien
[26] usedp(x) = a + bx + cy + dz and the triharmonic
spline2 φ(~r) = ‖~r‖3. They called the zero-set of the im-
plicit functionf a variational implicit surface.

To find theλj set and polynomial coefficientsa, b, c, d
we need satisfy the interpolation constraintsf(ci) = vi.
Substitute their left side, resulting in:

n∑

j=1

λjφ(ci − cj) + p(ci) = vi. (3)

Additionally, the set ofλj have to satisfy the orthogo-
nality conditions:

n∑

i=1

λi =
n∑

i=1

λic
x
i =

n∑

i=1

λic
y
i ,

n∑

i=1

λic
z
i = 0, (4)

whereci = (cx
i , cy

i , cz
i).

Since equations (3) and (4) are linear with respect to
the unknownsλj , a, b, c andd, the problem can be formu-
lated as a linear system. Letφij = φ(ci − cj). Then this
linear system can be written as follows:

2Although here we focus on thin-plate radial basis functions, it should
be noted that other RBFs may also be used.




φ11 φ12 . . . φ1n 1 cx
1 cy

1 cz
1

φ21 φ22 . . . φ1n 1 cx
2 cy

2 cz
2

...
...

...
...

...
...

...
φk1 φk2 . . . φkn 1 cx

k cy
k cz

k

1 1 . . . 1 0 0 0 0
cx
1 cx

2 . . . cx
n 0 0 0 0

cy
1 cy

2 . . . cy
n 0 0 0 0

cz
1 cz

2 . . . cz
n 0 0 0 0







λ1

λ2

...
λn

a
b
c
d




=




v1

v2

...
vn

0
0
0
0




(5)

This system is symmetric and positive semi-definite,
and can be solved by direct or approximate methods.

4 The polygonization algorithm

4.1 Specification of normal constraint points

A variational implicit function is modeled by specifying a
set ofn constraint points{c1, c2, ..., cn}, together with a
set of function values{v1, v2, ..., vn} at the given points
[30]. To control the implicit surface we may specifybound-
ary constraint pointswhich are the positions that take the
value zero, and the created implicit surface will pass exactly
through these points. In addition, we may generate thenor-
mal constraint pointsthat are the positions that will define
the orientation of the surface.

The choice and placement of constraint points is strongly
dependent on the application. In reconstruction applica-
tions (e.g., [30]), the input data is frequently a polygonal
mesh whose verticesqi are used as boundary constraint
points. Also, for each vertexqi, a normal vector is estimated
and a normal constraint pointni is introduced by displacing
qi by a given small distanced along that vector. This nor-
mal constraint point is given a value ofw. In summary, the
constraints are given byf(qi) = 0 andf(ni) = w. Figure
1 illustrates the idea.

0>f

0<f

0)(=iqf wnf i =)(
iq

in

d

���������	
����	��
��	�

���	�������	
����	��
��	�

Figure 1: The normal constraint pointsni are placed along
the estimated normal vector at a distanced from boundary
constraint pointsqi. The functionf is such thatf(x) < 0
for x inside the curve andf(x) > 0 outside the curve.

For reasons that will become clear later, we would like
to ensure the following property for the interpolant:

|f(x)| ≤ δ(x, S), (6)

whereS is the the zero iso-surface off andδ denotes the
Euclidean distance metrics.

The primary means for enforcing this property is to
adjust the values ofw andd. A necessary condition is that
w < d. This guarantees that ifni is a normal constraint
point, thenf(ni) < d. It is reasonable to assume thatd
is a good approximation of the Euclidean distance between
ni andS. In our implementation, this assumption is made
stronger by ensuring that no other vertexqj , j 6= i is closer
to ni [7]. Furthermore, we may setw so that it is signif-
icantly smaller thand, and thus guaranteeing property (6)
within a limited neighborhood ofS.

