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Abstract

Inpainting digital models have been since the late 1990’s
a powerful image reconstruction tool for missing data. Af-
ter the original work of Bertalmio, Sapiro, Caselles and
Ballester [1] several different approaches have been used
to tackle the problem. Some are based on Partial Differ-
ential Equations to model a transport process and a diffu-
sion process, others are based on the Euler elastica func-
tional. This paper presents a model using the level lines
continuation to perform the filling-in of the inpainting do-
main D. The model is proposed in a way as to satisfy the
“Connectivity Principle”. The imageu(x, y) is repre-
sented by a family of level lines and the missing part of
the image is filled-in by the propagation of the available
surrounding information, from outside to inside of the in-
painting domainD along the level lines of the image. After
defining the domainD the restoration process becomes au-
tomatic and the final resultu(x, y, tn) is carried out by the
evolutionary process starting with the initial degraded im-
ageu(x, y, 0). Examples on real and textured images show
the performance of this proposed model.

1. Introduction

The filling-in technique has been used since the Re-
nascence period and its main goal is to reconstruct missing
parts or damaged areas in an image in such way as to restore
its harmony. In artwork restoration this is an ancient practice
and consists of filling-in the missing or degraded areas in a
way that they become non perceptive to an observer. A large
number of algorithms have been proposed to tackle this
problem of reconstruction of occluded or damaged areas in
a digital image. The ability to perform automatic filling-in
of missing information has numerous and important appli-
cations in image processing. The act of filling-in image in-
formation on a domainD is called Inpainting. This domain
D can be a finite union of sub-domains, i.e.,D = ∪m

i=1 Di

where each one is a connect region and could be, for ex-

Figure 1. Two damaged figures to be restored:
The Mandrill and the bridge.

ample, a blank domain, hidden parts of objects, a superim-
posed text (like dates or publicity), a damaged part of an old
photograph or even an entire object which one desires to re-
move from an image. Special effects on a scene can also be
obtained by inpainting techniques. The act of inpainting in
a domainD can also be understood as performing disocclu-
sion in an occluded areaD.

The ability of disocclusion is a common process in hu-
man vision which has been widely studied and analyzed by
psychophysicists, particularly by Kanizsa [9]. The object’s
boundaries continuation being smooth and straight as possi-
ble plays an important role in the process of reconstructing
hidden objects.

Bertalmio, Sapiro, Caselles and Ballester, introduced the
term digital inpainting into image processing in the pioneer-
ing digital inpainting work [1] based on two partial differ-
ential equations (PDE).

In this paper we present a new method for the automatic
digital inpainting after a user-provided domainD speci-
fies the region of the input and damaged image to be re-
stored (or inpainted). The domainD will become progres-
sively smaller until becoming an empty set. Our approach
is in the deterministic methods context of the variational
continuation framework to the level lines structure and can
be viewed as a combination of the ideas presented in the
Bertalmio et al. inpainting process [1] and Masnou varia-



tional approach using level lines to process the disocclusion
[10] in a way that reaches the natural ability of humans who
mostly seem to prefer the connected result, even when they
are far apart (Connectivity Principle) [9].

Inspired by this work, several others techniques have
been designed for inpainting small regions [5], [13].

This paper is organized as follows: Section 2 presents
the geometric nature motivation for the proposed model,
and the discussion of important geometric concepts used
in their formulation. Connection to some related existing
works in digital inpainting are made. Section 3 addresses
the proposed Level Line Continuation (LLC) model. Sec-
tion 4 presents some final remarks and some typical appli-
cations of theLLC model in disocclusion and scratch re-
moval, as presented in figure 1. Finally, the conclusion is
presented in the section 5.

2. Geometric inpainting models

The geometric inpainting algorithms have motivated and
inspired this work mainly by the advantage of the geomet-
ric nature model that even thought the implicit contour it-
self can develop singularities (like cusp and corners) and
can merge or split to change topology, the level lines re-
mains well defined and thus, one can discretize the curve on
a fixed cartesian grid.

2.1. The level lines

The level set method has been used to capture the in-
terfaces and has been applied in a large number of areas,
including problems that arise in geometry, fluid mechanics
computer vision, etc. Numerous advances have been made
since the original approach [14], including the variational
level set method [10] for disocclusion. For details of level
set techniques see [15].

Given an imageu : Ω ⊂ R2 → R, the upper level setLλ

is defined by the following subsets of R2:

Lλ = {x ε R2, u(x) ≥ λ}.

