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Abstract 
A fast algorithm for generating a polyline approxi-

mation (flattening) for the offset curves of a cubic Bézier 
curve segment is described. It is shown to be more effi-
cient than the standard recursive subdivision method by 
generating only 70% as many segments, but, just as im-
portantly, 94% of all segments fall within 20% of the flat-
ness criterion. The code runs as fast as recursive subdivi-
sion. 
 

1. Introduction 

Approximating offset curves by polylines has appli-
cation in diverse fields such as computer graphics, and 
CAD/CAM. An exhaustive compilation of techniques is 
found in [2]. The current paper trades off the severe com-
plexities of many of these techniques, by focussing on 
specifically cubic Bézier segments. A fundamental idea is 
to approximate small sections of the curve by a circular 
arc, a similar idea independently used in [7] but which 
involves very complicated computation. 

The Douglass-Peucker method [2] appropriately re-
duces a set of precalculated (linear) subsegments in mul-
tiresolution applications, but is not applicable here since 
the goal is to originally calculate a minimal approximat-
ing set of subsegments. 

A uniformly thick curve can be regarded as having a 
path (the curve itself), and two parallel boundary curves at 
a distance called the half-thickness to the left1 and right of 
the path, called the offset curves. A thick cubic Bézier 
curve segment is generally rendered by filling a polygonal 
outline approximation consisting of flattened offset 
curves. That is, the polygon is composed of two polylines, 
which approximate the left and right offset curves. The 
offset curves are analytically very complex.  

The vertices of this polygon are generally obtained by 
subdividing the path curve into a series of disjoint curve 
                                                           
1 The “left” or “right” of a parametric curve is defined while 
looking along the curve in the direction of increasing parametric 
value. 

subsegments, and then calculating the positions perpen-
dicular to the curve at the subsegment endpoints, and at a 
distance equal to the half-thickness. The maximum trans-
verse deviation of each path subsegment from the corre-
sponding chord (the achieved flatness of the path) is con-
strained to be no greater than an error value, f, called the 
flatness. A common technique for flattening the path 
curve is by a process called recursive subdivision [1], 
wherein the curve is recursively divided into two subseg-
ments until the flatness criterion is met. The advantage of 
recursive subdivision is that the number of subsegments 
generated is variable—depending on the nature of the 
curve—rather than being fixed, as in the case of forward 
differencing [1]. An improved path flattening algorithm 
by Hain et al [6] generates a minimal number of subseg-
ments each closely meeting the flatness criterion, and 
forms the basic idea for the current algorithm.  

However, flattening the path curve to the flatness cri-
terion, and calculating offset points, generates segments 
which underestimate the flatness on inside offset curve 
sections, and perhaps do not meet the flatness criterion on 
outside sections. Having the same number of vertices in 
the polyline approximation for both offset curves gener-
ally does not provide the desired perceptual smoothness. 
This effect is exacerbated by increases in thickness.  

Another problem is that, on average, recursive subdi-
vision generates too many path subsegments because of 
discrete round off. As a consequence, the number of verti-
ces in the approximating polygon is generally too large, 
by as much as a factor of two [6] . The described algo-
rithm repeatedly reduces the front end of a path curve by a 
segment whose flatness criterion for the desired offset 
curve is closely met, thus minimizing the number of gen-
erated linear segments in the approximating offset curve 
polyline. 

Section 2 gives an overview of a new algorithm. A 
circular approximation method of flattening offset curve 
regions in the absence of inflection points is described in 
Section 0. Location and handling of inflection points is 
given in Section 4. Experimental results are presented in 
Section 5, with conclusions made in Section 6. 
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2. Algorithm overview 

Let Q be a Bézier curve and let Q  and + Q−  denote 
the left and right offset curves at a distance  (half-
thickness) from Q. The algorithm processes Q twice, with 
the first pass generating a polyline approximating 

/ 2d

Q+  and 
the second pass generates the polyline approximating Q− .   

We will use the parametric value t of the underlying 
path curve to represent points on the offset curves. Par-
metric ranges 1 1[ ,  and 2 2[ ,  (the calculation of these 
values is described below) surround respectively inflec-
tion points 1t  and 2  (if they exist), and the corresponding 
offset curve sections can be approximated by linear seg-
ments. The value cusp  is an approximation to a cusp point 
(also described below) if it exists.  

]t t− + ]t t− +

t

t

Thus, in our approach, we first partition the Bézier 
segment into up to 5 regions, as outlined in Table 
1. The offset curves corresponding to these regions are 
alternatively approximated by linear segments, or by 
polyline sublists.  