Figure 2 illustrates how the interpolating function and
the Euclidean distance function vary along a line intersect-
ing a reconstruction of the “Stanford Bunny” (Fig. 2.a).
The model was created based on a 800-vertex polygonal
mesh usingd = 0.015 andw = 3d/4. We may observe that
the value of the interpolating function is less than or equal
to that of the Euclidean distance function in the neighbor-
hood of the model (Fig. 2.b). As the sampled point gets
farther from the model, however, the interpolating function
will eventually catch up with the Euclidean distance func-
tion (see Fig. 2.c).

Fortunately, our polygonization method does not re-
quires property (6) to be valid everywhere, but only within
a limited neighborhood of the model.

4.2 Construction of the interpolating function

Once the constraint points are determined, the linear equa-
tion system 5 is constructed and solved. We use a standard
LU-decomposition method for this purpose.

It should be noted, however, that due to the use of tri-
harmonic splines as basis functions, the resulting matrix is
dense and entries tend to assume larger values in positions
which are more distant from the main diagonal. In partic-
ular, entries on the main diagonal have zero values. Such
ill-conditioned matrices can be solved by direct and ap-
proximate methods only at a high computational cost. Re-
cently, some mathematical advances were proposed which
help coping with this problem. Among these, we may cite,
the Beatson-Faul-Goodsell-Powell (BFGP) method, Fast Mul-
tipole methods and pre-conditioning based methods. See
[6] for details of this classification.

4.3 Adaptive space sampling

In this step the space is sampled using progressively finer
grids in order to find which cells of a given target size strad-
dle the surface. The idea is to refine a grid cell only if it
contains a part of the surface. At the end we obtain a set of
non-overlapping cells of equal size, each of which is guar-
anteed to overlap the surface. These are then triangulated
using the standard Marching Cubes method.

(a)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

-1
,00

-0
,88

-0
,76

-0
,64

-0
,52

-0
,40

-0
,28

-0
,16

-0
,04 0,0

8
0,2

0
0,3

2
0,4

4
0,5

6
0,6

8
0,8

0
0,9

2 (b)

���������	
�����
�������
�

��������������������������

0

1

2

3

4

5

6

-5
,00

-4
,40

-3
,80

-3
,20

-2
,60

-2
,00

-1
,40

-0
,80

-0
,20 0,4

0
1,0

0
1,6

0
2,2

0
2,8

0
3,4

0
4,0

0
4,6

0 (c)

���������	
�����
�������
�

��������������������������

Figure 2: (a) A cross section of the interpolating function
of Stanford Bunny.(b) Plot of the interpolating functionf
and the Euclidean distance metrics evaluated along a line in
the neighborhood of the model. (c) A zoom-out of the chart
shown in (b).

Let C be a cubic cell of the grid. In order to deter-
mine if C straddles the surface, we evaluate the interpolat-
ing function at the cube’s centers. If r is the radius of the
smallest sphere which containsC, then the iso-surfaceS
may intersectC only if δ(s, S) ≤ r. We shall assume that
property (6) is valid within a given neighborhood ofS, say,
all pointsx such that|f(x)| ≤ ∆. This is stated below:

|f(x)| ≤ ∆ ⇒ δ(x, S) ≥ |f(x)|. (7)

Thus, as long ass is inside that neighborhood, we
may substitutef(s) for δ(s, S) in our distance test (see
Fig. 3). In other words, cellC need not be subdivided if
r < |f(s)| ≤ ∆.

Let us now consider a cellC which is relatively dis-
tant fromS, more specifically, a cell whose centers is such
that |f(s)| > ∆. In this case, it is safe to assume that the

() ∆=xf

() 0=xf

r
1s

1C
δ

S

r
2s

δ

2C

)(),(xfSx ≥δ

∆≥),(Sxδ

Figure 3: A cell C1 “near” from S may be rejected if
f(s1) > r since in this caseδ(s1, S) > r. A cell C2 “dis-
tant” from S satisfiesf(s2) > ∆ and thus also satisfies
δ(s2, S) > ∆. C2 can be discarded provided thatr < ∆.