Let’s supposeu a C1 function onR2 andλ a level such
thatu−1(λ) is compact and for allx belonging tou−1(λ),
Du(x) 6= 0 then u−1(λ) is a finite union ofC1 Jordan
curves [7]. The level sets of a function give a complete ac-
count of the function, then we can look at an image through
its level sets.

The level lines are defined as the boundaries of the upper
level sets, and the set of all level lines (or topographic map)
gives a complete representation of an image u in terms of
its Jordan curves [7].

The method we describe here aims at performing the dis-
occlusion by the level lines connection, i.e., given an image

u, and the inpainting domainD, the scheme aims at inter-
polatingu inside ofD by means of the continuation of its
level lines.

2.2. Geodesic lines

One can understand geodesic on a surface as a straight
line on the plane. In more formal terms, a geodesic on a
surfaceS is a parameterized curveα : I → S whose ac-
celerating vector,α′′(t), is orthogonal toS at each point. A
geodesic path always maintains a constant speed once the
α′(t) andα′′(t) are orthogonal, and then

d

dt
‖α′(t)‖2 = 2α′(t) · α′′(t) = 0.

These curves have various important properties which
distinguish them from the others curves over the surface.
These curves can be characterized as, for example, the
shortest path between two points belonging to the surface
and also the curves which are the straightest possible on the
surface. The first characterization means that every small
arc of a geodesic is the smaller curve path length, on the
surface, connecting the initial and the final arc points. Anal-
ogous to the fact that there exists one and only one straight
line connecting any two different points on the plane, it is
true that there exists only one arc connecting any two sur-
face points which are relatively near one to another. In this
case the geodesic is called the minimal geodesic.

The second geodesic characterization means that at each
point the geodesic is the curve which has the lowest curva-
ture at that point, among all the curves of the surface pass-
ing through this point and having at this point the same tan-
gent. If one point belonging to the curve and the tangent of
this curve, at this point, are known, then the complete path
is well defined. For more details on geodesics, see [8] and
[4].

2.3. Energy of a curve

Let c : [0, 1] → S be a curve, whereS is a surface. The
energy of the curve is given by:

E(c) =
∫ 1

0

|c′(t)|2dt. (1)

One easily notes that ifl(c) is the length of the curvec, then:

(l(c))2 ≤ E(c). (2)

Equality will be reached if, and only if, the parameter t is
proportional to the arc length s.

By considering the last inequality (2) follows that, ifg :
[0, 1] → S is the minimal geodesic, withg(0) = p, g(1) =
q, then for each curvec : [0, 1] → S, connectingp andq,



we haveE(g) ≤ E(c). Equality will be reached if, and only
if c is the minimal geodesic.

2.4. Related works

Let the imageu be a real value function on a spatial do-
mainΩ, u : Ω ⊂ Rp → R, p = 2 or 3, called image support
andI be the initial damaged image defined onDC ⊂ Ω.
Our problem is to reconstructu having the initial damaged
imageI.

In literature of this area there exist various techniques to
carry out inpainting or disocclusion. The classic algorithms
for disocclusion are based on the transportation of pixel in-
formation into the inpainting domain which belongs to the
domain’s subjacent region.

Figure 2. D - inpainting domain, E - extended do-
main.

The termdigital inpainting was first introduced by
Bertalmio et al. [1] and [2]. There, the authors, proposed
a digital inpainting scheme taking into account the real in-
painting used by the artists, to restore the images and us-
ing the PDE’s as their principal tools. The authors applied
the technique in text removal, restoring old photos, and cre-
ating special effects such as object disappearance from a
scene. We will refer to this model as BSCB model.

The BSCB model definesD as the region of the image
where the inpainting will be performed and∂D the bound-
ary of D. The structure of the data onE (surrounding∂D)
will be transported into the regionD, see figure 2 .