[0,1]t =

Table 1 Case Analysis for Inflection Points 

Case Treatment 

1 1

2 2

[ , ] [0,1]

[ , ] [0,1]

t t

t t

− +

− +

⊆

∧ ∩ = ∅
 

Use circular approximation to 
flatten offset subsegments 1[0, ]t− . 
Generate linear approximation to 
approximate the offset curves 

1 1 . Use circular approx. to 
flatten offset subsegments [ , . 
[ , ]t t− +

1 1]t+

1 1

2 2

0 [ , ]

[ , ] [0,1]

t t

t t

− +

− +

∈

∧ ∩ = ∅
 

Generate linear approximation to 
approximate the offset curve 

1 . Use circular approx. to 
flatten offset subsegments [ , . 
[0, ]t+

1 1]t+

1 1 2 2

1 2

[ , ] [ , ]

[ , ] [0,1]

t t t t

t t

− + − +

− +

∩ ≠
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Use circular approximation to 
flatten offset segments 1[0, ]t− . 
Generate linear approximation for 
the offset curves 1[ ,  and 

1 . Use circular approxi-
mation to flatten offset segments 

.  

]cuspt t−

[ ,cuspt t+ ]

2[ , 1]t+

Other cases Handled similarly. 
 

The curved regions (away from inflection points) 
have curvatures exclusively to the left or the right. By 
approximating a small section of the curve around 0t =  
to a circular arc, we can find the value t such that the 
achieved flatness of the target offset curve has the desired 

value f. We then subdivide2 the curve at that point, ap-
proximate the first curve by a linear segment, and repeat 
the process on the remaining curve until that curve itself 
can be approximated by a linear segment.  

3. Flattening by circular approximation 

We now describe the flattening of the left offset 
curve, +Q , under the assumption that either no inflection 
points exist in the path curve, or are sufficiently removed 
from the parametric range [0  (i.e., there is no overlap 
between either 1 1[ ,

,1]
]t t− +  or 2 2[ ,  and [0 ). Because of 

the previous assertion, the curvature  of this [sub]segment 
will be exclusively to the right or to the left. Figure 1 
shows a thick Bézier curve Q defined on control points 

]t t− + ,1]

( ) ( )0 0 0 3 3 3, , , ,x y xP P y , but drawn relative to an r-s 
coordinate system with the origin being at 0 , the start of 
the curve at 

P
0t = , the r-axis being oriented along the 

velocity vector of the curve at  (i.e., toward 1 ), and 
the s-axis being right-handed orthogonal to the r-axis. 
That is,  

0t = P
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The control points relative to this coordinate system are 
( ) ( )0 0 0 3 3 3, , , ,r s r sP P  

Over a sufficiently small range [ , , the path 
curve can be approximated by a circular arc, of radius 

]t t′ ′− +

R=0OP . The offset curve can therefore be approximated 
by a circular arc having the same center, O. We wish to 
find the parametric value of a point t′ ′B  on the path 
curve such that the maximum transverse deviation of the 
offset curve from the line AB  is equal to the given flat-
ness, i.e., f=AC .  
 

                                                           
2 To subdivide a Bézier curve segment defined by control points 

at  define 0 3, ,P P t
( ) ( ) ( )
( ) ( ) ( )

0 0 1 0 1 1 2 1 2 2 3 2

0 0 1 0 1 1 2 1 1 1 1 0

, ,
, ,

t t t
t t t

′ ′ ′= + × − = + × − = + × −
′′ ′ ′ ′ ′′ ′ ′ ′ ′′′ ′′ ′′ ′′= + × − = + × − = + × −

P P P P P P P P P P P P
P P P P P P P P P P P P

 

The control points of the first subsegment are 
0 0 0 0, , ,′ ′′ ′′′P P P P ,and of the second subsegment are 0 1 2 3, , ,′′′ ′′ ′P P P P  



 

Figure 1 Left Offset Curve. 