distance betweens andS is also greater than∆, since all
pointsp which are at a distance smaller than∆ to S neces-
sarily satisfy|f(p)| < ∆. Thus, we may state

|f(x)| > ∆ ⇒ δ(x, S) > ∆. (8)

We may take advantage of this by making sure that
the radius ofC is never greater than∆ since in this case
|f(s)| > ∆ will necessarily implyδ(x, S) > r, meaning
that the cell cannot intersectS (see Fig. 3). This assumption
permits us to cover both cases (cell “near” or “far” fromS)
with a single simple rejection test:

|f(s)| > r ⇒ C does not straddleS. (9)

One last issue remains to be addressed: how is∆ es-
tablished? In practice, there is no need to compute a fixed
value for∆, but merely to ensure that it is large enough,
i.e., that the largest cell radius used in the polygonization
process is never greater than∆. This is accomplished by
using a sufficiently large ratio betweend andw (see Fig.
4). Nonetheless, too large a ratio will have a detrimental ef-
fect on the algorithm performance. To see this, notice that
in this case,f(x) will return too low an estimate forδ(x, S)
in many cases, thus requiring many cells to be subdivided
needlessly. We conducted several experiments (see Section
5) that indicate thatd = 4w/3 is usually a large enough
ratio without incurring in heavy performance penalties.

The space sampling algorithm used in our implemen-
tation is summarized in the following pseudo-code:

procedureSpaceSample(f , C, maxlevel, level)

1. If (level== maxlevel) then

(a) Evaluatef at those corner points ofC that
were not yet evaluated;

(b) MCcellPolygonize(C);

2. Else If (Straddle(f , C)) then

(a) SubdivideC into 8 sub-cubesCi of equal
size;

(b) For i = 0..7 do
SpaceSample(f , Ci, maxlevel, level+1);

FunctionStraddleperforms the rejection test (9). It returns
true ifC straddles the surfacef(x) = 0 and false otherwise.
Unit (leaf) cubes correspond to the maximum subdivision
level maxlevel. These are passed to functionMCcellPoly-
gonize, which performs the cell triangulation process [18].
The rejection test on these cubes is implicitly performed by
the Marching Cubes standard procedure, i.e., by examining
the signs of the function at the cube’s corners.

A crucial consideration when implementing this algo-
rithm is to avoid reevaluating the implicit function at points
already visited. For instance, the “if” clause in step2 eval-
uates the function at the center of cubeC; this value may
later correspond to a cube corner in step1.(a). Our imple-
mentation employs a cache of evaluated points so thatf is
computed only once for each space point.

5 Experiments

The experiments were performed on a PC equipped with an
AMD-Duron processor running at 1.3 GHz and 256 MB of
main memory.

All models were simplified down to 800 vertices and
placed inside a cubical space with (-1,-1,-1) and (1,1,1) as
minimum and maximum points, respectively.

In our implementation the cubical space is uniformly
divided into a 3D grid of identical cubes whose size iss ×
s× s, wheres is a power of two.

We first conducted experiments aimed at finding “opti-
mal” values for the maximum cell radiusr and for thew/d
ratio. For this purpose, we performed the polygonization of
the “Stanford Bunny” data set using six values ofw/d (0.2,
0.5, 0.667, 0.75, 0.8 and0.83) and six values forr. Since
we use an octree-like decomposition scheme, the six values
of r correspond to the octant radii of consecutive refinement
levels of the initial cubic space, i.e.,

√
3/2,

√
3/4, and so

forth. In Table 1 we observe the direct relation between
different values ofr andw/d . A small w/d ratio implies
a large∆ size, making it possible to use large initial sizes
for r while still yielding a correct polygonization. How-
ever, large∆’s have a detrimental effect on the algorithm
performance.

Figure 4 illustrates how the value of∆ depends on the
w/d ratio. Recall that∆ denotes the “size” of the region
wheref can be used as a lower bound for the Euclidean
distance.