Artists use different techniques to perform inpainting in
theirs works, and they do this in a subjective way [3]. There
is not the set method to solve the problem, but their method-
ology consider the following steps:

1. The global picture determines how to fill in the dam-
aged domain (D), the purpose of inpainting being to
restore the unity of the work;

2. The structure of the area surroundingD is continued
into the damaged domainD, contour lines are drawn
via the prolongation of those arriving at∂D;

3. The different regions insideD, as defined by the con-
tour lines, are filled with color, matching those of∂D;

4. The fine details are painted, in other words,“texture” is
added.

The manual concepts defined in (2) and (3) were trans-
lated to mathematical concepts, in the BSCB model, as the
following transport equation:

ut(−→x ) = ∇(∆u(−→x )) · ∇⊥u(−→x ),
−→x ∈ E ∪D, t > 0, (3)

and the diffusion equation

ut(−→x ) = |∇u(−→x )|div(
∇u(−→x )
|∇u(−→x )| ),−→x ∈ E ∪D, t > 0. (4)

In the numerical discretization the authors used both
equations intercalated one with the other, some transport
steps and some diffusion steps were used in the process.

One of the first work for the removal of occlusions was
based on filtering and segmentation. The algorithm consists
of connecting T-junctions at the same gray level with the
elastic minimizing curves. This scheme was added to sim-
ple images, with few objects and few colors, but not being
utilized for examples of natural images [12]. Inspired on the
Euler elastica equation, Nitzberg, Mumford and Shiota [12]
proposed, edge completion in the disocclusion process, as a
solution of the following equation

∫

c

(a + bκ2)ds

wherea are b are constants,c denote every possible path
between two T-junctions andκ is the curvature ofc. The T-
junction are points where the edges making a“T” andc is
a curve parameterized by the arc length s.

The first term of this functional has as its objective to
force so that the level lines which are restored have mini-
mal length and the second term has the objective of forc-
ing so that the total angle variation be the minimum along
these lines.

Moving to analysis of the curvec(s) to the analysis of
the imageu(x, y), Masnou and Morel [11] and [10] present
an improvement to this technique which is a general vari-
ational formulation for disocclusion and a particular algo-
rithm to implement the ideas in the theoretical formulation.
They proposed minimizing the following functional:

J(u) =
∫

D

(
a + b

(
∇.

∇u

|∇u|

)p)
|∇u|dx. (5)

The numerical implementation of this functional consid-
eringp = 1 was made in the following steps:

1. the computation of the polygonal line correspondent to
the boundary of the inpainting domain;



2. the computation of all T-junctions on the inpainting do-
main boundary;

3. the computation of the optimal set of level lines pair-
wise connecting the T-junctions;

4. the drawing of the geodesic paths;

5. the filling-in of the inpainting domain through the ge-
odesic propagation [10] and [11].

As reported by the authors the inpainting domain
should have simple topology with no holes. As the algo-
rithm uses straight lines to connect two T-junctions with
same gray value, the angle with which the level lines ar-
rive at the boundary are not well preserved.

Chan, Kang and Shen give interesting results related to
functionalJ(u) consideringp = 2. They derive the Euler-
Lagrange equation for the functional:

J2(u) =
∫

D∪E

(
a + b

(
∇.

∇u

|∇u|
)2

)
|∇u|dz

− λ

2

∫

E

(u− I)2dz (6)

and give the following weighted gradient descent marching
equation to minimizeJ2(u):

∂u

∂t
= |∇u|∇.~V − |∇u|λe(u− u0) (7)

for all z = (x, y) ∈ E ∪D. The extended Lagrange multi-
plier λe is given by

λe =
{

λ if z ∈ E
0 if z ∈ D.

The flux field~V is defined by

~V = (ν + αk2)~n− 2α

|∇u|
∂(k|∇u|)

∂~t
~t (8)

with ~n as the normal field∇u/|∇u| and~t the tangent field.
For more details see [6].

In contrast with Masnou and Morel work, curvy level
lines can be well restored. However there exists two con-
stantsa andb in the functionalJ(u) thus, good results ob-
tained by the numerical implementation is a delicate issue
once there are no results about the range of these two con-
stants. The convergence and the stability are also two deli-
cate issues once the equation is of the fourth order. As the
equation uses the diffusion process it becomes difficult to
recover sharpness, as pointed out by the authors.

Following the ideas introduced by Bertalmio et al. and
Nitzberg et al., also trying to avoid the dynamical program-
ming used in the work of Masnou and Morel, which has
high computational cost, and also avoiding the fourth order
differential equation proposed by Chan et al., we present an
algorithm with low computational cost to restore digital im-
ages with damaged areasDi. It is based on the continuation
of the level lines arriving in each inpainting domainDi.

3. The proposed model

The proposed model aims at recovering damaged or
missing data areas of an image in such a way as to sat-
isfy the Connectivity Principle independent of the size
or topology of the inpainting domain. Here, contrary to the
technique of Masnou and Morel, [10] and [11], we can have
holes in the inpainting domain.