Now consider point  on the path, at coordinate 
 calculated (see [1]) as 

'B
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Since  is at the origin, and the r-axis is tangential to the 
path, we have that . Thus, 

0P

0 0 1 0r s s= = =

( ) ( )
( )

2 3
1 2 1 3 2 1

2 3
2 3 2

( ) 3 3 2 3 3

( ) 3 3

r t r t r r t r r r t

s t s t s s t

′ ′ ′= + − + − +

′ ′ ′= + −
 (1) 

By the assumption of small t, the lower terms are domi-
nant, and 

1
2
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( ) 3

( ) 3

r t r t

s t s t
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Thus, if we are trying to achieve a (positive) flatness 
on the path curve, we can calculate the value of f ′ t′ such 

that the curve [0 deviates from its chord as follows: , ]t′
2

2

2

( ) 3

i.e., 
3

s t f s t

ft
s

′ ′= =

′
′ =

′

 (2) 

The maximum deviation of the left offset curve from its 
chord can be related to the maximum deviation of the path 
curve by noting that the triangles and OAB OA B′ ′  are 
similar, as are ABC  and 0A B P′ ′ . It can easily be seen 
that 

0

2 1
2' '

dRf AC AB OB d
f RA P A B OB

−
= = = = = −

′ ′ ′ R
 

where d is the thickness of the Bézier curve. Here we 
need the radius of curvature, R. For small , we may 
assert that  

t′

1( ) 3A B r t r t′ ′ ′≈ ≈ ′ .  P3 
Q+ s 

From Pythagoras we have 

( )22 2

22 2 2
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O
Q

P2 

BA
The sign of the radius depends on the sign of 2s , 

which determines whether the curvature is to the left 
(positive) or the right (negative). Note also that 2s will not 
be zero because of the assertion that we are sufficiently 
distant from inflection points (ranges immediately sur-
rounding inflection points are handled separately in Sec-
tion 4). 

f C
d/2 B’A’f’ r 

P0 P1

The “effective” flatness required for the path 
curve to ensure the required flatness f for the left offset 
curve is thus 

f ′

2
2

1

'
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3

ff
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We are actually interested in the magnitude of the 
maximum deviation. The required t is calculated from (2) ′
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defining a point on the path curve. The corresponding 
point on the left offset curve (i.e., the polyline vertex) is 
calculated at a perpendicular distance of d/2 to the left of 
the path curve. 

Under the assumption of small , and a circular ap-
proximation, the maximum transverse deviation for the 
range 

t′

[ , ]t t′ ′− +  is the same as [0 . Thus we can sub-
divide the curve at 

, 2 ]t′

2
2 2

1

2
3 1

3

ft
dss
r

= ×
⎛ ⎞
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such that the offset curve corresponding to the first path 
subcurve has the required flatness f. The only other re-
quirement is that the bracketed term in the denominator is 
positive. This will always be true if the curvature is to the 
right for the left offset curve (i.e., the offset curve is on 
the “outside” of the curve.) It will also be true if the radius 
of the path curve is greater than the half-thickness (i.e., 
either the thickness or the curvature is not too great.) In 



this case, the offset curve has retrograde motion, and the 
outline polygon is self-intersecting. While this situation 
can be easily handled by separate means, for the sake of 
this paper’s brevity, we choose to avoid this problem. 

Figure 2 shows the right offset curve, −Q . The 
mathematics is similar to the case, with the result that 
here the path curve is subdivided at  

+Q

2
2 2

1

2
3 1

3

ft
dss
r

= ×
⎛ ⎞
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defining a point on the path curve. The corresponding 
polyline vertex on the right offset curve is calculated at a 
perpendicular distance of d/2 to the right of the path 
curve. 

4. Location and Processing of Inflection 
Points 

We can write coordinates of the path curve as para-
metric functions  

3 2

3 2

( )

( )
x x x

y y y

x

y

x t a t b t c t d

y t a t b t c t d

⎧ = + + +⎪
⎨

= + + +⎪⎩
 

where, using the Bézier basis matrix, the coefficients in 
terms of the control points are 

1 2 3 4 1 2 3

1 2 3 1 2 3

1 2 1 2

1 1

3 3 3 3

3 6 3 3 6 3

3 3 3 3

x y

x y

x y

x y

a x x x x a y y y

b x x x b y y y

c x x c y y

d x d y

= − + − + = − + − +

= − + = − +

= − + = − +

= =

4y

 

At inflection points, the component of the accelera-
tion (second derivative of position) perpendicular to the 
velocity (first derivative of position) is zero; the cross 
product of the two vectors is zero. Thus, 

2 2

2 2
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2
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Solving this quadratic equation for t yields 
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the parametric positions  and t  of the inflection points, 
if they exist (i.e., have real solutions). If the two inflection 
points are coincident (or, in practice, very close), the com-
mon point is the cusp point,  

1t 2

cuspt
 

 

Figure 2 Right Offset urve. 