Next, we performed other experiments to test the ef-
ficiency of the algorithm on the polygonization of some
reconstruction functions. See results in Figure 5 and on

r =
√

3
2 r =

√
3

4 r =
√

3
8 r =

√
3

16 r =
√

3
32 r =

√
3

64
w
d

=1
5

26.38% 26.38% 26.38% 26.36% 26.68% 32.78%
ok ok ok ok ok ok

w
d

=1
2

12.36% 12.36% 12.36% 12.41% 13.26% 21.94%
ok ok ok ok ok ok

w
d

=2
3

9.89% 9.89% 9.89% 9.97% 10.93% 20.09%
ok ok ok ok ok ok

w
d

=3
4

9.01% 9.01% 9.01% 9.10% 10.10% 19.44%
ok ok ok ok ok ok

w
d

=4
5

8.57% 8.57% 8.58% 8.67% 9.69% 19.12%
hole hole hole hole ok ok

w
d

=5
6

8.29% 8.29% 8.30% 8.39% 9.42% 18.90%
hole hole hole hole hole ok

Table 1: This table shows results of the proposed algorithm
in polygonizing the “Stanford Bunny” reconstruction func-
tion modeled with different values ofw/d. d was set to
0.015 in all tests. The percentage values correspond to the
total number of function evaluations required by the algo-
rithm compared with the number of evaluations required
by a standard Marching Cubes. A “hole” value means that
resulting polygonization is incorrect, i.e., the algorithm re-
jected one or more cells straddling the surface.

the left side of Table 2. All functions were built using
800-vertex polygonal meshes as input data and settingd =
0.015 andw/d = 3/4. The LU decomposition for solving
the equations system took 42 s. in all experiments. The ini-
tial cube was initially subdivided in128× 128× 128 cells.

Finally, some experiments were performed to compare
the proposed algorithm with the Bloomenthal’s continua-
tion implementation [5]. In order to obtain a “fair” com-
parison, we had to modify Bloomenthal’s implementation
so that its vertex computing function, which ordinarily uses
binary subdivision, would employ linear interpolation in-
stead. Moreover, the algorithm was configured to use cubi-
cal decomposition instead of the default tetrahedral decom-
position. Also, a vertex of the polygonal mesh is used as
the seed point. In both implementations, the cube sizes cor-
respond to a128 × 128 × 128 decomposition of the world
space. The comparison results are shown in Table 2.

The experiments indicate that the proposed technique
tends to perform slightly faster than Bloomenthal’s imple-
mentation. As one might expect, the number of triangles
for both methods are almost identical. The slight variation
is due to the fact that the cubical decompositions are not the
same, since the “seed” point used in Bloomenthal’s code
determines the decomposition’s origin. The improved per-
formance can be attributed to the smaller number of func-
tion evaluations performed by the proposed technique.

We also tested the generated polygonizations for topo-
logical consistency with positive results. It should be noted,
however, that the proposed technique is based on the March-
ing Cubes [18] algorithm and thus it inherits all its disad-

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

-1
,00

-0
,88

-0
,76

-0
,64

-0
,52

-0
,40

-0
,28

-0
,16

-0
,04 0,0

8
0,2

0
0,3

2
0,4

4
0,5

6
0,6

8
0,8

0
0,9

2

��������	
�����	��

������

015.0=d
015.0=d
015.0=d
015.0=d
015.0=d
015.0=d

3/2/ =dw
4/3/ =dw

2/1/ =dw

5/4/ =dw
6/5/ =dw

5/1/ =dw

Figure 4: Plot of the various interpolating functions used in
the experiments (see Table 1), evaluated on the line segment
defined by (-1,-1,-1) and (1,1,1).

vantages such as the creation of an excessively large num-
ber of triangles and the introduction of some ambiguities in
lower resolutions.

6 Conclusions and future work

We have presented a technique for the fast polygonization
of variational implicit surfaces. This technique minimizes
the number of the costly function evaluations using an hier-
archical sampling of the space and thus permitting an effi-
cient application of the Marching Cubes algorithm.