To find the continuation of the level lines, from outside
to inside of the inpainting domain, following the geodesic
lines and minimizing the curve energy we propose to mini-
mize the following functional:

l(c) =
∫

c

|c′(t)|dt (9)

with the restrain condition

c′(t) · c′′(t) = 0, ∀t (10)

where c is a curve.
The numerical results show the model satisfies the

Connectivity Principle (see figures 5, 6, 9 and 12).

3.1. The inpainting algorithm

Different from the algorithm presented by Masnou and
Morel [11] here it does not bring about the necessity of the
detection of T-junctions on the boundary∂D of an inpaint-
ing domain. Also the solution of a fourth order differential
equation is not calculated, thus avoiding serious problems
such as convergence, stability or the posing constantsa and
b in (eq.5) and (eq.6) which should be investigated once the
values set for these two constants interfere with the results.

To implement the ideas behind equations (9) and (10) to
carry out the inpainting we propose an algorithm which can
be described in the following steps:

1. Definition of the inpainting domain D.

2. Automatic detection of the points belonging to the
boundary∂D of D. A pixel x belongs to the border
if, and only if, it belongs to the inpainting domain and
any neighborhoodV (x, r) with its center at pixelx and
radiusr, with r > 1, contains at least one pixel not be-
longing to the inpainting domain.



Figure 3. The level line continuation.

3. The filling in of information on the pixels border (be-
longing to∂D) is performed in such a way as to satisfy
the condition given by the equations 9 and 10. In the
numerical discretization these conditions are reached
by the following procedure:

(a) For each pixel on the border, the level lines in k
directions and both ways of each direction, are
analyzed (for example ifk = 4, the level lines
arriving in D in the direction N-S, S-N, NE-SW,
SW-NE, E-W, W-E, SE-NW and NW-SE are ana-
lyzed) and the direction of the directional deriva-
tive of least intensity is chosen (at this moment,
the signal of directional derivative is not consid-
ered).

(b) If there exist two different directions satisfying
the criterion (a) we chose that one which has the
greatest flow perpendicular to the level line.

(c) If there exist yet two different level lines satisfy-
ing both criteria we chose that one which has the
shortest distance betweenc(tn+1) andc(tn).

(d) The value transported to the pixel in question is

c(tn+1) = c(tn) + ∆tc′(tn)

where∆t is the Euclidean distance between
c(tn+1) andc(tn), see figure 3. This means the
value of the nearest pixel, in the same direction of
the chosen level line and which does not belong
to the inpainting domain, added to the value of
the directional derivative along the chosen level
line (here the signal of directional derivative is
considered).

i. This procedure is repeated until the values
of the boundary points do not change any-
more or until a number maximum of repe-
titions is reached. This procedure helps to
avoid the repetition of the values obtained
with the first iteration and also to consider
the possibility of the existence of several dif-
ferent points in the boundary of D all be-
longing to the same level line. This proce-
dure allows for the transportation of some

kind of texture. We will refer to this proce-
dure as the border analysis.

ii. The elements modified by the transportation
are excluded from the inpainting domain.
This means, we makeD = D − ∂D.

iii. If elements still exist in the inpainting do-
main, go back to the step 2.

4. Final Remarks and Experimental Results

The method proposed in this paper is based on the same
principles as the BSCB scheme (inpainting domain defini-
tions and the transport procedure at pixels belonging to the
inpainting domain), but carrying out, the transport of the
information belonging to the surrounding neighborhood of
the domain inpainting border and also in the form as to fill-
in this domain in a different way. Also, another difference
is that in the proposed model there is no diffusion process
used in the BSCB technique to correct the level lines di-
rection. The proposed model is closed to the Masnou ideas
but performing the transport of the information in a com-

(a) (b)

(c) (d)

Figure 4. Inpainting of two parallel bars occluded
by a black vertical rectangle. (a) Initial, (b) result
obtained by the BSCB scheme (100 iterations with
10 inpaints and 100 diffusions for each iteration
were performed), (c) result obtained by Masnou
and Morel scheme and (d) result obtained by the
proposed LLC algorithm.