We now describe t
offset points. Consider 
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elocity at the inflection point, and 
inflection point, we have 

equation (1) becomes 

tric value relative to this segment 

and solve for t , we have 



The achieved flatness of the curve segments [ ,0ft ]−  
and  will be less than the transverse displacement [0, ]ft

( )fs t .3 Since the maximum transverse displacement for 
these two segments are of opposite signs, we can merge 
these segments into a single segment having the paramet-
ric range [ ,f f  and flatten it. Transforming this pa-
rametric range into the corresponding parametric range in 
the original curve yields 1 1[ ,  where 1 1 1  
and . A similar parametric range 

is found surrounding the second  inflection point 
 (if it exists). 

]

                                                          

t t− +

]t t− + (1 )ft t t t− = − −
1 1 1(1 )ft t t t+ = + −

2 2[ , ]t t− +

2t
Thus, any intersection of the calculated parametric 

ranges 1 1[ ,  and 2 2[ ,  with the range [0  allow re-
placement by a single linear segment for the path curve, 
and therefore for both offset curves. The various arrange-
ments are summarized in Table 1. 

]t t− + ]t t− + ,1]

5. Results 

The goal is to efficiently flatten Bézier offset curve 
segments. We will compare the number of polyline seg-
ments generated by our circular approximation algorithm 
(CA) with the number generated for the same curve by 
recursive subdivision (RS). We will also compare the 
maximum deviation of the offset curve from each polyline 
segment (achieved flatness) for both algorithms. The re-
cursive subdivision algorithm we used uses the maximum 
(path) deviation calculation method of Hain [5], which is 
more precise and no slower than conventional techniques 
for determining this value. 

To generate a representative collection of 10,000 test 
curves, which attempts to cover a reasonable distribution 
of practical Bézier curves, we used a canonical represen-
tation [6], in which the first three control points are at 
(1,0), (0,0), and (0,1), and the fourth control point varies 
over a 100  grid from –3 to +3 in both x and y. The 
flatness criterion was fixed at 0.0005 (a typical relative 
resolution—however, the results were relatively insensi-
tive this value.). All curves having a section where the 
path curve radius was less than 125% of the curve half-
thickness were discarded as pathological (as explained in 
Section 0.) The curve thickness is 0.5, representing a rea-
sonably thick curve, given the positions of the first three 
control points.  

100×

Figure 3 shows the distribution (frequency) of curves 
as a function of the ratio of  the number of segments gen-
erated by the RS and the CA algorithm. Overall, RS pro-
duces 42% more segments than CA. 

 

 
3 In the parabolic approximation used above it was smaller by a 
factor of 4, but here we make no such assertion, and use the 
conservative value. 

0

500

1000

1500

2000

2500

0.05 0.35 0.65 0.95 1.25 1.55 1.85 2.15 2.45 2.75

RS Segments/CA Segments

Fr
eq

ue
nc

y

 
Figure 3  Distribution of number of generated segments. 

Also importantly, the distribution of the segment verti-
ces is such that the achieved flatness (on a scale relative to 
the specified flatness) is much more consistently around 
the desired value of 1 for the CA algorithm, as is shown 
in Figure 4. It should be noted that achieved flatness val-
ues 20% over the specified flatness do not significantly 
affect the perceptual smoothness of the curve. The RS 
algorithm generates many more than the required number 
of segments on inside offset curve sections. The only rea-
son that RS does not frequently generate an insufficient 
number of segments on outside offset curve sections is 
that RS tends to be overly conservative in meeting the 
flatness criterion (for the path curve). This effect can be 
seen in the sample CA and RS flattened offset curves in 
Figure 5. 

Figure 6 gives the relative RS to CA runtime ratio 
distribution. The average ratio is 1.04. However, more 
common instances (well-behaved curves that are more 
likely to occur in practice) run almost 20% faster using 
the CA algorithm. The reason for the lower CA runtime is 
a combination of (1) fewer segments are generated, (2) no 
calculation of maximum deviation is required, and (3) the 
code is iterative rather than recursive. 
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Figure 4  Distributions of achieved flatness (relative to 
the given flatness criterion) for both CA and RS algo-
rithms. 
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Figure 5  CA (left) and RS (right) flattened curves 
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Figure 6  Distribution of relative runtimes 

6. Conclusion 

An algorithm for generating a polyline approximation 
(flattening) for the offset curves of a cubic Bézier curve 

segment has been described. It is shown to be more effi-
cient than recursive subdivision by generating only 70% 
as many segments, but, just as importantly, 94% of all 
segments fall within 20% of the flatness criterion, at-
hough these numbers are somewhat dependent on the 
half-thickness. The code4 runs as fast as recursive subdi-
vision. 
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