The proposed technique can also be applied to the poly-
gonization of other classes of implicit objects, as long as
their generating functions behave as lower bounds for Eu-
clidean distance metrics within a given neighborhood (see
the discussion in Section 4.3). One important observation
is that this condition is considerably weaker than the well-
known Lipschitz criteria exclusion [13].

Additionally, it should be possible to adapt the ideas
presented in this paper to other visualization techniques.
For instance, ray tracing of implicit surfaces could be effi-
ciently performed by coupling the proposed voxel rejection
criteria with standard octree-based speed-up techniques.

To conclude, we would like to explore this technique
in the context of FastRBF [7], adaptive polygonization scheme
and the support of sharp features.

Acknowledgments

Many thanks are due to Dr. Marco Aurélio P. Cabral for his
helpful insights. We are also grateful to CNPq for providing
financial support for the first author.

Figure 5: Different models polygonized with the proposed technique.

References

[1] C. Bajaj, J. Blinn, J. Bloomenthal, M. Cani-Gascuel,
A. Rockwood, B. Wyvill, and G. Wyvill.Introduction
to Implicit Surfaces. Morgan Kaufmann Publishers,
INC., San Francisco, California, 1997.

[2] R. K. Beatson, J. B. Cherrie, and D. L. Ragozin. Fast
evaluation of radial basis functions: Methods for four-
dimensional polyharmonic splines.SIAM J. Math.
Anal., 32(6):1272–1310, 2001.

[3] R. K. Beatson and W. A. Light. Fast evaluation of
radial basis functions: Methods for two-dimensional
polyharmonic splines. IMA Journal of Numerical
Analysis, (17):343–372, 1997.

[4] J. Bloomenthal. Polygonization of implicit surfaces.
Computer Aided Geometric Design, pages 341–335,
November 1988.

[5] J. Bloomenthal. An implicit surface polygonizer.
Graphics Gems IV, pages 324–349, 1994.

[6] M. D. Buhmann.Radial Basis Functions: Theory and
Implementations. Cambridge University Press, 2003.

[7] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell,
W. R. Fright, B. C. McCallum, and T. R. Evans. Re-
construction and representation of 3D objects with ra-
dial basis functions. InProceedings of SIGGRAPH
2001, pages 67–76. ACM Press, 2001.

[8] J. C. Carr, R. K. Beatson, B. C. McCallum, W. R.
Fright, T. J. McLennan, and T. J. Mitchell. Smooth
surface reconstruction from noisy range data. In
Proceedings of ACM Graphite 2003, pages 119–126.
ACM Press, 2003.

[9] B. Crespin. Dynamic triangulation of variational im-
plicit surfaces using incremental delaunay tetrahedral-
ization. InProceedings of the 2002 IEEE Symposium
on Volume Visualization and Graphics, pages 73–80,
Piscataway, NJ, 28–29 2002. IEEE.

[10] H. Q. Dinh, G. Turk, and G. Slabaugh. Reconstruct-
ing surfaces using anisotropic basis functions. InPro-
ceedings of the Eighth International Conference On
Computer Vision, pages 606–613, Los Alamitos, CA,
July 2001. IEEE Computer Society.

[11] H. Q. Dinh, G. Turk, and G. Slabaugh. Reconstructing
surfaces by volumetric regularization using radial ba-
sis functions. InIEEE Transactions on Pattern Analy-

Constraint The proposed algorithm Bloomenthal’s algorithm
points Iso-surface Evaluations Triangles Evaluations Iso-surface Evaluations Triangles

Model (number) extraction (number) (number) (%) extraction (number) (number)

Bunny 1600 58s 193395 81340 9.01% 75s 244171 81420
Horse 1600 34s 111560 47028 5.20% 43s 141128 47088
Torus2 1600 27s 90654 33932 4.22% 31s 102867 34304
Hand 1599 26s 83202 34660 3.87% 32s 104085 34720
Head 1600 53s 176270 71528 8.21% 65s 214441 71508
Knot 1600 81s 269701 114704 12.56% 104s 343725 114592

Table 2: Comparison between the Bloomenthal’s continuation algorithm and the proposed technique.

sis and Machine Intelligence, pages 1358–1371. IEEE
Computer Society, October 2002.