pletely different way. In figure 4 we can see the main differ-
ence between the proposed model, the Masnou model and
the BSCB model. The inpainting domain (a vertical box)
occulting part of the two parallel bars of the same level in
the gray scale, were restored in a different way. In the Mas-
nou and BSCB schemes the two bars were connected but in
a different form (figure 4-b,c respectively) while the inpaint-
ing carried out by the proposed model does not connect the
two bars (figure 4-d). In the BSCB scheme the user must
paint all of domainD. After that the whole domain D is
modified in each iteration while in the proposed model only
the boundary of the domain D will be restored in each iter-
ation, then a new inpaint domainDK = Dk−1 − ∂Dk−1

is considered and the filling-in procedure is applied again
and again until the domainD becomes an empty set. The
transportation is carried out in such a way as to satisfy the
Connectivity Principle, independent of the topology or
the size of the inpainting domain (see figures 5 to 12).

Figure 5. The transverse bar occluded by a rect-
angle. Initial, two partial and the final results.

Several experiments were realized using the proposed
technique. We will present some of these experiments to il-
lustrate the performance of our algorithm in several situa-
tions and how the proposed inpainting scheme works.

We present in figures 5 to 12 the performance of the pro-
posedLLC algorithm for several different types of occlu-
sion problems. Our first experiment shows the performance
of the proposed model in the inpainting of two synthetic
images, a inclined bar occluded by a rectangle and a tex-
tured synthetic image. Figure 5 shows the initial, two par-
tial and the final results concerning the transverse bar oc-
cluded by a rectangle. Figure (6-a) shows the initial dam-
aged textured image. Figures (6-b,c) show the final results
obtained by the proposed model with and without the ap-
plication of the procedure denominated border analysis, re-
spectively.

The second experiment shows the performance of the
proposed algorithm in restoration of real scene images with
inpainting domains of different forms and sizes. Figures
(7-b,c) show the inpainting domain and final results in the
restoration of the damaged Lenna image in (7-a). Figure (8)
and figure (9) show the partial and final results of the pro-
posed model in two damaged version of Mandrill. Figure 10
shows a original bridge where the occlusion area is in white.

Partial and final inpainting results obtained by theLLC al-
gorithm are shown.

In figure (11) one can see that the discontinuities have
been recovered well in the restoration of the damaged Lenna
image. Finally, figure (12) illustrates the performance of the
proposedLLC algorithm in a scratched landscape.

All the experiments have been executed with images of
256× 256 pixels size and with256 levels of gray intensity.
The code was implemented inC language and run on a PC
2GHz computer with256Mb of RAM memory. The time
spent was less than one second in all experiments.

5. Conclusion

In this paper we have introduced a new level line based
algorithm for image inpainting to fill-in a damaged domain
keeping the harmony of the image through the use of a
method built in a way as to satisfy theConnectivity
Principle. The scheme consists of extending the level
lines, in the direction of the isophotes, arriving on the
boundary of the damaged domain into this same domain.
The user needs only to define the area to be inpainted. Af-
ter that the algorithm is automatic. The proposed technique
is fast and robust to restore the level lines and to fill-in the
inpainting domain. Numerical experiments show the good

(a)

(b) (c)

Figure 6. (a) Initial image damaged by the six
white bars, (b) final result, (c) final result without
the border analysis procedure.



performance of the proposed model even when the image
has a natural texture, as can be seen in figure 9.

One advantage of the geometric nature model is that even
though the implicit contour itself can develop singularities
(like cusp and corners) and can merge or split to change
topology, the level lines remain well defined and thus, one
can discretize the evolutionary curve on a fixed cartesian
grid.

The results produced by this geometric model are, in
many cases, comparable to previous inpainting models pre-
sented in literature, but in some cases the performance is
better and faster. The main reason is that the proposed algo-
rithm does not use the diffusion process so we can restore
texture better.

The proposed model can obtain good results even when
the regionD is not a small area as we can see in figure 9
and 11.
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(a) (b)

(c)

Figure 7. Lenna. (a) Initial, (b) inpainting domain
and (c) final result of the inpainting in the initial im-
age.

Figure 8. The Mandrill figure with an imposed
flower contour. The initial image, the inpainting
domain and the final result, respectively.
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Figure 9. Mandrill damaged initial image, partial and final results obtained by the proposed model.

Figure 10. Initial damaged bridge, inpainting domain, partial and final results, respectively.

Figure 11. Restoration of a damaged Lenna image. Initial, partial and final results.

Figure 12. Restoration of a scratched landscape. Initial, inpainting domain, partial and final results, respec-
tively.