[12] X. Jim, H. Sun, and Q. Peng. Subdivision interpo-
lating implicit surfaces. Computer Graphics, pages
763–772, October 2003.

[13] D. Kalra and A. Barr. Guaranteed ray intersections
with implicit surfaces. Computer Graphics, pages
297–306, July 1989.

[14] O. Karpenko, J. F. Hughes, and R. Raskar. Free-form
sketching with variational implicit surfaces.Com-
puter Graphics Forum, September 2002.

[15] N. Kojekine. Computer Graphics and Computer
Aided Geometric Design by means of Compactly Sup-
ported Radial Basis Functions. PhD thesis, Tokyo In-
stitute of Technology, 2003.

[16] H. Laga, R. Piperakis, H. Takahashi, and M. Naka-
jima. A radial basis function based approach for 3d
object modeling and reconstruction. InIWAIT2003,
pages 139–144, 2003.

[17] S. K. Lodha and R. Franke. Scattered data tech-
niques for surfaces. In G. Nielson H. Hagen and
F. Post, editors,Proceedings of Dagstuhl Conference
on Scientific Visualization, pages 182–222, Dagstuhl-
Germany, June 1999. IEEE Computer Society Press.

[18] W. Lorensen and H. Cline. Marching cubes: a high
resolution 3d surface construction algorithm.Com-
puter Graphics, 21(4):163–169, July 1987.

[19] S. V. Matveyev. Approximation of isosurface in the
marching cube: Ambiguity problem. InProceedings
IEEE Visualization, pages 288–292. IEEE Computer
Society, October 1994.

[20] B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen,
and K. R. Subramanian. Interpolating implicit sur-
faces from scattered surface data using compactly
supported radial basis functions. InShape Modeling
International, pages 89–98, Genova, Italy, May 2001.

[21] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.P.
Seidel. Multi-level partition of unity implicits.ACM
Transactions on Graphics, 22(3):463–470, July 2003.

[22] P. Reuter, I. Tobor, C. Schlick, and S. Dedieu. Point-
based modelling and rendering using radial basis
functions. InProceedings of ACM Graphite, pages
111–118, Held in Melbourne, Australia, 2003. ACM
Press.

[23] V. Savchenko, A. Pasko, O. Okunev, and T. Ku-
nii. Function representation of solids reconstructed
from scattered surface points and contours.Computer
Graphics Forum, 14(4):181–188, 1995.

[24] I. Tobor, P. Reuter, and C. Schlick. Efficient recon-
struction of large scattered geometric datasets using
the partition of unity and radial basis functions.Jour-
nal of WSCG, 12(1-3):467–474, February 2004.

[25] G. M. Treece, R. W. Prager, and A. H. Gee. Regu-
larised marching tetrahedra: improved iso-surface ex-
traction. Computers and Graphics, 23(4):583–598,
1999.

[26] G. Turk and J. O’Brien. Variational implicit sur-
faces. Technical report, Georgia Institute of Technol-
ogy, May 1999.

[27] G. Turk and J. O’Brien. Modelling with implicit sur-
faces that interpolate.ACM Transactions on Graphics,
pages 855 – 873, October 2002.

[28] L. Velho, J. Gomes, and L. H. Figueiredo.Implicit
Objects in Computer Graphics. Springer Verlag, New
York, 2002.

[29] H. Wendland. Piecewise polynomial, positive defi-
nite and compactly supported radial basis functions of
minimal degree.AICM, (4):389–396, 1995.

[30] G. Yngve and G. Turk. Robust creation of implicit
surfaces from polygonal meshes. InIEEE Transac-
tions on Visualization and Computer Graphics, pages
346–359. IEEE, 2002.

